1,470 research outputs found

    Fabrication of 2D Material Based NEMS Resonators

    Get PDF
    2D materials such as graphene, MoS2 and phosphorene are promising candidates for resonating mechanical sensors due to excellent tunable electrical/- mechanical properties, low masses, and maximal surface to volume ratios. Mechanical resonators based on supsended graphene have been realized. - CVD graphene wet-transferred onto 10x10 mm Si/SiO2 chips with Au electrodes - Graphene patterned in O2 plasma with a resist mask - Graphene is released by etching SiO2 in BHF and critical point dryin

    The Case for the Dual Halo of the Milky Way

    Full text link
    Carollo et al. have recently resolved the stellar population of the Milky Way halo into at least two distinct components, an inner halo and an outer halo. This result has been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezi\'c et al. When compared to the recommended relation from Ivezi\'c et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the relation adopted by Schoenrich et al. yields up to 18% shorter distances for stars near the main-sequence turnoff (TO). Use of the correct relationship yields agreement between the distances assigned by Carollo et al. and Ivezi\'{c} et al. for low-metallicity dwarfs to within 6-10%. Schoenrich et al. also point out that intermediate-gravity stars (3.5 <= log g <= 4.0) with colors redder than the TO region are likely misclassified, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior demonstrate that the retrograde signature and high velocity dispersion of the outer-halo population remains. We summarize additional lines of evidence for a dual halo, including a test of the retrograde signature based on proper motions alone, and conclude that the preponderance of evidence strongly rejects the single-halo interpretation.Comment: 46 pages, 2 tables, 15 figures, Accepted for publication in the Astrophysical Journa

    Virial Sequences for Thick Discs and Haloes: Flattening and Global Anisotropy

    Full text link
    The virial theorem prescribes the ratio of the globally-averaged equatorial to vertical velocity dispersion of a tracer population in spherical and flattened dark haloes. This gives sequences of physical models in the plane of global anisotropy and flattening. The tracer may have any density, though there are particularly simple results for power-laws and exponentials. We prove the flattening theorem: for a spheroidally stratified tracer density with axis ratio q in a dark density potential with axis ratio g, the ratio of globally averaged equatorial to vertical velocity dispersion depends only on q/g. As the stellar halo density and velocity dispersion of the Milky Way are accessible to observations, this provides a new method for measuring the flattening of the dark matter. If the kinematics of the local halo subdwarfs are representative, then the Milky Way's dark halo is oblate with a flattening in the potential of g ~ 0.85, corresponding to a flattening in the dark matter density of ~ 0.7. The fractional pressure excess for power-law populations is roughly proportional to both the ellipticity and the fall-off exponent. Given the same pressure excess, if the density profile of one stellar population declines more quickly than that of another, then it must be rounder. This implies that the dual halo structure claimed by Carollo et al. (2007) for the Galaxy, a flatter inner halo and a rounder outer halo, is inconsistent with the virial theorem. For the thick disc, we provide formulae for the virial sequences of double-exponential discs in logarithmic and Navarro-Frenk-White (NFW) haloes. There are good matches to the observational data on the flattening and anisotropy of the thick disc if the thin disc is exponential with a short scalelength ~ 2.6 kpc and normalisation of 56 solar masses per square parsec, together with a logarithmic dark halo.Comment: MNRAS, submitted, 13 pages, 7 figures, small changes to made to correspond to final accepted versio

    Binary Contamination in the SEGUE sample: Effects on SSPP Determinations of Stellar Atmospheric Parameters

    Full text link
    Using numerical modeling and a grid of synthetic spectra, we examine the effects that unresolved binaries have on the determination of various stellar atmospheric parameters for SEGUE targets measured using the SEGUE Stellar Parameter Pipeline (SSPP). To model undetected binaries that may be in the SEGUE sample, we use a variety of mass distributions for the primary and secondary stars in conjunction with empirically determined relationships for orbital parameters to determine the fraction of G-K dwarf stars, as defined by SDSS color cuts, that will be blended with a secondary companion. We focus on the G-K dwarf sample in SEGUE as it records the history of chemical enrichment in our galaxy. To determine the effect of the secondary on the spectroscopic parameters, we synthesize a grid of model spectra from 3275 to 7850 K (~0.1 to 1.0 \msun) and [Fe/H]=-0.5 to -2.5 from MARCS model atmospheres using TurboSpectrum. We analyze both "infinite" signal-to-noise ratio (S/N) models and degraded versions, at median S/N of 50, 25 and 10. By running individual and combined spectra (representing the binaries) through the SSPP, we determine that ~10% of the blended G-K dwarf pairs with S/N>=25 will have their atmospheric parameter determinations, in particular temperature and metallicity, noticeably affected by the presence of an undetected secondary. To account for the additional uncertainty from binary contamination at a S/N~10, uncertainties of ~140 K and ~0.17 dex in [Fe/H] must be added in quadrature to the published uncertainties of the SSPP. (Abridged)Comment: 68 pages, 20 figures, 9 table

    On the alleged duality of the Galactic halo

    Full text link
    We examine the kinematics of the Galactic halo based on SDSS/SEGUE data by Carollo et al. (2007, 2010). We find that their claims of a counter-rotating halo are the result of substantial biases in distance estimates (of order 50%): the claimed retrograde component, which makes up only a tiny fraction of the entire sample, prone to contaminations, is identified as the tail of distance overestimates. The strong overestimates also result in a lift in the vertical velocity component, which explains the large altitudes those objects were claimed to reach. Errors are worst for the lowest metallicity stars, which explains the metal-poor nature of the artificial component. We also argue that measurement errors were not properly accounted for and that the use of Gaussian fitting on intrinsically non-Gaussian Galactic components invokes the identification of components that are distorted or even artificial. Our evaluation of the data leads to a revision of the estimated velocity ellipsoids and does not yield any reliable evidence for a counterrotating halo component. If a distinct counterrotating halo component exists it must be far weaker than claimed by Carollo et al. Finally we note that their revised analysis presented in Beers et al. (2011) does not alleviate our main concerns.Comment: 17 pages, 12 figures, submitted to MNRA

    Dark Matter Angular Momentum Profile from the Jeans Equation

    Full text link
    Cosmological simulations of dark matter structures have shown that the equilibrated dark matter structures have a fairly small angular momentum. It appears from these N-body simulations that the radial profile of the angular momentum has an almost universal behavior, even if the different dark matter structures have experienced very different formation and merger histories. We suggest a perturbed Jeans equation, which includes a rotational term. This is done under a reasonable assumed form of the change in the distribution function. By conjecturing that the (new) subdominant rotation term must be proportional to the (old) dominant mass term, we find a clear connection, which is in rather good agreement with the results of recent high resolution simulations. We also present a new connection between the radial profiles of the angular momentum and the velocity anisotropy, which is also in fair agreement with numerical findings. Finally we show how the spin parameter λ\lambda increases as a function of radius.Comment: 9 pages, 10 figures, accepted for publication in ApJ, Added reference

    Insight Into the Formation of the Milky Way Through Cold Halo Substructure. I. The ECHOS of Milky Way Formation

    Get PDF
    We identify ten -- seven for the first time -- elements of cold halo substructure (ECHOS) in the volume within 17.5 kpc of the Sun in the inner halo of the Milky Way. Our result is based on the observed spatial and radial velocity distribution of metal-poor main sequence turnoff (MPMSTO) stars in 137 Sloan Extension for Galactic Understanding and Exploration (SEGUE) lines of sight. We point out that the observed radial velocity distribution is consistent with a smooth stellar component of the Milky Way's inner halo overall, but disagrees significantly at the radial velocities that correspond to our detections. We show that all of our detections are statistically significant and that we expect no false positives. We also use our detections and completeness estimates to infer a formal upper limit of 0.34 +/- 0.02 on the fraction of the MPMSTO population in the inner halo that belong to ECHOS. Our detections and completeness calculations suggest that there is a significant population of low fractional overdensity ECHOS in the inner halo, and we predict that 1/3 of the inner halo (by volume) harbors ECHOS with MPMSTO star number densities n ~ 15 kpc^-3. ECHOS are likely older than known surface brightness substructure, so our detections provide us with a direct measure of the accretion history of the Milky Way in a region and time interval that has yet to be fully explored. In concert with previous studies, our result suggests that the level of merger activity has been roughly constant over the past few Gyr and that there has been no accretion of single stellar systems more massive than a few percent of a Milky Way mass in that interval. (abridged)Comment: 47 pages, 23 figures, and 6 tables in emulaetapj format; accepted for publication in Ap
    corecore