
BioMed CentralBMC Medical Genetics

ss

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional repository of Hospital de Braga
Open AcceResearch article
Mitochondrial haplogroup H1 is protective for ischemic stroke in 
Portuguese patients
Alexandra Rosa1, Benedita V Fonseca1, Tiago Krug1, Helena Manso1,2, 
Liliana Gouveia3, Isabel Albergaria2, Gisela Gaspar2, Manuel Correia4, 
Miguel Viana-Baptista5, Rita Moiron Simões6, Amélia Nogueira Pinto6, 
Ricardo Taipa4, Carla Ferreira7, João Ramalho Fontes7, Mário Rui Silva8, 
João Paulo Gabriel8, Ilda Matos9, Gabriela Lopes4, José M Ferro3, 
Astrid M Vicente1,2 and Sofia A Oliveira*1

Address: 1Instituto Gulbenkian de Ciência, Oeiras, Portugal, 2Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal, 3Serviço de 
Neurologia, Hospital de Santa Maria, Lisboa, Portugal, 4Serviço de Neurologia, Hospital Geral de Santo António, Porto, Portugal, 5Serviço de 
Neurologia, Hospital Garcia de Orta, Almada, Portugal, 6Serviço de Neurologia, Hospital Fernando Fonseca, Amadora, Portugal, 7Serviço de 
Neurologia, Hospital São Marcos, Braga, Portugal, 8Serviço de Neurologia, Hospital de São Pedro, Vila Real, Portugal and 9Serviço de Neurologia, 
Hospital Distrital de Mirandela, Mirandela, Portugal

Email: Alexandra Rosa - arosa@uma.pt; Benedita V Fonseca - mfonseca@igc.gulbenkian.pt; Tiago Krug - tkrug@igc.gulbenkian.pt; 
Helena Manso - hmanso@igc.gulbenkian.pt; Liliana Gouveia - lilianafog@gmail.com; Isabel Albergaria - isabel.albergaria@insa.min-saude.pt; 
Gisela Gaspar - gisela.gaspar@insa.min-saude.pt; Manuel Correia - mmcorreia@mail.telepac.pt; Miguel Viana-
Baptista - mbatista.neuro@fcm.unl.pt; Rita Moiron Simões - rita_moiron_simoes@hotmail.com; 
Amélia Nogueira Pinto - ameliapinto@hotmail.com; Ricardo Taipa - ricardotaipa@gmail.com; Carla Ferreira - carla.m.c.ferreira@gmail.com; 
João Ramalho Fontes - fontes@hsmbraga.min-saude.pt; Mário Rui Silva - uavc@chvrpr.min-saude.pt; João Paulo Gabriel - Jp.sequeira@iol.pt; 
Ilda Matos - Ildamariasilvamatos@hotmail.com; Gabriela Lopes - gab.lopes@clix.pt; José M Ferro - jmferro@fm.ul.pt; 
Astrid M Vicente - avicente@igc.gulbenkian.pt; Sofia A Oliveira* - soliveira@igc.gulbenkian.pt

* Corresponding author    

Abstract
Background: The genetic contribution to stroke is well established but it has proven difficult to identify the genes and the
disease-associated alleles mediating this effect, possibly because only nuclear genes have been intensely investigated so far.
Mitochondrial DNA (mtDNA) has been implicated in several disorders having stroke as one of its clinical manifestations. The
aim of this case-control study was to assess the contribution of mtDNA polymorphisms and haplogroups to ischemic stroke risk.

Methods: We genotyped 19 mtDNA single nucleotide polymorphisms (SNPs) defining the major European haplogroups in 534
ischemic stroke patients and 499 controls collected in Portugal, and tested their allelic and haplogroup association with ischemic
stroke risk.

Results: Haplogroup H1 was found to be significantly less frequent in stroke patients than in controls (OR = 0.61, 95% CI =
0.45–0.83, p = 0.001), when comparing each clade against all other haplogroups pooled together. Conversely, the pre-HV/HV
and U mtDNA lineages emerge as potential genetic factors conferring risk for stroke (OR = 3.14, 95% CI = 1.41–7.01, p = 0.003,
and OR = 2.87, 95% CI = 1.13–7.28, p = 0.021, respectively). SNPs m.3010G>A, m.7028C>T and m.11719G>A strongly
influence ischemic stroke risk, their allelic state in haplogroup H1 corroborating its protective effect.

Conclusion: Our data suggests that mitochondrial haplogroup H1 has an impact on ischemic stroke risk in a Portuguese sample.
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Background
Stroke is a complex disorder resulting from the interplay
of genetics and environment, and genes potentially hav-
ing an impact on disease pathogenesis (e.g. genes
involved in hemostasis), intermediate phenotypes (e.g.
atherosclerosis) or clinical risk factors (e.g. blood pressure
regulation) have been tested for association with stroke
risk [1]. Mostly nuclear genes have been intensively inves-
tigated thus far, while the role of the mitochondrial
genome has been neglected. Mitochondria are extranu-
clear organelles whose primary function is the production
of ATP through the oxidative phosphorylation
(OXPHOS) respiratory chain. They also play a decisive
role in intracellular signaling, metabolic pathways such as
Krebs' or tricarboxylic acid cycle and the metabolism of
amino acids, lipids, cholesterol and steroids. Mitochon-
drial function is required for normal vascular cell growth
and function, and its dysfunction can result in apoptosis,
favoring atherosclerotic plaque rupture. mtDNA is mater-
nally inherited, does not recombine and exhibits high
mutation and fixation rates, therefore making it an impor-
tant tool in phylogenetics. Human mtDNA is a haploid,
circular molecule of approximately 16,600 nucleotides
encoding for thirteen OXPHOS polypeptides, twenty-two
transfer RNAs and two ribosomal RNAs (Figure 1) [2].
Particular combinations of certain polymorphisms define
mitochondrial haplogroups and subclades (Table 1),
which tend to be associated to broad geographic areas
and/or populations [3].

Particular variants of the mitochondrial genome have
been linked to aging [4,5], the strongest risk factor for
stroke, and to several neurological and vascular disorders.
Among the best-known examples of a mitochondrial dis-
order is that of MELAS (MIM: 540000), a mitochondrial

encephalopathy characterized by lactic acidosis and
stroke-like episodes. This syndrome is caused by the
m.3243A>G mutation, an A to G transition at mtDNA
nucleotide position 3243 [6,7]. Leber's hereditary optic
neuropathy (LHON, MIM: 535000), a vascular disease of
the optic disc, is also caused by mtDNA mutations that
lead to respiratory chain dysfunction [8]. Interestingly, the
phylogenetic background of haplogroup J influences the
clinical penetrance and expression of the m.11778G>A
and m.14484T>C primary LHON mutations [9,10]. This
exemplifies how, although defined on the basis of evolu-
tionarily neutral polymorphisms, common mtDNA varia-
tion of phylogenetic relevance assumes a functional role
on the expression of particular complex traits. mtDNA
variation has been associated with non-Mendelian and
non-maternally inherited complex disorders such as Par-
kinson's disease [11], Alzheimer's disease [12], myocar-
dial infarction [13], obesity [14], occipital stroke in
migraine [15,16], and mean intima-media thickness of
bilateral carotid arteries [17]. Increased mitochondrial
oxidative stress and dysfunction has been linked to many
ischemic stroke risk factors, including hypertension [18],
diabetes [19], inflammation [20], plaque rupture [20],
tobacco smoke and alcohol exposure [21]. The goal of the
present study was to determine whether mtDNA SNPs or
haplogroups predispose to ischemic stroke in a large
cohort of Portuguese patients and controls.

Methods
Study subjects
Five hundred thirty four unrelated patients with a clinical
diagnosis of ischemic stroke, who were under the age of
65 at stroke onset, were recruited through Neurology and
Internal Medicine Departments throughout Portugal.
Stroke was defined by the presence of a new focal neuro-

Table 1: Type of investigated mitochondrial markers and haplogroup determination. 

Mitochondrial Polymorphism (SNP Type)*

Haplogroup m.709
G>A 

(ncod)

m.1719
G>A 

(ncod)

m.3010
G>A 

(ncod)

m.3348
A>G 
(syn)

m.4580
G>A 
(syn)

m.5999
T>C 
(syn)

m.7028
C>T 
(syn)

m.7805
G>A 

(p.V74I)

m.8251
G>A 
(syn)

m.8701
A>G 

(p.T59A)

m.9055
G>A 

(p.A177T)

m.10398
A>G 

(p.T114A)

m.1087
3T>C 
(syn)

m.1171
9G>A 
(syn)

m.1230
8A>G 
(ncod)

m.1270
5C>T 
(syn)

m.1336
8G>A 
(syn)

m.1361
7T>C 
(syn)

m.13708
G>A 

(p.A458T)

H C G
H1 A C G
V A T G
pre-HV/HV G T G
J G G A A C A
J1b G A G A A C A
T A A A C A
U A G C
U4 C A G C
U5 A G C C
U6a G A A G C
K1 A G G
I G A A A G T T
X2b G A G A A T T A
W A G A A A T T
L G G C T

Each haplogroup was determined by the combination of bolded alleles, and the alleles not bolded aided in the phylogenetic assignment. The 
polymorphisms are named after their base pair position and alleles.

*ncod: non-coding SNP; syn: synonymous SNP; amino acid substitutions are indicated for non-synonymous SNPs.
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Genomic localization of the investigated markers within the human mitochondrial DNA moleculeFigure 1
Genomic localization of the investigated markers within the human mitochondrial DNA molecule. The genetic 
location of mtDNA markers genotyped in the present study is indicated in the inner circle. H and L stand for heavy and light 
strands, respectively, given the asymmetric distribution of G and C nucleotides, with H being the G-rich strand. The seven 
complex I subunits (ND1, 2, 3, 4L, 4, 5 and 6), one complex III subunit (Cyt b), three complex IV subunits (COI, COII, and 
COIII), two complex V subunits (ATPases 6 and 8), two ribosomal RNAs (12S and 16S rRNAs), 22 tRNAs and D-loop regions 
are shown. Gene products encoded by the L-strand are shown in the inner circle (one letter code) while the products of the 
H-strand are shown in the outer circle. Arrows indicate the locations of promoters PL and PH for the transcription and replica-
tion origin OH. Adapted from MITOMAP [2].
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logical deficit, with an acute onset and symptoms and
signs persisting for more than 24 hours, and was con-
firmed by Computed Tomography Scan (97% of cases)
and/or Magnetic Resonance Imaging (in 25% of patients)
[22]. All patients were seen and all neuroradiology tests
were reviewed by study neurologists. Trauma, tumors,
infection and other causes of neurological deficit were
excluded.

Data collection forms were developed for this study that
included extensive clinical information such as stroke
characteristics, general clinical observation, neurological
symptoms and signs, complications and interventions
during hospitalization and situation at discharge. Data
was also collected on relevant lifestyle aspects and previ-
ous clinical risk factors.

Four hundred ninety nine unrelated healthy individuals
were included in this study as a control sample popula-
tion. Since stroke is a late-onset disease, the control group
was selected from a group of healthy volunteers with a
higher mean age than the case group, thus minimizing the
chances for mis-classification as "stroke-free". Control
individuals were verified to be free of stroke by direct
interview before recruitment, but no brain imaging stud-
ies were performed. The interview also included questions
on established clinical and life-style risk factors for stroke.

The principal demographic and clinical characteristics
and frequency of risk factors of this study sample are
shown in Table 2. The research protocol was approved by
the ethics committees of participating institutions, and
participants were informed of the study and provided
informed consent.

SNP selection and haplogroup definition
We studied nineteen mtDNA SNPs (Figure 1 and Table 1)
of phylogenetic relevance for classifying the Portuguese
mitochondrial haplogroup variation which includes the

most prevalent West Eurasian haplogroups (H, H1, V, pre-
HV/HV, J, J1b, T, U, U4, U5, K1, I, X2b, and W), as well as
some African haplogroups (U6a and L) more frequent in
Portugal and in the Iberian Peninsula than in other Euro-
pean countries [23,24]. Haplogroups and their subclades,
which show different frequencies and distributions in
human populations, are defined by the combination of
multiple markers (Table 1), embracing the information
from the whole set of branches of the mtDNA tree rather
than the status at any single point mutation. The nomen-
clature of clades follows Torroni et al. [25], Richards et al.
[26], and Macaulay et al. [27]. The "Other" haplogroup
category in Table 3 (19 controls and 20 patients) includes
individuals whose haplogroups could not be assigned to
the clades in Table 1.

Genotyping
Genomic DNA was extracted from whole blood samples
using the NucleoSpin Blood XL kit (Macherey-Nagel;
Düren, Germany) or a salting out procedure. SNPs were
genotyped using Sequenom's iPlex assay (primer exten-
sion of multiplex products with detection by matrix-
assisted laser desorption/ionization time-of-flight mass
spectrometry) following manufacturer's protocol and
detected in a Sequenom MassArray K2 platform. The
primer sequences are available upon request and were
designed using Sequenom's (San Diego, USA) MassAR-
RAY® Assay Design 3.0 software according to the Cam-
bridge reference sequence [2]. Extensive quality control
was performed using eight HapMap controls of diverse
ethnic affiliation, sample duplication within and across
plates, non-Mendelian maternal inheritance check in
three large pedigrees, and a minimum of 90% call rate.
Genotype determinations were performed blinded to
affection status. 0.2% of all calls were heterozygous, most
likely due to mtDNA heteroplasmy, and these were not
included in the analyses.

Table 2: General characteristics of the ischemic stroke case-control study sample

Characteristic Controls Cases P-value*

N 499 534
Sex (n/N, %male) 230/499 (46.1) 336/534 (62.9) < 10-4

Age-at-examination (mean ± SD, years) 62.9 ± 6.9 52.1 ± 9.4 < 10-4

Age-at-onset (mean ± SD, years) - 51.4 ± 9.5 -
Risk factors (n/N, %)

Hypertension (> 140–85 mmHg) 183/482 (38.0) 270/478 (56.5) < 10-4

Hypercholestrolemia (> 200 mg/dL) 309/489 (63.2) 310/496 (62.5) 0.654
Hypertriglycemia (> 200 mg/dL) 64/411 (15.6) 38/215 (17.7) 0.508
Diabetes 54/470 (11.5) 88/509 (17.3) 0.007
Ever smoking 127/481 (26.4) 259/526 (49.2) < 10-4

Ever drinking 202/474 (42.6) 305/527 (57.9) < 10-4

*P-value of an unpaired Student's t test or a chi-square test for quantitative and qualitative data, respectively. SD: standard deviation.
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Statistical analysis
An unpaired Student's t test and a χ2 test were used to
compare quantitative and qualitative clinical and demo-
graphic data, respectively, between cases and controls. χ2

tests were performed to explore the association of each
mtDNA SNP and haplogroup with stroke risk. For haplo-
group analyses, we compared each haplogroup with all
other haplogroups pooled together. To adjust the associa-
tion analysis for confounding factors, age-at-examination,
hypertension, diabetes and ever smoking were included as
covariates in multivariate logistic regression with back-
ward elimination of risk factors. The interaction i among
covariates in regression models was not strong (-0.5 <i <
0.5). Logistic regressions were performed using the R free-
ware [28]. Odds ratios (ORs) and their associated 95%
confidence intervals (CIs) were uncorrected for confound-
ing variables in the χ2 tests and corrected for covariates in
regression models. Results were considered significant
below the conventional level of 0.05. Since some of the
markers are in linkage disequilibrium and the haplogroup
comparisons are not independent, we did not perform
corrections for multiple testing and uncorrected p-values
are reported.

Results
Table 2 shows the general characteristics of our dataset.
Since stroke is a very common late-onset disorder, we
chose to have the control group significantly older than

the case group to minimize misclassification biases of
control individuals. Male to female ratio, hypertension,
diabetes, ever smoking, and ever drinking were signifi-
cantly higher in ischemic stroke patients than in controls,
and the effects of these potentially confounding variables
were accounted for in the multivariate logistic regressions
with backward elimination of risk factors. Our group of
patients has a similar risk factor profile than previously
described older groups of ischemic stroke cases with sim-
ilar male to female ratios [29,30], and therefore can be
considered representative of the general ischemic stroke
population.

The mtDNA haplogroup distribution in the control group
(Table 3) was in agreement with previously published
data on a similar Portuguese normal population [23,24],
with 8.3–9.9% of the individuals having mtDNA haplo-
groups characteristic of African populations (L and U6).
With the genotyped SNPs, a haplogroup could not be
assigned to an almost equal percentage of individuals in
the control and patient groups (3.8 and 3.7%, respec-
tively, classified as "Others" in Table 3), which again is in
concordance with other studies using equivalent
approaches [11,31]. These individuals have either an
ambiguous SNP-profile or belong to rare Eurasian haplo-
groups (e.g. R, Z, M). The fact that L, U6, and "Others"
haplogroup categories are present in equivalent propor-
tions in cases (12.0%) and controls (10.8%) (Table 3) fur-

Table 3: Results of mitochondrial haplogroup association testing with ischemic stroke risk. 

Number of Individuals (%) Chi-square Test Logistic Regression Model

Haplogroup Controls Patients P-value OR [95% CI] P-value OR [95% CI]

H 118 (23.6) 116 (21.7) 0.454 0.432
H1 125 (25.1) 91 (17.0) 0.001 0.61 [0.45–0.83] 0.007 0.57 [0.38–0.85]
V 13 (2.6) 12 (2.2) 0.707 0.861

pre-HV/HV 8 (1.6) 26 (4.9) 0.003 3.14 [1.41–7.01] 0.008 4.68 [1.51–14.54]
J 9 (1.8) 9 (1.7) 0.883 0.122

J1b 23 (4.6) 24 (4.5) 0.928 0.862
T 56 (11.2) 65 (12.2) 0.637 0.249
U 6 (1.2) 18 (3.4) 0.021 2.87 [1.13–7.28] 0.038 4.01 [1.08–14.90]
U4 13 (2.6) 16 (3.0) 0.705 0.286
U5 24 (4.0) 34 (6.3) 0.278 0.048 2.17 [1.01–4.67]
U6a 10 (2.0) 10 (1.9) 0.877 0.71
K1 27 (5.4) 28 (5.2) 0.903 0.184
I 10 (2.0) 11 (2.1) 0.950 0.500

X2b 7 (1.4) 9 (1.7) 0.714 0.789
W 6 (1.2) 11 (2.1) 0.279 0.394
L 25 (5.0) 34 (6.4) 0.348 0.913

Other* 19 (3.8) 20 (3.7) - -

Significant uncorrected P-values (< 0.05) are highlighted in bold. Crude and adjusted odds ratios (OR) and 95% confidence intervals (CI) are shown 
only for significantly associated haplogroups.

*Given that the "Other" class includes an assortment of lineages not phylogeneticaly correlated, association tests were not performed.
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ther suggests that our dataset was well matched for
ethnicity and lacks significant substructure.

Results of crude and adjusted association analyses of
mitochondrial haplogroups are shown in Figure 2 and
Table 3, and those of single-markers are presented in Fig-
ure 3 and Table 4. Sub-haplogroup H1 was found to be
significantly less frequent in ischemic stroke patients than
in controls when comparing each clade against all others
pooled together (χ2 test OR = 0.61, 95%CI = 0.45–0.83, p
= 0.001); when significant risk factors were included in
the model as covariates (age-at-examination, hyperten-
sion, diabetes and ever smoking), the association
remained significant (logistic regression OR = 0.57,
95%CI = 0.38–0.85, p = 0.007). The sub-haplogroup H1
is thus protective for ischemic stroke in this dataset. SNPs
m.3010G>A, m.7028C>T and m.11719G>A, which
together define H1, were found to consistently influence
the risk for ischemic stroke in both the uncorrected χ2 test
and the logistic regression model, their allelic state in H1
corroborating its protective effect. Stratification by sex
revealed that the crude association of haplogroup H1 is
quite consistent among males (OR = 0.65, 95%CI = 0.43–
0.98, p = 0.038) and females (OR = 0.58, 95%CI = 0.37–
0.93, p = 0.021), even though it did not reach significance
in females when adjusted for co-variates (Figure 2), most
likely due to the small sample size.

Conversely, the pre-HV/HV, also known as R0 [32] (χ2
test OR = 3.14, 95%CI = 1.41–7.01, p = 0.003; logistic
regression OR = 4.68; 95%CI = 1.51–14.54, p = 0.008),
and U (χ2 test OR = 2.87, 95%CI = 1.13–7.28, p = 0.021;
logistic regression OR = 4.01, 95%CI = 1.08–14.90, p =
0.038) mtDNA lineages emerge as potential genetic fac-
tors conferring risk for stroke (Figure 2 and Table 3). The
relatively rare U5 sub-clade and its defining polymor-
phism m.13617T>C showed a trend for association with
stroke risk only with the logistic regression test (OR =
2.17, 95%CI = 1.01–4.67, p = 0.048, and OR = 2.18;
95%CI = 1.01–4.70, p = 0.047, respectively).

Discussion
To the best of our knowledge, this is the first comprehen-
sive association study of mtDNA variation with ischemic
stroke risk in an European population. In a large popula-
tion sample of ethnically-matched cases and controls, we
found that haplogroup H1 is protective while haplo-
groups pre-HV/HV and U increase risk for ischemic stroke.
Since these haplogroups are defined by the combination
of several polymorphisms also present in other clades
(e.g. allele A of m.3010G>A is a phylogenetic marker of
subclades H1 and J1b), the observed haplogroup associa-
tions cannot be attributed to particular SNPs, but instead
to their precise arrangement. To exclude the possibility
that the observed associations are due to population strat-
ification with study participants of African or non-West

Table 4: Results of mitochondrial SNP association testing with ischemic stroke risk. Significant uncorrected P-values (< 0.05) are 
highlighted in bold. Crude and adjusted odds ratios (OR) and 95% confidence intervals (CI) are shown only for significantly associated 
polymorphisms.

Number of Individuals (%) Chi-square Test Logistic Regression Model

SNPs* Controls Patients P-value OR [95% CI] P-value OR [95% CI]

m.709G>A 91 (18.3) 101 (19.1) 0.760 0.113
m.1719G>A 21 (4.3) 31 (5.9) 0.239 0.942
m.3010G>A 156 (31.3) 123 (23.0) 0.003 0.66 [0.50–0.87] 0.016 0.63 [0.43–0.92]
m.3348A>G 15 (3.0) 11 (2.1) 0.329 0.794
m.4580G>A 13 (2.6) 12 (2.2) 0.704 0.860
m.5999T>C 13 (2.6) 17 (3.2) 0.596 0.293
m.7028C>T 248 (50.5) 307 (59.7) 0.003 1.45 [1.13–1.87] 0.005 1.63 [1.16–2.29]
m.7805G>A 11 (2.2) 12 (2.3) 0.960 0.656
m.8251G>A 23 (4.6) 28 (5.3) 0.620 0.706
m.8701A>G 33 (6.7) 41 (7.7) 0.530 0.714
m.9055G>A 30 (6.0) 34 (6.4) 0.820 0.464
m.10398A>G 97 (19.5) 111 (20.9) 0.591 0.178
m.10873T>C 30 (6.4) 39 (7.5) 0.519 0.771
m.11719G>A 235 (47.1) 289 (54.1) 0.024 1.33 [1.04–1.69] 0.037 1.43 [1.02–1.99]
m.12308A>G 92 (18.5) 114 (21.4) 0.255 0.118
m.12705C>T 53 (11.6) 73 (14.5) 0.186 0.683
m.13368G>A 57 (11.6) 66 (12.5) 0.679 0.337
m.13617T>C 24 (4.8) 34 (6.3) 0.278 0.047 2.18 [1.01–4.70]
m.13708G>A 45 (9.0) 47 (8.9) 0.925 0.209

*As an example, m.709G>A stands for a G to A transition at mtDNA nucleotide position 709. The number of individuals and test statistics refer to 
the derived (second) allele (A in this example).
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Eurasian ancestries, we performed the statistical analyses
in the overall dataset excluding the individuals with hap-
logroups U6a, L, and "Others" (54 controls and 64
patients), and obtained the same associations (data not
shown). Unlike H1, the pre-HV/HV, U and U5 haplo-

groups were found in a small number of individuals, and
therefore their association with stroke risk is only sugges-
tive. Low counts tend to inflate the qui-square values and
lead to false-positive results. We did not study the associ-
ation of mtDNA with stroke subtypes since a much larger

Logistic regression odds ratios and confidence intervals (CIs) for mtDNA haplogroup association with ischemic stroke riskFigure 2
Logistic regression odds ratios and confidence intervals (CIs) for mtDNA haplogroup association with 
ischemic stroke risk. Bars indicate 95% CIs and are shown as dotted lines when the upper confidence limit (CL) is over 7. 
The upper CL is indicated when it is over 7 and the respective lower CL is greater than 1.
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sample size would be required to have a representative
number of individuals in each subtype and haplogroup
category. Stratification by sex was performed as there are
clear differences between male and female ischemic
patients [33], and some of the associations (e.g. adjusted
association of H1 in females) most likely did not reach
statistical significance due to the relatively small sample
sizes.

Earlier studies have addressed the contribution of mtDNA
variation to stroke susceptibility. The m.12308A>G poly-
morphism defining haplogroups U and K, previously
associated with occipital stroke in migraine [15,16] and
suggested to increase the risk of developing stroke in
MELAS patients with the m.3243A>G mutation [34], was
not associated with ischemic stroke in our dataset. How-
ever, an association of the U5 subcluster with migrainous
stroke has been reported [16] and is consistent with our
tentative association of the U5 haplogroup and its defin-
ing m.13617T>C polymorphism with ischemic stroke.
m.5178C>A, associated with aging [4] and cerebrovascu-
lar disorders (cerebral hemorrhage or infarction) in a
small Japanese case-control sample [35] and with intima-
media thickness in carotid arteries of Japanese type 2 dia-
betic individuals [17], could not be investigated here as it
is Asian-specific [36]. Haplogroup A, unlike its defining
polymorphisms m.663A>G in the 12S rRNA gene and
m.8794C>T in the ATPase 6 gene, was recently found
associated with atherothrombotic cerebral infarction in
440 Japanese females after adjustement for significant co-
variates [37]. None of the three SNPs we studied in the
12S rRNA and ATPase 6 genes (m.709G>A, m.8701A>G,
and m.9055G>A) were associated with ischemic stroke,
suggesting that haplogroup A, but not its defining SNPs
individually or other SNPs in the same genes, may consti-
tute a risk factor for stroke in Japanese. Finally, we did not
try to replicate the reported association with lacunar cere-
bral infarction of the m.16189T>C variant in the mtDNA
hypervariable region [38] as we only investigated SNPs in
the coding region and this polymorphism is not restricted
to any particular haplogroup [39,40]. These discrepancies
among reports highlight: i) the difficulty of finding repro-
ducible mitochondrial genome associations with disease
due to the continent-specificity of some mtDNA SNPs and
clades, and ii) the necessity of performing association
studies in very large samples so that even uncommon hap-
logroups are represented by a sufficient number of indi-
viduals. A power analysis of mitochondrial haplogroup
association studies such as the present one (investigating
17 haplotypes) reveals that a sample of size similar to ours
(515 cases and 515 controls) only provides 50% power to
detect a change in haplogroup frequency from 0.251 in
controls to 0.17 in cases (as observed here for H1) at a sig-
nificance level of 0.05 [41]. Even though we only had 50%
power, we detected an association of H1 at a significance

level of 0.001, and this association would survive a Bon-
ferroni correction for the seventeen crude or adjusted
association tests performed for haplogroups, suggesting
that it is an important association. Much larger cohorts are
required for less common clades or finer changes in hap-
logroup frequency, and therefore the present study pro-
vides preliminary evidence of association that requires
further validation in independent cohorts.

Although the polymorphisms that characterize the phyl-
ogeny are thought to be evolutionarily neutral, they may
cause subtle alterations in the encoded transcripts or pro-
teins, which collectively and over time, influence the risk
of a stroke event. Given that stroke is mostly a late-onset
disorder, it does not affect the successful transmission of
mtDNA alleles and their fixation in the population. Addi-
tionally, several reports have documented the tissue-spe-
cific accumulation of mitochondrial deletions with aging
[42,43], and it is conceivable that mtDNA polymor-
phisms or haplogroups which are neutral under normal
circumstances become advantageous in post-mitotic tis-
sues in the presence of acquired mutations.

The associated m.3010G>A non-coding polymorphism,
located in the conserved 3' end of the 16S rRNA gene, lies
near non-coding point mutations known to confer resist-
ance to chloramphenicol, a prokaryotic and mitochon-
drial protein synthesis inhibitor [44]. The synonymous
m.7028C>T transition is located in the cytochrome c oxi-
dase (COX) subunit I gene (COI) of complex IV. This pro-
tein complex is the terminal enzyme of the respiratory
chain, which collects electrons from reduced cytochrome
c and catalyzes the reduction of oxygen to water, and con-
sists of 13 polypeptide subunits, 3 of which are mtDNA-
encoded. m.11719G>A is a synonymous SNP in the ND4
gene. ND4 gene product is a subunit of the respiratory
complex I which accepts electrons from NADH, transfers
them to ubiquinone and uses the energy released to pump
protons across the mitochondrial inner membrane. A
mutation in ND4 (m.11778G>A) causing an arginine to
histidine change at amino acid 340 [MIM 516003.0001]
accounts for over 50% and 90% of all LHON cases among
Caucasians and Asians, respectively. Interestingly, the
penetrance of this mutation is higher within a J haplo-
group background, but its effect is most prominent on the
J2 subclade [8,9]. The physical proximity of the associated
polymorphism in ND4 to known mutations suggests that
it lies in or close to important functional domains and has
the potential to alter the protein's function.

It is interesting to notice that the majority of polymor-
phisms associated with stroke risk in the present report are
localized in complexes I and IV, whose deficiencies are the
most frequently observed abnormalities of the OXPHOS
system. It would be of great interest to assess if stroke
Page 8 of 10
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patients display complex I and IV deficits relative to
matched controls, prior to their first stroke, and to identify
phenotypic differences among haplogroups using trans-
mitochondrial hybrid cell (cybrid) technology [45]. In
rats, a reduction in the aerobic capacity is concomitant
with a decrease in the amount of proteins required for
mitochondrial biogenesis and oxidative function in skele-
tal muscle, and with an increase in cardiovascular risk fac-
tors [46].

The ethiopathogenic complexity of stroke is paralleled by
that of mitochondrial disorders, probably in part due to
their dual genetic control (mitochondrial and nuclear)
and interplay with the environment. A small minority of
complex I to IV subunits are mtDNA-encoded and pro-
duced, while the majority of subunits are nuclear-encoded
and transported into the organelle. It is likely that mtDNA
polymorphisms and haplogroups act synergistically with
nuclear genetic factors and environmental components,
and therefore mtDNA-encoded gene/nuclear-encoded
gene and mtDNA-encoded gene/environment epistatic
interactions may explain a larger fraction of the ischemic
stroke heritability.

Conclusion
We found suggestive evidence for association of the mito-
chondrial haplogroup H1 with ischemic stroke. For a
deeper insight of the role of mtDNA variants in ischemic
stroke, the full-sequencing of the molecule and the repli-
cation of the same polymorphisms in a large, well-
matched, independent dataset are mandatory. If repli-
cated in other populations, these influences on ischemic
stroke risk are a relevant matter of public health given that
haplogroups H1, pre-HV/HV, U, and U5 represent about
20% of the European population.
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