622 research outputs found
Noncommutative Dipole Field Theories And Unitarity
We extend the argument of Gomis and Mehen for violation of unitarity in field
theories with space-time noncommutativity to dipole field theories. In dipole
field theories with a timelike dipole vector, we present 1-loop amplitudes that
violate the optical theorem. A quantum mechanical system with nonlocal
potential of finite extent in time also shows violation of unitarity.Comment: typos corrected, more details added in Sec 5, version to appear in
JHE
Aidnogenesis via Leptogenesis and Dark Sphalerons
We discuss aidnogenesis, the generation of a dark matter asymmetry via new
sphaleron processes associated to an extra non-abelian gauge symmetry common to
both the visible and the dark sectors. Such a theory can naturally produce an
abundance of asymmetric dark matter which is of the same size as the lepton and
baryon asymmetries, as suggested by the similar sizes of the observed baryonic
and dark matter energy content, and provide a definite prediction for the mass
of the dark matter particle. We discuss in detail a minimal realization in
which the Standard Model is only extended by dark matter fermions which form
"dark baryons" through an SU(3) interaction, and a (broken) horizontal symmetry
that induces the new sphalerons. The dark matter mass is predicted to be
approximately 6 GeV, close to the region favored by DAMA and CoGeNT.
Furthermore, a remnant of the horizontal symmetry should be broken at a lower
scale and can also explain the Tevatron dimuon anomaly.Comment: Minor changes, discussion of present constraints expanded. 16 pages,
2 eps figures, REVTeX
Fitting Neutrino Physics with a U(1)_R Lepton Number
We study neutrino physics in the context of a supersymmetric model where a
continuous R-symmetry is identified with the total Lepton Number and one
sneutrino can thus play the role of the down type Higgs. We show that
R-breaking effects communicated to the visible sector by Anomaly Mediation can
reproduce neutrino masses and mixing solely via radiative contributions,
without requiring any additional degree of freedom. In particular, a relatively
large reactor angle (as recently observed by the Daya Bay collaboration) can be
accommodated in ample regions of the parameter space. On the contrary, if the
R-breaking is communicated to the visible sector by gravitational effects at
the Planck scale, additional particles are necessary to accommodate neutrino
data.Comment: 19 pages, 3 figures; v2: references added, constraints updated,
overall conclusions unchange
Gamma Ray Line Constraints on Effective Theories of Dark Matter
A monochromatic gamma ray line results when dark matter particles in the
galactic halo annihilate to produce a two body final state which includes a
photon. Such a signal is very distinctive from astrophysical backgrounds, and
thus represents an incisive probe of theories of dark matter. We compare the
recent null results of searches for gamma ray lines in the galactic center and
other regions of the sky with the predictions of effective theories describing
the interactions of dark matter particles with the Standard Model. We find that
the null results of these searches provide constraints on the nature of dark
matter interactions with ordinary matter which are complementary to constraints
from other observables, and stronger than collider constraints in some cases.Comment: 20 pages, 9 figure
Electroweak Baryogenesis and Dark Matter with an approximate R-symmetry
It is well known that R-symmetric models dramatically alleviate the SUSY
flavor and CP problems. We study particular modifications of existing
R-symmetric models which share the solution to the above problems, and have
interesting consequences for electroweak baryogenesis and the Dark Matter (DM)
content of the universe. In particular, we find that it is naturally possible
to have a strongly first-order electroweak phase transition while
simultaneously relaxing the tension with EDM experiments. The R-symmetry (and
its small breaking) implies that the gauginos (and the neutralino LSP) are
pseudo-Dirac fermions, which is relevant for both baryogenesis and DM. The
singlet superpartner of the U(1)_Y pseudo-Dirac gaugino plays a prominent role
in making the electroweak phase transition strongly first-order. The
pseudo-Dirac nature of the LSP allows it to behave similarly to a Dirac
particle during freeze-out, but like a Majorana particle for annihilation today
and in scattering against nuclei, thus being consistent with current
constraints. Assuming a standard cosmology, it is possible to simultaneously
have a strongly first-order phase transition conducive to baryogenesis and have
the LSP provide the full DM relic abundance, in part of the allowed parameter
space. However, other possibilities for DM also exist, which are discussed. It
is expected that upcoming direct DM searches as well as neutrino signals from
DM annihilation in the Sun will be sensitive to this class of models.
Interesting collider and Gravity-wave signals are also briefly discussed.Comment: 50 pages, 10 figure
Pulmonary hypertension in infants with bronchopulmonary dysplasia
An increase in the number of preterm infants and a decrease in the gestational age at birth have resulted in an increase in the number of patients with significant bronchopulmonary dysplasia (BPD) and secondary pulmonary hypertension (PH). PH contributes significantly to the high morbidity and mortality in the BPD patients. Therefore, regular monitoring for PH by using echocardiography and B-type natriuretic peptide (BNP) or N-terminal-proBNP must be conducted in the BPD patients with greater than moderate degree to prevent PH and to ensure early treatment if PH is present. In the BPD patients with significant PH, multi-modality treatment, including treatment for correcting an underlying disease, oxygen supply, use of diverse selective pulmonary vasodilators (inhaled nitric oxide, inhaled prostacyclins, sildenafil, and endothelin-receptor antagonist) and other methods, is mandatory
The Cosmological Constant
This is a review of the physics and cosmology of the cosmological constant.
Focusing on recent developments, I present a pedagogical overview of cosmology
in the presence of a cosmological constant, observational constraints on its
magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity
(http://www.livingreviews.org/), December 199
Cross-translational studies in human and Drosophila identify markers of sleep loss
Inadequate sleep has become endemic, which imposes a substantial burden for public health and safety. At present, there are no objective tests to determine if an individual has gone without sleep for an extended period of time. Here we describe a novel approach that takes advantage of the evolutionary conservation of sleep to identify markers of sleep loss. To begin, we demonstrate that IL-6 is increased in rats following chronic total sleep deprivation and in humans following 30 h of waking. Discovery experiments were then conducted on saliva taken from sleep-deprived human subjects to identify candidate markers. Given the relationship between sleep and immunity, we used Human Inflammation Low Density Arrays to screen saliva for novel markers of sleep deprivation. Integrin αM (ITGAM) and Anaxin A3 (AnxA3) were significantly elevated following 30 h of sleep loss. To confirm these results, we used QPCR to evaluate ITGAM and AnxA3 in independent samples collected after 24 h of waking; both transcripts were increased. The behavior of these markers was then evaluated further using the power of Drosophila genetics as a cost-effective means to determine whether the marker is associated with vulnerability to sleep loss or other confounding factors (e.g., stress). Transcript profiling in flies indicated that the Drosophila homologues of ITGAM were not predictive of sleep loss. Thus, we examined transcript levels of additional members of the integrin family in flies. Only transcript levels of scab, the Drosophila homologue of Integrin α5 (ITGA5), were associated with vulnerability to extended waking. Since ITGA5 was not included on the Low Density Array, we returned to human samples and found that ITGA5 transcript levels were increased following sleep deprivation. These cross-translational data indicate that fly and human discovery experiments are mutually reinforcing and can be used interchangeably to identify candidate biomarkers of sleep loss
Blood group terminology 2004: from the International Society of Blood Transfusion committee on terminology for red cell surface antigens
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73460/1/j.1423-0410.2004.00564.x.pd
- …