142 research outputs found

    Mitochondrial haplogroup H1 is protective for ischemic stroke in Portuguese patient

    Get PDF
    BACKGROUND: The genetic contribution to stroke is well established but it has proven difficult to identify the genes and the disease-associated alleles mediating this effect, possibly because only nuclear genes have been intensely investigated so far. Mitochondrial DNA (mtDNA) has been implicated in several disorders having stroke as one of its clinical manifestations. The aim of this case-control study was to assess the contribution of mtDNA polymorphisms and haplogroups to ischemic stroke risk. METHODS: We genotyped 19 mtDNA single nucleotide polymorphisms (SNPs) defining the major European haplogroups in 534 ischemic stroke patients and 499 controls collected in Portugal, and tested their allelic and haplogroup association with ischemic stroke risk. RESULTS: Haplogroup H1 was found to be significantly less frequent in stroke patients than in controls (OR = 0.61, 95% CI = 0.45-0.83, p = 0.001), when comparing each clade against all other haplogroups pooled together. Conversely, the pre-HV/HV and U mtDNA lineages emerge as potential genetic factors conferring risk for stroke (OR = 3.14, 95% CI = 1.41-7.01, p = 0.003, and OR = 2.87, 95% CI = 1.13-7.28, p = 0.021, respectively). SNPs m.3010G>A, m.7028C>T and m.11719G>A strongly influence ischemic stroke risk, their allelic state in haplogroup H1 corroborating its protective effect. CONCLUSION: Our data suggests that mitochondrial haplogroup H1 has an impact on ischemic stroke risk in a Portuguese sample

    Kalirin: a novel genetic risk factor for ischemic stroke

    Get PDF
    Cerebrovascular and cardiovascular diseases are the leading causes of death and disability worldwide. They are complex disorders resulting from the interplay of genetic and environmental factors, and may share several susceptibility genes. Several recent studies have implicated variants of the Kalirin (KALRN) gene with susceptibility to cardiovascular and metabolic phenotypes, but no studies have yet been performed in stroke patients. KALRN is involved, among others, in the inhibition of inducible nitric oxide synthase, in the regulation of ischemic signal transduction, and in neuronal morphogenesis, plasticity, and stability. The goal of the present study was to determine whether SNPs in the KALRN region on 3q13, which includes the Ropporin gene (ROPN1), predispose to ischemic stroke (IS) in a cohort of Portuguese patients and controls. We genotyped 34 tagging SNPs in the KALRN and ROPN1 chromosomal region on 565 IS patients and 517 unrelated controls, and performed genotype imputation for 405 markers on chromosome 3. We tested the single-marker association of these SNPs with IS. One SNP (rs4499545) in the ROPN1-KALRN intergenic region and two SNPs in KALRN (rs17286604 and rs11712619) showed significant (P < 0.05) allelic and genotypic (unadjusted and adjusted for hypertension, diabetes, and ever smoking) association with IS risk. Thirty-two imputed SNPs also showed an association at P < 0.05, and actual genotyping of three of these polymorphisms (rs7620580, rs6438833, and rs11712039) validated their association. Furthermore, rs11712039 was associated with IS (0.001 < P < 0.01) in a recent well-powered genomewide association study (Ikram et al. 2009). These studies suggest that variants in the KALRN gene region constitute risk factors for stroke and that KALRN may represent a common risk factor for vascular diseases

    The Role of PAS Kinase in PASsing the Glucose Signal

    Get PDF
    PAS kinase is an evolutionarily conserved nutrient responsive protein kinase that regulates glucose homeostasis. Mammalian PAS kinase is activated by glucose in pancreatic beta cells, and knockout mice are protected from obesity, liver triglyceride accumulation, and insulin resistance when fed a high-fat diet. Yeast PAS kinase is regulated by both carbon source and cell integrity stress and stimulates the partitioning of glucose toward structural carbohydrate biosynthesis. In our current model for PAS kinase regulation, a small molecule metabolite binds the sensory PAS domain and activates the enzyme. Although bona fide PAS kinase substrates are scarce, in vitro substrate searches provide putative targets for exploration

    Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography

    Get PDF
    Extreme ultraviolet (EUV) lithography is currently entering high-volume manufacturing to enable the continued miniaturization of semiconductor devices. The required EUV light, at 13.5 nm wavelength, is produced in a hot and dense laser-driven tin plasma. The atomic origins of this light are demonstrably poorly understood. Here we calculate detailed tin opacity spectra using the Los Alamos atomic physics suite ATOMIC and validate these calculations with experimental comparisons. Our key finding is that EUV light largely originates from transitions between multiply-excited states, and not from the singly-excited states decaying to the ground state as is the current paradigm. Moreover, we find that transitions between these multiply-excited states also contribute in the same narrow window around 13.5 nm as those originating from singly-excited states, and this striking property holds over a wide range of charge states. We thus reveal the doubly magic behavior of tin and the origins of the EUV light

    A spill over effect of entrepreneurial orientation on technological innovativeness:an outlook of universities and research based spin offs

    Get PDF
    partially_open5siBy shifting towards Romer’s (Am Econ Rev 94:1002–1037, 1986) economy and so the spread of knowledge economy, universities started to adopt a collaborative approach with their entrepreneurial ecosystem. They turn out to be risk taker, autonomous, proactive, competitive, and innovative. In a nutshell, they are entrepreneurial oriented with the aim to generate new innovative ventures, known as research-based spin offs. Doubly, this has induced an improvement of technology transfer and the degree of entrepreneurship in the current knowledge economy. However there still is a paucity of studies on the spill over effect of entrepreneurial orientated universities and research-based spin off on technology transfer need to be more explored. Therefore, the article investigates the link between entrepreneurial orientation and such spill overs by offering an outlook of two universities and two research-based spin offs in the United Kingdom. The scope is to provide a deep view of technological innovativeness in a research context, entrepreneurial oriented. Our research suggests that entrepreneurial attitude has become an imperative to succeed in the context where British institutions currently operate. Entrepreneurship brings the necessary technological innovation to the university and its students, which results in better positioning of the university at national and international levels, with the subsequent impact on their ability to attract not only new students and academics but also funding to conduct their research.openScuotto, Veronica; Del Giudice, Manlio; Garcia-Perez, Alexeis; Orlando, Beatrice; Ciampi, FrancescoScuotto, Veronica; Del Giudice, Manlio; Garcia-Perez, Alexeis; Orlando, Beatrice; Ciampi, Francesc

    Giant resonant light forces in microspherical photonics

    Get PDF
    Resonant light pressure effects can open new degrees of freedom in optical manipulation with microparticles, but they have been traditionally considered as relatively subtle effects. Using a simplified two-dimensional model of surface electromagnetic waves evanescently coupled to whispering gallery modes (WGMs) in transparent circular cavities, we show that under resonant conditions the peaks of the optical forces can approach theoretical limits imposed by the momentum conservation law on totally absorbing particles. Experimentally, we proved the existence of strong peaks of the optical forces by studying the optical propulsion of dielectric microspheres along tapered microfibers. We observed giant optical propelling velocities ∼0.45 mm s−1 for some of the 15-20 µm polystyrene microspheres in water for guided powers limited at ∼43 mW. Such velocities exceed previous observations by more than an order of magnitude, thereby providing evidence for the strongly enhanced resonant optical forces. We analyzed the statistical properties of the velocity distribution function measured for slightly disordered (∼1% size variations) ensembles of microspheres with mean diameters varying from 3 to 20 µm. These results demonstrate a principal possibility of optical sorting of microspheres with the positions of WGM resonances overlapped at the wavelength of the laser source. They can be used as building blocks of the lossless coupled resonator optical waveguides and various integrated optoelectronics devices
    corecore