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Giant resonant light forces in microspherical photonics

Yangcheng Li1, Oleksiy V Svitelskiy1*, Alexey V Maslov2, David Carnegie3, Edik Rafailov3 and Vasily N Astratov1

Resonant light pressure effects can open new degrees of freedom in optical manipulation with microparticles, but they have been

traditionally considered as relatively subtle effects. Using a simplified two-dimensional model of surface electromagnetic waves

evanescently coupled to whispering gallery modes (WGMs) in transparent circular cavities, we show that under resonant conditions

the peaks of the optical forces can approach theoretical limits imposed by the momentum conservation law on totally absorbing

particles. Experimentally, we proved the existence of strong peaks of the optical forces by studying the optical propulsion of

dielectric microspheres along tapered microfibers. We observed giant optical propelling velocities ,0.45 mm s21 for some of the

15-20 mm polystyrene microspheres in water for guided powers limited at ,43 mW. Such velocities exceed previous observations by

more than an order of magnitude, thereby providing evidence for the strongly enhanced resonant optical forces. We analyzed the

statistical properties of the velocity distribution function measured for slightly disordered (,1% size variations) ensembles of

microspheres with mean diameters varying from 3 to 20 mm. These results demonstrate a principal possibility of optical sorting of

microspheres with the positions of WGM resonances overlapped at the wavelength of the laser source. They can be used as building

blocks of the lossless coupled resonator optical waveguides and various integrated optoelectronics devices.
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INTRODUCTION

Since the advent of optical1,2 and holographic3 tweezers the use of

optical forces for trapping and propelling microparticles has become

widely accepted in areas from physics to biology. In recent years, this

field experienced a tremendous development due to the observation of

novel mechanisms of light–matter coupling in optically bounded

structures and broad application of chip-scale optical devices for par-

ticle trapping. The most notable advances include the use of diffrac-

tionless and/or engineered optical beams such as Bessel,4,5 Airy,6

optical lattices,7 miniaturized fiber-optics tweezers8 and electromag-

netic fields in optically bounded structures.9–11 These approaches sti-

mulated observations of optical pulling forces12 and optical lift13

effects. Most recently, near-field optical forces have been explored in

the chip-scale optical devices integrated with microfluidic systems.

Designs based on nanoplasmonic structures14–16 and photonic crystal

cavities17–19 have been developed for particle trapping.

Studies of optical propelling effects have always been of great inter-

est for potential applications in sorting particles according to their

size, index or other properties. The propelling of dielectric micro-

spheres was studied in liquid-immersed evanescent couplers based

on dielectric waveguides,20–23 tapered fibers24 and prisms.25 The light

pressure in such structures and devices is determined by the conser-

vation of the total momentum along the propagation direction. It

should be noted, however, that due to small reflection and absorption

coefficients of dielectric spheres their propelling efficiency is greatly

diminished in comparison with estimations made for totally absorb-

ing or mirror-like particles. The propelling velocity normalized by the

incident power has been found to be below ,1 mm s21 W21 for

dielectric microspheres with diameters (D) from 2 to 20 mm.20–25

Propelling efficiencies can be increased for strongly absorbing par-

ticles.26 However, in the later case, the dominant mechanism of pro-

pelling has been attributed to the photophoretic forces occurring due

to non-uniform heating of the light-absorbing particle.

Despite many successes and advancements in this area, one of the

most important resources of optical manipulation still remains largely

unexplored. It is connected with the use of internal optical resonances

in microparticles for enhancing optical forces. Recently, interesting

experiments on manipulating polystyrene nanoparticles in a circular

motion around silica microspheres have been performed by Arnold

et al.27 The optical forces have been resonantly enhanced due to whis-

pering gallery modes (WGMs) in the microspheres; however, the

recipient of the optical force, the polystyrene nanoparticle, has been

too small to possess resonant properties.

The subject of the present work is connected with a reverse situation

when the force is enhanced by the resonance in the moving micro-

sphere. Due to inevitable ,1% microsphere diameter variations and

the size-dependent nature of WGMs resonances, this effect can be

used for sorting microspheres with WGM peaks overlapped at the
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wavelength of the laser source. This is a highly attractive property for

fundamental studies and applications of coupled cavity structures and

devices.28–33 It should be noted, however, that although the resonant

forces have been observed in microdroplets by the pioneer of optical

tweezers himself, Arthur Ashkin, more than 30 years ago,34 these

effects were relatively weakly pronounced. Some evidence for the res-

onance force enhancement has been obtained in waveguide couplers35

and in the case of off-axially shifted focused beams.36 More recently,

the notable advance in this field has been made based on theoretical

demonstration of high peak-to-background resonant force ratios in

evanescent prism couplers.37,38 However, many properties of resonant

light forces still await a thorough investigation.

In the present work, we first present results of our calculation of the

optical forces exerted on circular cavities in a simplified two-dimensional

(2D) model of surface electromagnetic waves. We show that the res-

onant forces can approach and even exceed the limits established for

totally absorbing particles. After that, we present our experimental

observations of propelling of polystyrene microspheres in the near-field

vicinity of tapered microfibers immersed in water. For a certain small

fraction of spheres with D<15–20 mm, we observed giant power

normalized propelling velocities ,10 mm s21 W21 that exceed the pre-

vious measurements in various evanescent couplers20–25 by more than an

order of magnitude. These extraordinary high propelling efficiencies

approach estimations made in a total absorption limit that indicates that

a significant part of the total guided power is used for the creating light

pressure. We also performed analysis of statistical distribution of the

propelling velocities for a large number of microspheres with ,1% size

variations and with mean diameters from 3 to 20 mm. We explain these

results using a concept of resonant enhancement of the optical force due

to WGM coupling effects. These effects can be used for sorting micro-

spheres with WGM peaks overlapping in the vicinity of the laser source

wavelength l0: Dl/l0,1/Q, where Dl is the WGM peak detuning and Q

is the WGM’s quality factor. Taking into account that Q<103–104 are

common for liquid-immersed microspheres,39 it opens up a unique way

of selecting the building blocks of chip-scale structures with resonantly

coupled WGMs for applications in coupled resonator optical waveguides

and coupled cavity devices.

THEORETICAL MODELING OF RESONANT FORCES

To study the optical forces that can act on WGM resonators we begin

with the physical model illustrated in Figure 1a. An initial surface wave

with frequency v is guided by the boundary of the lower half-space

with dielectric constant em,0. The upper half-space has refractive

index nb. A dielectric cylinder with refractive index ns is located at a

distance d from the boundary. When the surface wave interacts with

the cylinder, it can excite the WGMs of the cylinder. The material
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Figure 1 (a) Schematic of the illumination of a cylinder by a surface wave with the frequency v guided by the boundary of a half-space with em,0. The scattering of the

surface wave (the typical far field directionality of bulk radiation at resonance is shown in red) creates the propelling force Fx along the surface. (b) Size dependence of

the resonant force on the cylinder for various values of the cylinder-boundary separation. (c, top frame) Size dependence of the propelling force on the size parameter

kR for the excitation by a surface wave (red curve corresponds to kd51.5) and by a plane wave (blue curve). (c, bottom frame). Transmittance for the surface wave

(olive curve corresponds to kd51.5).
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parameters used in the simulations are em522, nb51, ns51.4. Since

the material parameters are frequency independent the solution

depends only on two dimensionless size parameters kR and kd, where

k5v/c is the wavenumber and c is the speed of light in vacuum. This

2D model captures the basic phenomena important for this study such

as the excitation of the WGM by an evanescent tail, the interaction of

the excited mode with the guiding structure, and the creation of the

scattered field.

The scattering of a guided wave by a resonator is a complicated

diffraction problem. Often this problem is solved by expanding the

initial guided wave in terms of the modes of the resonator in free

space.40 However, such an expansion is only an approximation and

an accurate solution would require the use of the modes of the com-

bined system, e.g., the waveguiding structure and resonator. This

approximation is expected to become less accurate as the distance

between the resonator and the surface decreases. In our experiments,

the separation varied greatly and even reached the values significantly

smaller than the wavelength. We therefore resorted to a more rigorous

approach that would allow us to obtain accurate results in a wide range

of distances.

Our solution is based on the surface potential method41–43 applied

to the model shown in Figure 1a. We reduce the Maxwell equations to

the wave equation for the magnetic field which has only one compo-

nent oriented along the cylinder axis. Then we express the scattered

field outside of the cylinder in terms of the single layer surface poten-

tial on the surface of the cylinder and Green’s function for the two half-

spaces. The surface potential is expanded in terms of the angular

exponential functions. The total field inside the cylinder is expanded

in terms of the cylindrical functions. We match the expansions inside

and outside the cylinder by using the continuity condition for the

magnetic field component and for the tangential electric field com-

ponent. This matching gives an infinite system of linear algebraic

equations for the expansion coefficients. By truncating the system

and solving it numerically, we find the coefficients and therefore,

the electromagnetic fields inside and outside of the cylinder. In par-

ticular, we find the amplitudes of the transmitted and reflected surface

waves, as well as the distribution of the far field radiation. The elec-

tromagnetic force follows directly from the fields.

We verified the correctness of the numerically calculated fields by

checking the balance between the power of the initial surface wave and

the sum of powers of the transmitted and reflected waves and the bulk

radiation in the far field region. The calculation of force was verified by

obtaining an agreement between two approaches: by integrating the

Lorentz force (with electric and magnetic components) over the cylin-

der cross section and by integrating the Maxwell tensor outside of the

cylinder.

A plane wave propagating in vacuum and reflected from a mirror

creates a force 2P0/c, where P0 is the power incident on a given area.44

In the case of a partial reflection, the force on the mirror will be smaller

and, for example, becomes P0/c for a compete absorption. For surface

waves, it is therefore instructive to investigate the ratio of the force and

the quantity 2P0/c, where P0 is the power of the surface wave, as an

indicator of the efficiency of using the surface waves to propel WGM

micro-resonators.

A comparison of the force created by a surface wave of power P0 and

a plane wave that has power P0 per area of size 2R in the transverse

direction is presented in Figure 1c. In both cases, the presence of

resonant forces for sizes kR.10 is apparent. For the plane wave, the

peak amplitudes and peak-to-background ratios are limited while for

the surface wave both the peak amplitudes and peak-to-background

ratios increase monotonically with kR reaching extremely high values.

The strongly peaked forces correlate well with the dips in the trans-

mittance spectrum for the surface wave. When the transmittance

almost vanishes for large values of kR<30, the normalized force can

reach a value around 0.7. This means that the surface wave can propel

the transparent cylinder by means of WGM excitation more efficiently

than a plane wave can propel a totally absorbing cylinder. For a plane

wave in vacuum, such a large value of force would correspond to a

significant reflection. For WGM mode, the reflected surface wave is

practically negligible and the incident power is distributed between the

transmitted surface wave and bulk radiation. A typical example of the

far field directionality of bulk radiation is illustrated in Figure 1a. It

demonstrates the lobe at ,576 with the direction of the initial wave

propagation, but there is indeed a significant scattering in a range of

backward directions at ,1206–1506. The larger value of force as com-

pared to that for a plane wave can also be attributed to a larger

momentum carried by the surface wave.45

The behavior of the resonant propelling force near a selected re-

sonance for various values of distances from the surface is illustrated in

Figure 1b. Starting from a large kd..3 (not shown in Figure 1b), the

peak force increases with decreasing kd. The maximum force is

obtained at kd<1.5. The non-monotonic behavior of the magnitude

of the optical force at kd,1.5 can be related to interference effects;

however, this requires a more detailed analysis. An important con-

sequence for possible optical propelling experiments consists in a

substantial overlap of the calculated force peaks for a range of separa-

tions 0.15,kd,0.6. A similar peak overlap should take place in the

spectral domain for a sphere with kR529.68229.69. Once the laser

source is tuned into this resonance, the moving particle would experi-

ence an enhanced propelling force for a range of separations from the

boundary that should simplify the experimental observation of this

effect. In principle, similar physical effects take place in various evan-

escent couplers including dielectric waveguides or tapered fibers.

MATERIALS AND METHODS

Microfluidic fiber-integrated platform

Observation of resonant propelling effects requires the presence of a

strong evanescent field in a liquid environment containing micro-

spheres. Tapered microfibers provide a number of advantages com-

pared to other evanescent couplers in such experiments.39 These

include small optical losses on the level of a few decibels, natural

integration with fiber-optics based light sources and spectrometers,

and the possibility to control the flow of the microspheres, as sche-

matically illustrated in Figure 2a. We obtained adiabatically tapered

fibers by etching of a single mode fiber SMF-28 in a droplet of

hydrofluoric acid.46 This technique allows obtaining tapers with

,1.5 mm diameters and millimeter-scale lengths. The tapered fibers

were integrated with a microfluidic platform fabricated using a

Plexiglas frame depicted in Figure 2a. The frame was fixed at the

top of the microscope slide to create a microfluidic cell with unres-

tricted optical access. We selected polystyrene microspheres (Duke

Standards* 4000 Series Monosized Particles; Thermo Fisher

Scientific, Fremont, CA, USA) for propelling experiments because

of their ability to float in water due to the fact that the specific

gravity of polystyrene in water is ,1.05.

Fiber-taper-coupled microsphere system

Observation of resonant propelling effects also requires efficient

WGM coupling determined by the depth of the dip in the power

transmission spectra which can be approximated in a single-mode

Giant resonant light forces
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model:47

P~e{c |
(b{b0)2z(c=2Sza{k)

(b{b0)2z(c=2Szazk)
ð1Þ

Here, k is the coupling constant, b52pns/l is the propagation con-

stant (b052pns/l0), ns is the sphere index, a is the field attenuation

coefficient inside the sphere, c is the coupling loss and S5pD is the

circumference of the circle in the equatorial plane. In a weak coupling

regime (k,a) which usually takes place for various compact

(D,20 mm) water-immersed spheres,39 the depth of the resonant

dip in transmission spectra increases with the coupling constant k.

To identify the range of sphere diameters most suited for obser-

vation of resonant propelling effects we determined how both para-

meters, k and a, depend on D. This was studied by bringing

polystyrene (ns51.59) spheres in a contact position with the same

section of silica taper. Microspheres were individually micromanipu-

lated using a sharpened fiber as a stick. The transmission spectra were

measured using a white light source (AQ4305; Yokogawa Corp. of

America, Newnan, GA, USA) and optical spectral analyzer

(AQ6370C-10; Yokogawa Corp. of America), as shown in Figure 2a.

Figure 2b–d displays a typical evolution of WGM-based coupling

features observed in fiber transmission spectra for D512, 15 and

20 mm, respectively. The spatial WGM properties in microspheres

are described by three modal numbers, radial n, angular l and azi-

muthal m.28,33 The radial number, n, represents the number of the

intensity maxima along the radial direction. The angular number, l,

shows the number of modal wavelengths around the circumference of

the sphere at the equator which can be estimated as pD< l(l/ns). The

azimuthal number, m, describes the number of the intensity maxima

in a direction perpendicular to the equator according to the formula

l2m11 with the case m5l representing a fundamental mode in

the equatorial plane. The azimuthal modes are degenerate in a

perfect free-standing sphere. This degeneracy can be lifted by small

uncontrollable ellipticity (,1%) of the real physical beads. The partial

overlap of the modes with different m numbers can be responsible for

the broadening of the WGM spectral features. It is likely that the dips

observed in Figure 2b–d are inhomogeneously broadened due to this

effect. Determination of m numbers is not possible in this situation,

however n and l numbers as well as the WGMs polarizations, TEl
n or

TMl
n, can be identified for different dips, as shown in Figure 2b–d. The

mode assignment requires fitting the positions of the resonances in a

broad spectral range using the Mie scattering theory.39,48

As illustrated in Figure 2e, the fiber-taper-coupled microsphere

system operates in a weak coupling regime for spheres with D in 12–

30 mm range. Although the maximal resonant optical forces are

expected at critical coupling (k5a) around D<44 mm, these spheres

are too bulky and their narrow first order (n51) resonances with

Q<105 are difficult to use in practical optical propelling experiments.

On the other hand, spheres with 15fDf20 mm and Q<103 provide

much better trade-off between their compact dimensions and effi-

ciency of WGM-based coupling. For the 20 mm spheres, the depth

of the resonant dips was found to be about 3.5 dB, which means that

more than a half of the optical power (,55%) was transferred into the

spherical cavity. Assuming approximately uniform directionality of

light scattering, the peak of the resonant force can approach the

absorption limit (,0.553P0/c) in this case.

RESULTS AND DISCUSSION

The conventional approach to studying propelling effects is based on

using a laser source and an imaging system to visualize light-induced

motions of individual particles. The spheres which happen to be in a
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micrometer-scale vicinity of the evanescent field are attracted to the

core by the optical gradient force. After that they can be propelled

along the fiber due to the scattering optical forces, as illstrated in the

inserts of Figure 3. The particles reach a terminal velocity (v) when the

scattering force (Fx) is equal to the drag force, C56pmRv, where m is

the dynamic viscosity.20–25

Due to the focus of the present study on resonant light pressure

effects, we modified the conventional experimental approach to pro-

pelling measurements by evanescent fields20–25 in regard to the fol-

lowing factors: (i) range of sphere diameters was increased up to

3fDf20 mm (compared to previously studied D,10 mm range);

(ii) instead of the average propelling velocities (vav5,v.), we mea-

sured maximal instantaneous propelling velocities (vmax5max(v));

and (iii) statistical distribution of vmax was studied as a function of D.

Variation of the sphere diameters in a microfluidic platform

Propelling of spheres with different diameters was realized by using a

number of suspensions with various mean D values and ,1% diameter

variations in each suspension. A slow flux (,10 mm s21) of suspension

of microspheres was produced perpendicular to the taper by a micro-

pump (M100; TCS Micropumps Ltd, Ospringe, UK) included in a

closed microfluidic loop. Since the parameters of individual tapers such

as the thickness of the tapered region were difficult to precisely control,

all propelling events were recorded for the same section (,300 mm

length) of the same tapered fiber. After completing measurements for

a given sphere diameter the microfluidic platform was cleaned and

infiltrated with a suspension containing spheres with different D.

The optical power was coupled from a single mode tunable (1160–

1280 nm) semiconductor laser (TOPTICA Photonics AG, Gräfelfing,

Germany).49 Due to small scattering losses (,3 dB) in the tapered

region we were able to control the total guided power (P0) at the waist

of the taper with ,5% precision. The propelling velocity is expected to

be almost linearly dependent on P0 for spheres with D,10 mm.20–25 In

order to study the dependence of propelling as a function of D, we

fixed the power at the taper waist for all measurements at relatively

modest level of P054362 mW. The laser emission linewidth was

narrower than 0.1 nm and is smaller than the width of any WGM

resonances studied in this work. It was fixed around l051200 nm,

and the results did not strongly depend on the selection of l0. In our

experiments variation of the detuning, Dl5l2l0, between the laser

emission and WGM resonances (l) was realized due to random ,1%

deviations of the sphere diameters.

It should be noted that the spheres tend to be separated from the

fiber by a nanometric gap occurring due to the double layer repulsive

forces between the similarly charged particle and fiber.22 The origin of

this gap has been studied in experiments on a WGM carousel, a photo-

nic mechanism for trapping polystyrene nanoparticles in a circular

motion around silica microspheres.27 It has been demonstrated that

the particle is radially trapped due to a combination of a long-range

attractive interaction and a short-range repulsive interaction. The

attractive optical force originates from the radial gradient of the evan-

escent fields. The repulsive electrostatic force is connected with similarly

(negatively) charged bare surface of the silica fiber and polystyrene

nanoparticles. The average gap sizes have been estimated to be around

35 nm.27 In our work, we used significantly larger polystyrene micro-

spheres. It is likely that in the course of propulsion the radial gap sizes

can vary in a certain range that can lead to a variation of the optical

force. In addition, the average size of this gap should depend on P0, D,

and on the concentration of ions in a suspension. It is likely that the

average size of these gaps in our experiments was on the scale of few

tenths of nanometers;22,27 however, additional studies are required for

more precise characterization of the gap sizes. This plays a critical role in

achieving steady propelling along the fiber, because the spheres were

covered with a sticky surfactant layer by the manufacturer and physical

contact with the fiber would retard their motion. It should also be noted

that the small nanoscale gap sizes expected in our case mean that we can

use fiber transmission spectra obtained in contact with sphere (Figure 2)

for qualitative understanding of the possible role of WGM coupling

effects in the course of propelling.

b ca

50 μm50 μm50 μm

Figure 3 Sequences of snapshots taken with 160 ms time intervals illustrating propelling of polystyrene spheres with different D: (a) 7 mm, (b) 10 mm and (c) 20 mm

spheres. Laser light propagates from left to right. Inserts at the top of (a–c) schematically illustrate the type of sphere motion represented by the corresponding

consecutive photos. Propelling of 7 mm spheres in (a) is very steady with vmax<vav. Propelling of 10 mm sphere in (b) shows some variations of the particle velocity.

Propelling of 20 mm spheres in (c) demonstrates giant instantaneous velocity between the third and fourth snapshots (counted from top down) reaching

vmax<0.45 mm s21.
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Velocity measurement

The radiative pressure effects were studied by recording movies50 of

individual propelling events for each D in inverted microscope (IX71;

Olympus America Inc., Center Valley, PA, USA) using CCD camera

(Olympus MicroFire; Olympus America Inc., Melville, NY, USA). The

frames were sufficiently short (,5 ms) to represent the snapshots of

the spheres’ motion. They were separated by ,160 ms time intervals.

Typical propelling effects for spheres with D57, 10 and 20 mm are

represented by consecutive photos in Figure 3a–c, respectively. The

sequence of snapshots taken for the 7 mm spheres shows motion with

constant velocity, as illustrated by dashed construction lines in

Figure 3a (a video of the propelling 7 mm spheres is provided in

Supplementary Movie 1). We found that propelling with constant

velocity was typical for each sphere size in the range 3fDf7 mm;

however, the velocity is higher for larger spheres. After propelling over

a distance on the order of 100mm (or longer in some cases), the spheres

eventually depart the fiber. This can happen due to fluctuations in the

liquid flux or due to moving to a wider section of the taper where the

evanescent fields are weaker. The motion of 10 mm spheres is less

steady demonstrating deviations of the ‘instantaneous’ velocity mea-

sured between neighboring frames from the velocity averaged over

several frames, as seen in Figure 3b. The particles can also spiral along

the taper in some cases, as can be also seen in Figure 3b.

For 15fDf20 mm spheres, the variations in instantaneous velocity

becomes a dominant factor, as illustrated for D520 mm in Figure 3c (a

video of the propelling 20 mm spheres is provided in Supplementary

Movie 2). The likely explanation for this effect is connected with the

fact that larger (and more massive) particles have an increased pro-

bability of touching the fiber causing the sphere to brake. There might

also be other reasons for the seemingly discontinuous motion of the

larger spheres based on rapidly varying resonant effects. It is likely that

the spheres are rotating along their own axis in the course of the

propelling. This can lead to coupling with azimuthal modes with

varying m numbers which can be split in energy due to uncontrollable

ellipticity (,1%) of the real physical beads. The variations of the gap

sizes can be another reason for discontinuous motion of the larger

spheres.

Since we are interested in unrestricted motion of spheres in situa-

tions where the light-pressure effects are maximally pronounced, we

analyzed long propelling movies to find the maximal velocity mea-

sured between neighboring frames, vmax, for each propelling event. In

the example shown in Figure 3c such maximal velocity is evident due

to ,70 mm jump of 20 mm sphere between third and fourth frame

leading to extraordinary high value of vmax<0.45 mm s21. Such vmax

reaches ,60% of the terminal velocity estimated in the total absorp-

tion limit: v5P0/(3pcmD)<0.76 mm s21. In units normalized by the

optical power the measured velocity corresponds to ,10 mm s21 W21

which exceed previously published data for different evanescent cou-

plers20–25 by more than an order of magnitude. Taking into account

that conventional optical forces on transparent microspheres cannot

exceed a few percent of the force estimated in the total absorption

limit, the only plausible explanation for the observed extraordinarily

high velocities is based on the mechanism of resonantly enhanced

optical force.

Statistical properties of propelling

The dramatic difference in propelling of small, 3fDf7 mm, and

large, 15fDf20 mm, particles is illustrated in a greater detail by vmax

measurements for a broad range of mean sphere diameters repre-

sented in Figure 4a. For each mean sphere diameter the measurements

were repeated for many spheres with ,1% diameter variations. The

purpose of these studies was to see how this size disorder would trans-

late into the distribution of propelling velocities. It is seen that for

small spheres the velocity is well reproducible for each mean diameter

(D53, 5 and 7 mm) irrespective of the ,1% size variations. In this

range of sphere sizes, we found almost linear dependence of vmax on

the sphere diameter in agreement with the previous studies performed

in waveguide couplers.20–25 The linear dependence can be understood

due to the fact that the nonresonant scattering force is proportional to

the interaction volume, whereas the drag force is proportional to the

sphere cross-section.

For large spheres with 15fDf20 mm multiple measurements

revealed extremely broad vmax distribution in striking contrast with

the case of small spheres. Such behavior is expected for resonantly

enhanced forces. As illustrated in Figure 2c and d, the WGM resonances

with Q<103 are well pronounced for such spheres. If the laser wave-

length matches the position of the WGM resonance, the propelling

force should be resonantly enhanced due to a mechanism illustrated

for a simplified 2D model in Figure 1b and c. On the other hand, the

nonresonant propelling forces (laser line is between the WGM peaks)

tend to vanish for sufficiently large circular cavities. Random ,1%

diameter variations should lead to a broad (,10 nm) distribution of

detuning between the laser and WGMs in different spheres. Only a

small fraction of spheres with WGM peak position overlapped with

the laser line are expected to be propelled along the fiber. For these

spheres, the optical forces are expected to display dramatic variations

from sphere to sphere depending of the precise amount of small detun-

ing (below ,1 nm) between the laser and WGMs peak positions. This

should lead to a broad distribution of velocities vmax and scattering

forces Fx for large spheres, consistent with the results presented in

Figure 4a and b, respectively.

To study the transition from nonresonant to resonant propelling

effects in a greater detail, we analyzed probability distribution histograms
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for vmax values measured for multiple spheres with ,1% size variations,

as illustrated in Figure 5. The maximum of the distribution histogram

was normalized. For small spheres with 3fDf7 mm the histograms

represent relatively narrow Gaussian-like distributions with ,15% stan-

dard deviation, as shown in Figure 5a–c. For 10 mm spheres, the distri-

bution becomes much broader which can be interpreted as being due to

the onset of resonant propelling effects. For 15 and 20 mm spheres, the

distributions become extremely wide demonstrating velocities varying for

different spheres by a factor of 4 and 6 in Figure 5e and f, respectively. It

should be noted that, due to limited experimental statistics and a some-

what arbitrary determination of the maximal propelling velocity from the

experimental movies, the shape of these distributions is not precisely

defined in Figure 5e and f. It is apparent, however, that the width and

shape of these distributions is strikingly different from the narrow

Gaussian-like distributions observed for small spheres, indicating that

they are determined by the resonant optical forces.

Such a significant increase of vmax in resonant cases can be used for

developing devices capable of sorting microspheres with WGM peaks

overlapped with the laser wavelength l0, Dl/l0,1/Q. Taking into

account ,1% diameter variations in the initial suspensions, the re-

sonant WGMs in thus selected spheres might have different angular l

numbers; however, such WGMs can still be efficiently coupled51

in structures and devices formed by multiple spheres in a contact

position.

CONCLUSIONS

We experimentally observed giant optical propelling velocities of 15–

20 mm polystyrene microspheres in evanescent fiber-to-microsphere

couplers. The normalized propelling velocities measured in our work

,10 mm s21 W21 exceed previous observations20–25 by more than an

order of magnitude. The magnitude of the corresponding forces

reaches 60% of maximal possible force in the total absorption limit.

We interpret these observations by resonant enhancement of the

optical force due to evanescent coupling to WGMs in microspheres.

This interpretation is consistent with our numerical estimations of the

peak forces in a simplified 2D model of surface electromagnetic waves

evanescently coupled to circular cavities. It is also supported by the

statistical analyses of the propelling velocity measurements performed

for multiple spheres with ,1% size variations and with different mean

diameters.

These effects can be used for sorting cavities with WGMs peaks which

are resonant with the wavelength of the laser source within ,1/Q relative

accuracy. By using a tunable laser the spheres with the desired positions

of WGM peaks can be selected. Depending on the application, the

method of sorting cavites by using resonant light pressure can be a much

more accurate and flexible technique compared to standard in-plane

fabrication of coupled microrings and microdisks.52 Microspheres with

resonant WGMs can be used as building blocks of delay lines,30 ultra-

narrow spectral filters, laser-resonator arrays,53 waveguides,29–32 focus-

ing devices,54,55 microspectrometers56 and sensors.57 Such spheres are

also required in biomedical applications58 where they are used as mar-

kers, fluorescent labels and spectral fingerprints.
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