16 research outputs found

    Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past

    Get PDF
    The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs

    Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past

    Get PDF
    The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs

    Genetic variation for root architecture, nutrient uptake and mycorrhizal colonisation in Medicago truncatula accessions

    No full text
    Sustainable agriculture strives for healthy, high yielding plants with minimal agronomic inputs. Genetic solutions to increase nutrient uptake are desirable because they provide ongoing improvements. To achieve this it is necessary to identify genes involved in uptake and translocation of nutrients. We selected Medicago truncatula L. as a model because of its: i) close genetic relationship to food legumes, ii) use as a pasture legume in southern Australia and iii) availability of mapping populations generated from genetically diverse accessions. We discovered statistically significant differences between eight accessions for: root architecture in growth pouches, % root colonisation with the arbuscular mycorrhizal (AM) fungus Glomus intraradices, and plant tissue concentration of most macro- and micronutrients. Mycorrhizal colonisation had a significant effect on P concentration in roots but not shoots, Mg concentration in both roots and shoots, and the concentration of various micronutrients in shoots including Fe, Ca, but not Zn. Comparison of micronutrient uptake between root and shoot tissues showed that some M. truncatula accessions were more efficient at mobilisation of nutrients from roots to shoots. We are now in a position to use existing mapping populations of M. truncatula to identify quantitative trait loci important for human health and sustainable agriculture.Carolyn J. Schultz, Leon V. Kochian and Maria J. Harriso
    corecore