123 research outputs found

    Unexpected Consequences: Women’s experiences of a self-hypnosis intervention to help with pain relief during labour.

    Get PDF
    Background Self-hypnosis is becoming increasingly popular as a means of labour pain management. Previous studies have produced mixed results. There are very few data on women’s views and experiences of using hypnosis in this context. As part of a randomized controlled trial of self-hypnosis for intra-partum pain relief (the SHIP Trial) we conducted qualitative interviews with women randomized to the intervention arm to explore their views and experiences of using self-hypnosis during labour and birth. Methods Participants were randomly selected from the intervention arm of the study, which consisted of two antenatal self-hypnosis training sessions and a supporting CD that women were encouraged to listen to daily from 32 weeks gestation until the birth of their baby. Those who consented were interviewed in their own homes 8-12 weeks after birth. Following transcription, the interviews were analysed iteratively and emerging concepts were discussed amongst the authors to generate organizing themes. These were then used to develop a principal organizing metaphor or global theme, in a process known as thematic networks analysis. Results Of the 343 women in the intervention group, 48 were invited to interview, and 16 were interviewed over a 12 month period from February 2012 to January 2013. Coding of the data and subsequent analysis revealed a global theme of ‘unexpected consequences’, supported by 5 organising themes, ‘calmness in a climate of fear’, ‘from sceptic to believer’, ‘finding my space’, ‘delays and disappointments’ and ‘personal preferences’. Most respondents reported positive experiences of self-hypnosis and highlighted feelings of calmness, confidence and empowerment. They found the intervention to be beneficial and used a range of novel strategies to personalize their self-hypnosis practice. Occasionally women reported feeling frustrated or disappointed when their relaxed state was misinterpreted by midwives on admission or when their labour and birth experiences did not match their expectations. Conclusion The women in this study generally appreciated antenatal self-hypnosis training and found it to be beneficial during labour and birth. The state of focused relaxation experienced by women using the technique needs to be recognized by providers if the intervention is to be implemented into the maternity service

    Nano-mechanical properties of Fe-Mn-Al-C lightweight steels

    Get PDF
    High Al Low-density steels could have a transformative effect on the light-weighting of steel structures for transportation and achieving the desired properties with the minimum amount of Ni is of great interest from an economic perspective. In this study, the mechanical properties of two duplex low-density steels, Fe-15Mn-10Al-0.8C-5Ni and Fe-15Mn-10Al-0.8C (wt.%) were investigated through nano-indentation and simulation through utilization of ab initio formalisms in Density Functional Theory (DFT) in order to establish the hardness resulting from two critical structural features (߱-carbides and B2 intermetallic) as a function of annealing temperature (500 − 1050 ℃) and the addition of Ni. In the Ni-free sample, the calculated elastic properties of kappa-carbides were compared with those of the B2 intermetallic Fe3Al − L12, and the role of Mn in the kappa structure and its elastic properties were studied. The Ni-containing samples were found to have a higher hardness due to the B2 phase composition being NiAl rather than FeAl, with Ni-Al bonds reported to be stronger than the Fe-Al bonds. In both samples, at temperatures of 900 ℃ and above, the ferrite phase contained nano-sized discs of B2 phase, wherein the Ni-containing samples exhibited higher hardness, attributed again to the stronger Ni-Al bonds in the B2 phase. At 700 ℃ and below, the nano-sized B2 discs were replaced by micrometre sized needles of kappa in the Ni-free sample resulting in a lowering of the hardness. In the Ni-containing sample, the entire alpha phase was replaced by B2 stringers, which had a lower hardness than the Ni-Al nano-discs due to a lower Ni content in B2 stringer bands formed at 700 ℃ and below. In addition, the hardness of needle-like kappa-carbides formed in alpha phase was found to be a function of Mn content. Although it was impossible to measure the hardness of cuboid kappa particles in gamma phase because of their nano-size, the hardness value of composite phases, e.g. gamma + kappa was measured and reported. All the hardness values were compared and rationalized by bonding energy between different atoms

    Use of biological based therapy in patients with cardiovascular diseases in a university-hospital in New York City

    Get PDF
    BACKGROUND: The use of complementary and alternative products including Biological Based Therapy (BBT) has increased among patients with various medical illnesses and conditions. The studies assessing the prevalence of BBT use among patients with cardiovascular diseases are limited. Therefore, an evaluation of BBT in this patient population would be beneficial. This was a survey designed to determine the effects of demographics on the use of Biological Based Therapy (BBT) in patients with cardiovascular diseases. The objective of this study was to determine the effect of the education level on the use of BBT in cardiovascular patients. This survey also assessed the perceptions of users regarding the safety/efficacy of BBT, types of BBT used and potential BBT-drug interactions. METHOD: The survey instrument was designed to assess the findings. Patients were interviewed from February 2001 to December 2002. 198 inpatients with cardiovascular diseases (94 BBT users and 104 non-users) in a university hospital were included in the study. RESULTS: Users had a significantly higher level of education than non-users (college graduate: 28 [30%] versus 12 [12%], p = 0.003). Top 10 BBT products used were vitamin E [41(43.6%)], vitamin C [30(31.9%)], multivitamins [24(25.5%)], calcium [19(20.2%)], vitamin B complex [17(18.1%)], fish oil [12(12.8%)], coenzyme Q10 [11(11.7%)], glucosamine [10(10.6%)], magnesium [8(8.5%)] and vitamin D [6(6.4%)]. Sixty percent of users' physicians knew of the BBT use. Compared to non-users, users believed BBT to be safer (p < 0.001) and more effective (p < 0.001) than prescription drugs. Forty-two potential drug-BBT interactions were identified. CONCLUSION: Incidence of use of BBT in cardiovascular patients is high (47.5%), as is the risk of potential drug interaction. Health care providers need to monitor BBT use in patients with cardiovascular diseases

    The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world

    Get PDF
    Biotechnology has empirically established that it is easier to construct and evaluate variant genes and proteins than to account for the emergence and function of wild-type macromolecules. Systematizing this constructive approach, synthetic biology now promises to infer and assemble entirely novel genomes, cells and ecosystems. It is argued here that the theoretical and computational tools needed for this endeavor are missing altogether. However, such tools may not be required for diversifying organisms at the basic level of their chemical constitution by adding, substituting or removing elements and molecular components through directed evolution under selection. Most importantly, chemical diversification of life forms could be designed to block metabolic cross-feed and genetic cross-talk between synthetic and wild species and hence protect natural habitats and human health through novel types of containment

    Neuroscience and education: prime time to build the bridge

    Get PDF
    As neuroscience gains social traction and entices media attention, the notion that education has much to benefit from brain research becomes increasingly popular. However, it has been argued that the fundamental bridge toward education is cognitive psychology, not neuroscience. We discuss four specific cases in which neuroscience synergizes with other disciplines to serve education, ranging from very general physiological aspects of human learning such as nutrition, exercise and sleep, to brain architectures that shape the way we acquire language and reading, and neuroscience tools that increasingly allow the early detection of cognitive deficits, especially in preverbal infants. Neuroscience methods, tools and theoretical frameworks have broadened our understanding of the mind in a way that is highly relevant to educational practice. Although the bridge’s cement is still fresh, we argue why it is prime time to march over it

    The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the ApcMin/+ Mouse

    Get PDF
    Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The ApcMin/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the ApcMin/+ mouse is not known. Cachexia progression was studied in ApcMin/+ mice that were either weight stable (WS) or had initial (≀5%), intermediate (6–19%), or extreme (≄20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∌50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process

    Unfolding Simulations of Holomyoglobin from Four Mammals: Identification of Intermediates and ÎČ-Sheet Formation from Partially Unfolded States

    Get PDF
    Myoglobin (Mb) is a centrally important, widely studied mammalian protein. While much work has investigated multi-step unfolding of apoMb using acid or denaturant, holomyoglobin unfolding is poorly understood despite its biological relevance. We present here the first systematic unfolding simulations of holoMb and the first comparative study of unfolding of protein orthologs from different species (sperm whale, pig, horse, and harbor seal). We also provide new interpretations of experimental mean molecular ellipticities of myoglobin intermediates, notably correcting for random coil and number of helices in intermediates. The simulated holoproteins at 310 K displayed structures and dynamics in agreement with crystal structures (R g ~1.48-1.51 nm, helicity ~75%). At 400 K, heme was not lost, but some helix loss was observed in pig and horse, suggesting that these helices are less stable in terrestrial species. At 500 K, heme was lost within 1.0-3.7 ns. All four proteins displayed exponentially decaying helix structure within 20 ns. The C- and F-helices were lost quickly in all cases. Heme delayed helix loss, and sperm whale myoglobin exhibited highest retention of heme and D/E helices. Persistence of conformation (RMSD), secondary structure, and ellipticity between 2-11 ns was interpreted as intermediates of holoMb unfolding in all four species. The intermediates resemble those of apoMb notably in A and H helices, but differ substantially in the D-, E- and F-helices, which interact with heme. The identified mechanisms cast light on the role of metal/cofactor in poorly understood holoMb unfolding. We also observed ÎČ-sheet formation of several myoglobins at 500 K as seen experimentally, occurring after disruption of helices to a partially unfolded, globally disordered state; heme reduced this tendency and sperm-whale did not display any sheet propensity during the simulations

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    • 

    corecore