31 research outputs found

    Nocturnal Surface Urban Heat Island over Greater Cairo: Spatial Morphology, Temporal Trends and Links to Land-Atmosphere Influences

    Get PDF
    This study assesses the spatial and temporal characteristics of nighttime surface urban heat island (SUHI) effects over Greater Cairo: the largest metropolitan area in Africa. This study employed nighttime land surface temperature (LST) data at 1 km resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua sensor for the period 2003–2019. We presented a new spatial anomaly algorithm, which allowed to define SUHI using the most anomalous hotspot and cold spot of LST for each time step over Greater Cairo between 2003 and 2019. Results demonstrate that although there is a significant increase in the spatial extent of SUHI over the past two decades, a significant decrease in the mean and maximum intensities of SUHI was noted. Moreover, we examined the dependency between SUHI characteristics and related factors that influence energy and heat fluxes between atmosphere and land in urban environments (e.g., surface albedo, vegetation cover, climate variability, and land cover/use changes). Results demonstrate that the decrease in the intensity of SUHI was mainly guided by a stronger warming in daytime and nighttime LST in the neighborhood of urban localities. This warming was accompanied by a decrease in surface albedo and diurnal temperature range (DTR) over these areas. Results of this study can provide guidance to local urban planners and decision-makers to adopt more effective mitigation strategies to diminish the negative impacts of urban warming on natural and human environments.</jats:p

    The Global Public Health Significance of Plasmodium vivax

    Full text link

    Immunization with outer membrane proteins (OprF and OprI) and flagellin B protects mice from pulmonary infection with mucoid and nonmucoid Pseudomonas aeruginosa

    No full text
    Background Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium, which considered as a common cause of nosocomial infection and life-threatening complications in immunocompromized and cystic fibrosis patients. Here, we evaluate the protective effect of recombinant vaccines composed of outer membrane proteins OprF and OprI alone or in combination with flagellin B against mucoid and nonmucoid pseudomonas infection. Methods BALB/C mice were immunized subcutaneous using OprF and OprI with or without flagellin B and antibody titers were determined. Serum bactericidal and opsonophagocytosis activities of immunized and control sera were estimated against mucoid and nonmucoid pseudomonas strains. Lung tissue sections from immunized and nonimmunized mice were analyzed and the levels of peripheral neutrophils infiltration into the lung and tissue inflammation were scored. Results Subcutaneous immunization using OprF and OprI with or without flagellin B elicited higher antibody titers against OprF, OprI, and flagellin B. The produced antibodies successfully opsonized both mucoid and nonmucoid strains with subsequent activation of the terminal pathway of complement that enhances killing of nonmucoid strains via complement-mediated lysis. Furthermore, opsonized mucoid and nonmucoid strains showed enhanced opsonophagocytosis via human peripheral neutrophils, a mechanism that kills P. aeruginosa when complement mediated lysis is not effective especially with mucoid strains. Immunized mice also showed a significant prolonged survival time, lower bacteremia, and reduced lung damage when compared with control nonimmunized mice. Conclusion Our data showed that mice immunized with OprF/OprI or OprF/OprI and flagellin B are significantly protected from infection caused by mucoid and nonmucoid strains of P. aeruginosa

    Assessment of uncertainties in projected temperature and precipitation over the Arabian Peninsula: a comparison between different categories of CMIP3 models

    Get PDF
    Background: This paper examined the level of uncertainties in precipitation and temperature simulations by Coupled Model Intercomparison Project Phase 3 (CMIP3) over the Arabian Peninsula. Purpose: Different techniques are employed to assess the ranges of uncertainties in projected temperature and precipitation over the Arabian Peninsula. Methods: For the present climate (1970–1999), the 22 CMIP3 models are grouped into four out of which two main categories, i) all models ensemble and ii) best performing models ensemble, are used to assess the uncertainties in the future temperature and precipitation over the Arabian Peninsula. Results: The CMIP3 ensemble projections for the above two main categories revealed a continuous increase in temperature over the peninsula during the 21st century. For the period 2070–2099, the all (best performing) models ensemble revealed an increase in temperature by 2.32 ± 2.45 (3.85 ± 1.54), 3.49 ± 2.49 (4.91 ± 1.61), and 3.28 ± 1.47 (5.36 ± 1.47) C, relative to the present climate, under the B1, A1B, and A2 scenario, respectively, while the intermodel ranges are projected to be from -3.36 to 6.08 (0.84 to 5.96), -2.26 to 7.68 (1.94 to 7.29), and -1.79 to 7.40 (2.75 to 7.10) C, respectively. Meanwhile, for the same period, the annual precipitation is projected to increase by 5.16 ± 30 (3.2 ± 25), 10.48 ± 34 (1.82 ± 28), and 15.29 ± 43 (5.3 ± 32)%, relative to the present climate under the B1, A1B, and A2 scenario, while the intermodel ranges are projected to be from -94 to 265 (-71 to 175), -95 to 322 (-74 to 205), and -95 to 375 (-75 to 235)%, respectively, for all (best performing) models ensemble. Conclusion The uncertainty of projected temperature and precipitation is reduced in the best performing models ensemble compared to the all models. At annual scale, surplus (deficit) precipitation pattern is projected across southern and southwestern (northern and northwestern) parts of the peninsula. The above results indicate that a better choice of models from the CMIP3 database could reduce the uncertainty range associated with future projections over the Arabian Peninsula

    Relationship Between Atmospheric Circulation and Temperature Extremes in Montenegro in the Period 1951–2010

    No full text
    Previous research conducted in Montenegro suggested an increase in maximum and minimum daily temperatures in the last decades, followed by growth of extreme events frequency. This study examines the relationship between temperature and atmospheric circulation fields in Montenegro using 9 WMO-CCL/CLIVAR extreme climatic indices. The data on atmospheric circulation refers to 11 teleconnection patterns analyzed by seasonal timescales. The assessment of the impact of certain teleconnection patterns has shown a significant connection to extreme events in Montenegro. Calculated results showed the strongest impact of EA, MO, WeMO, EAWR and AO during the winter season, while the weaker impact was calculated for NAO and SCAND. The best impact is obtained for EA and AO during spring, while summer temperature variations are connected to EA, AMO, EAWR, SCAND and NAO. The autumn season showed strong connection with EA, SCAND, AMO, EAWR, MO and AO
    corecore