791 research outputs found

    Effects of Cooking in Solutions of Varying pH on the Dietary Fiber Components of Vegetables

    Full text link
    To study the effect of pH on dietary fiber components of vegetables, beans, cauliflower, potatoes, peas and corn were cooked in buffers of pH 2, 4, 6, and 10. Water-soluble pectin and hemicellulose, water-insoluble pectin and hemicellulose, cellulose and lignin were quantitated in raw, cooked vegetables and cooking medium. Tenderness and pH of raw and cooked vegetables were determined. Texture varied with cooking medium. Cooked vegetables were most firm at pH 4 and softest at pH 10. Dietary components found in cooking medium reflected these textural changes. Vegetables which showed greater pH effects exhibited greater changes in fiber components.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73821/1/j.1365-2621.1984.tb13237.x.pd

    Analysis of dietary insoluble and soluble fiber contents in school meal

    Get PDF
    The objective of this study was to estimate the contents of dietary insoluble and soluble fiber in school meal. Samples of the school meals were collected from May to June in 2008. Three elementary schools and three middle schools around Masan area were selected for analysis. Dietary soluble and insoluble fibers in the school meals were analyzed directly by the AOAC method. From the initial experiment phase, we used cellulose and pectin as a standard of dietary fiber, and average recovery rate of insoluble fiber and soluble fiber was calculated. The recovery rate was observed, the cellulose 109.7±11.7% (range 90~150%) and pectin 77.8±10.8% (range 64.7~96.7%), respectively. The amounts of insoluble fiber and soluble fiber were analyzed in the total of 66 dishes, which included 7 kinds of cooked rice (bab) made with some cereal products and vegetables, 19 kinds of soup (guk) made with meats or vegetables, 11 kinds of kimchi, 21 kinds of entrées or side dishes, and 8 special dishes. Conclusively the school meal, per serving size, would provide above 75% KDRI of total dietary fibers through mainly soups and special menu, with the exception to fruits. In addition, it might be expected that children could consume more soluble fiber from the meals with the special dishes than from the regular ones

    Mapping quantitative trait loci (QTLs) associated with dough quality in a soft × hard bread wheat progeny

    Get PDF
    Bread wheat (Triticum aestivum L.) quality is a key trait for baking industry exigencies and broad consumer preferences. The main goal of this study was to undertake quantitative trait loci (QTL) analyses for bread wheat quality in a set of 79 recombinant inbred lines (RILs) derived from a soft × hard bread wheat cross. Field trials were conducted over two years, utilizing a randomized complete block design. Dough quality was evaluated by sedimentation test, mixograph and alveograph analysis. Protein content was measured by near-infrared reflectance analysis and grain hardness was determined by the single kernel characterization system (SKCS). A genetic map based on 263 SSR markers and glutenin loci was constructed. Composite interval mapping (CIM) analysis detected a total of 20 QTLs distributed among ten chromosomes which were associated with variations in quality traits. Results confirmed the previous investigations on the known relationship between storage-protein alleles and dough quality, and detected new and stable QTLs related to dough quality parameters on chromosomes 2A, 7A, 5B and 1D. These new QTLs could be further investigated. Also, in this study, some RILs showed very high dough extensibility values which involve future validation studies for QTLs associated with to this trait

    Rye kernel breakfast increases satiety in the afternoon - an effect of food structure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The structure of whole grain cereals is maintained to varying degrees during processing and preparation of foods. Food structure can influence metabolism, including perceived hunger and satiety. A diet that enhances satiety per calorie may help to prevent excessive calorie intake. The objective of this work was to compare subjective appetite ratings after consumption of intact and milled rye kernels.</p> <p>Methods</p> <p>Two studies were performed using a randomized, cross-over design. Ratings for appetite (hunger, satiety and desire to eat) were registered during an 8-h period after consumption of whole and milled rye kernels prepared as breads (study 1, n = 24) and porridges (study 2, n = 20). Sifted wheat bread was used as reference in both study parts and the products were eaten in iso-caloric portions with standardized additional breakfast foods. Breads and porridges were analyzed to determine whether structure (whole vs. milled kernels) effected dietary fibre content and composition after preparation of the products. Statistical evaluation of the appetite ratings after intake of the different breakfasts was done by paired t-tests for morning and afternoon ratings separately, with subjects as random effect and type of breakfast and time points as fixed effects.</p> <p>Results</p> <p>All rye breakfasts resulted in higher satiety ratings in the morning and afternoon compared with the iso-caloric reference breakfast with sifted wheat bread. Rye bread with milled or whole kernels affected appetite equally, so no effect of structure was observed. In contrast, after consumption of the rye kernel breakfast, satiety was increased and hunger suppressed in the afternoon compared with the milled rye kernel porridge breakfast. This effect could be related to structural differences alone, because the products were equal in nutritional content including dietary fibre content and composition.</p> <p>Conclusions</p> <p>The study demonstrates that small changes in diet composition such as cereal grain structure have the potential to effect feelings of hunger and satiety.</p> <p>Trial registration</p> <p>This trial was registered at clinicaltrials.gov as <a href="http://www.clinicaltrials.gov/ct2/show/NCT01042418">NCT01042418</a>.</p

    Chemical, antioxidant, functional and thermal properties of rice bran proteins after yeast and natural fermentations

    Get PDF
    The paper focuses on the chemical, antioxidant, functional and thermal properties of rice bran proteins after yeast, natural fermentations and unfermented rice bran. Protein content of yeast-fermented rice bran protein concentrate (YFRBPC), naturally fermented rice bran protein concentrate (NFRBPC) and unfermented rice protein concentrate (UFRBPC) were 72.50%, 68.92% and 65.73%, respectively, while ash content were 4.72%, 4.61% and 3.04%, respectively. The total amino acids of YFRBPC, NFRBPC and UFRBPC were 123.16, 118.45 and 99.39, respectively. DPPH radical inhibition of YFRBPC, NFRBPC and UFRBPC were 58.62%, 55.29% and 47.14%, respectively, while ferric reducing ability power were 0.73, 0.58 and 0.41 mmol TE per gram, respectively. The highest foam capacity of UFRBPC (57.56%), NFRBPC (64.15%) and YFRBPC (76.00%) was observed at pH 9.0. YFRBPC and NFRBPC were lighter in colour than UFRBPC. YFRBPC had higher denaturation temperature and enthalpy value than NFRBPC and UFRBPC. The β-sheets structures were more in YFRBPC and NFRBPC than UNFBPC
    corecore