396 research outputs found

    Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111)

    Get PDF
    This work was financially supported by EC through the Marie-Curie ITN SUPERIOR (PITN-GA-2009-238177) and IEF MULTITUDES (PIEF-GA-2012-326666), the ERC project SUPRAFUNCTION (GA-257305), the Agence Nationale de la Recherche through the LabEx project Chemistry of Complex Systems (ANR-10-LABX-0026_CSC), and the International Center for Frontier Research in Chemistry (icFRC). The work in Mons is further supported by the Interuniversity Attraction Poles Programme (P7/05) initiated by the Belgian Science Policy Office, and by the Belgian National Fund for Scientific Research (FNRS). J.C. is an FNRS research director. The synthesis team in Switzerland acknowledges financial support by the Swiss National Science Foundation (SNF) and the Swiss Nanoscience Institute (SNI)

    Prehistory of Transit Searches

    Full text link
    Nowadays the more powerful method to detect extrasolar planets is the transit method. We review the planet transits which were anticipated, searched, and the first ones which were observed all through history. Indeed transits of planets in front of their star were first investigated and studied in the solar system. The first observations of sunspots were sometimes mistaken for transits of unknown planets. The first scientific observation and study of a transit in the solar system was the observation of Mercury transit by Pierre Gassendi in 1631. Because observations of Venus transits could give a way to determine the distance Sun-Earth, transits of Venus were overwhelmingly observed. Some objects which actually do not exist were searched by their hypothetical transits on the Sun, as some examples a Venus satellite and an infra-mercurial planet. We evoke the possibly first use of the hypothesis of an exoplanet transit to explain some periodic variations of the luminosity of a star, namely the star Algol, during the eighteen century. Then we review the predictions of detection of exoplanets by their transits, those predictions being sometimes ancient, and made by astronomers as well as popular science writers. However, these very interesting predictions were never published in peer-reviewed journals specialized in astronomical discoveries and results. A possible transit of the planet beta Pic b was observed in 1981. Shall we see another transit expected for the same planet during 2018? Today, some studies of transits which are connected to hypothetical extraterrestrial civilisations are published in astronomical refereed journals. Some studies which would be classified not long ago as science fiction are now considered as scientific ones.Comment: Submiited to Handbook of Exoplanets (Springer

    Reliability of Rapid Diagnostic Tests in Diagnosing Pregnancy-Associated Malaria in North-Eastern Tanzania.

    Get PDF
    Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool

    The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.

    Get PDF
    p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate

    malERA: An updated research agenda for insecticide and drug resistance in malaria elimination and eradication

    No full text
    Resistance to first-line treatments for Plasmodium falciparum malaria and the insecticides used for Anopheles vector control are threatening malaria elimination efforts. Suboptimal responses to drugs and insecticides are both spreading geographically and emerging independently and are being seen at increasing intensities. Whilst resistance is unavoidable, its effects can be mitigated through resistance management practices, such as exposing the parasite or vector to more than one selective agent. Resistance contributed to the failure of the 20th century Global Malaria Eradication Programme, and yet the global response to this issue continues to be slow and poorly coordinated—too often, too little, too late. The Malaria Eradication Research Agenda (malERA) Refresh process convened a panel on resistance of both insecticides and antimalarial drugs. This paper outlines developments in the field over the past 5 years, highlights gaps in knowledge, and proposes a research agenda focused on managing resistance. A deeper understanding of the complex biological processes involved and how resistance is selected is needed, together with evidence of its public health impact. Resistance management will require improved use of entomological and parasitological data in decision making, and optimisation of the useful life of new and existing products through careful implementation, combination, and evaluation. A proactive, collaborative approach is needed from basic science and the development of new tools to programme and policy interventions that will ensure that the armamentarium of drugs and insecticides is sufficient to deal with the challenges of malaria control and its elimination

    An update of malaria infection and anaemia in adults in Buea, Cameroon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anaemia is caused by many factors in developing countries including malaria. We compared anaemia rates in patients with malaria parasitaemia to that of patients without malaria parasitaemia.</p> <p>Findings</p> <p>A cross-sectional study was carried out from November 2007 to July 2008 in health units in Buea, Cameroon. Adult patients with fever or history of fever were included in the study. Information on socio-demographic variables and other variables was collected using a questionnaire. Malaria parasitaemia status was determined by microscopy using Giemsa stained thick blood smears. Haemoglobin levels were determined by the microhaematocrit technique.</p> <p>The study population consisted of 250 adult patients with a mean age of 29.31 years (SD = 10.63) and 59.44% were females. 25.60% of the patients had malaria parasitaemia while 14.80% had anaemia (haemoglobin < 11 g/dl). Logistic regression revealed that those with malaria parasitaemia had more anaemia compared to those without malaria parasitaemia(OR = 4.33, 95%CI = 1.21-15.43, p = 0.02) after adjusting for age, sex, rural residence, socioeconomic status, use of antimalarials, use of insecticide treated nets(ITN) and white blood cell count.</p> <p>Conclusions</p> <p>In adult patients with fever in this setting, malaria parasitaemia contributes to anaemia and is of public health impact. Our results also provide a baseline prevalence for malaria parasitaemia in febrile adults in health units in this setting.</p

    Immunisation with Recombinant PfEMP1 Domains Elicits Functional Rosette-Inhibiting and Phagocytosis-Inducing Antibodies to Plasmodium falciparum

    Get PDF
    BACKGROUND: Rosetting is a Plasmodium falciparum virulence factor implicated in the pathogenesis of life-threatening malaria. Rosetting occurs when parasite-derived P. falciparum Erythrocyte Membrane Protein One (PfEMP1) on the surface of infected erythrocytes binds to human receptors on uninfected erythrocytes. PfEMP1 is a possible target for a vaccine to induce antibodies to inhibit rosetting and prevent severe malaria. METHODOLOGY/FINDINGS: We examined the vaccine potential of the six extracellular domains of a rosette-mediating PfEMP1 variant (ITvar9/R29var1 from the R29 parasite strain) by immunizing rabbits with recombinant proteins expressed in E. coli. Antibodies raised to each domain were tested for surface fluorescence with live infected erythrocytes, rosette inhibition and phagocytosis-induction. Antibodies to all PfEMP1 domains recognized the surface of live infected erythrocytes down to low concentrations (0.02-1.56 µg/ml of total IgG). Antibodies to all PfEMP1 domains except for the second Duffy-Binding-Like region inhibited rosetting (50% inhibitory concentration 0.04-4 µg/ml) and were able to opsonize and induce phagocytosis of infected erythrocytes at low concentrations (1.56-6.25 µg/ml). Antibodies to the N-terminal region (NTS-DBL1α) were the most effective in all assays. All antibodies were specific for the R29 parasite strain, and showed no functional activity against five other rosetting strains. CONCLUSIONS/SIGNIFICANCE: These results are encouraging for vaccine development as they show that potent antibodies can be generated to recombinant PfEMP1 domains that will inhibit rosetting and induce phagocytosis of infected erythrocytes. However, further work is needed on rosetting mechanisms and cross-reactivity in field isolates to define a set of PfEMP1 variants that could induce functional antibodies against a broad range of P. falciparum rosetting parasites
    corecore