3,043 research outputs found

    Peak moments: the experience of coaches

    Get PDF

    Maximizing the optical performance of planar CH3NH3PbI3 hybrid perovskite heterojunction stacks

    Get PDF
    A vapour-phase reaction process has been used to deposit smooth and uniform CH3NH3PbI3 perovskite material to enable the measurement of its optical dispersion relations, n and k, by ellipsometry. Fitting was achieved with a combination of Tauc-Lorenz, critical point parabolic band (CPPB) and harmonic oscillators. We have used the dispersion relations in an all-optical model of new planar device architectures in order to establish design rules for future materials choices to maximize the short-circuit current (Jsc) performance. For 500nm of MAPI with no window layer, the maximum performance expected from the model is Jsc=21.63mAcm-2. The ability of thin layers (in the range 20-60nm) of a range of window layer materials (TiO2, WO3, ZnO, Nb2O5, CdS, and Cd0.4 Zn0.6S) to enhance the short-circuit current of the devices was investigated. The performance of the oxides showed interference behaviour, with the first maxima in their J sc curves exceeding the value achievable without a window layer. However, after the first maximum, the performance generally fell off with increasing thickness. The only material to stay greater than the no-window condition for the entire investigated range is WO3. The highest performance (J sc of 22.47mAcm-2) was obtained with 59nm of WO3, with that of TiO2, ZnO, and Nb2O5 being marginally lower. Parasitic absorption in CdS window layers caused the J sc to decrease for all non-zero thicknesses - it gives no interference enhancement and its use cannot be recommended on optical grounds. Use of the wider gap alloy Cd0.4Zn0.6S gave higher currents than did CdS but its performance was not so high as for the oxides. Observations are made on the practicalities of fabricating the target structures in the fabrication of practical PV devices

    Quantification of reactive oxygen species generation by photoexcitation of PEGylated quantum dots

    Get PDF
    Photocatalytic generation of reactive oxygen species (ROS) from quantum dots (QDs) has been widely reported yet quantitative studies of ROS formation and their quantum yields are lacking. This study investigates the generation of ROS by water soluble PEGylated CdSe/ZnS QDs with red emission. PEGylation of QDs is commonly used to confer water solubility and minimise uptake by organs of the reticuloendothelial system; therefore studies of ROS formation are of biomedical relevance. Using non-photolytic visible wavelength excitation, the superoxide anion radical is shown to be the primary ROS species generated with a quantum efficiency of 0.35%. The yield can be significantly enhanced in the presence of the electron donor, nicotinamide adenine dinucleotide (NADH), as demonstrated by oxygen consumption measurements and electron paramagnetic resonance spectroscopy with in situ illumination. Direct production of singlet oxygen is not detectable from the QDs alone. A comparison is made with ROS generation by the same QDs complexed with a sulfonated phthalocyanine which can generate singlet oxygen via Förster resonance energy transfer between the QDs and the phthalocyanine

    Quantum control of hybrid nuclear-electronic qubits

    Full text link
    Pulsed magnetic resonance is a wide-reaching technology allowing the quantum state of electronic and nuclear spins to be controlled on the timescale of nanoseconds and microseconds respectively. The time required to flip either dilute electronic or nuclear spins is orders of magnitude shorter than their decoherence times, leading to several schemes for quantum information processing with spin qubits. We investigate instead the novel regime where the eigenstates approximate 50:50 superpositions of the electronic and nuclear spin states forming "hybrid nuclear-electronic" qubits. Here we demonstrate quantum control of these states for the first time, using bismuth-doped silicon, in just 32 ns: this is orders of magnitude faster than previous experiments where pure nuclear states were used. The coherence times of our states are five orders of magnitude longer, reaching 4 ms, and are limited by the naturally-occurring 29Si nuclear spin impurities. There is quantitative agreement between our experiments and no-free-parameter analytical theory for the resonance positions, as well as their relative intensities and relative Rabi oscillation frequencies. In experiments where the slow manipulation of some of the qubits is the rate limiting step, quantum computations would benefit from faster operation in the hybrid regime.Comment: 20 pages, 8 figures, new data and simulation

    Combined effects of increased water temperature and cyanobacterial compounds exert heterogeneous effects on survival and ecological processes in key freshwater species

    Get PDF
    Climate change is increasing water temperature and intensifying the incidence of cyanobacterial blooms worldwide. However, the combined effects of increased temperature and microcystin concentrations as co-stressors on survival and ecological processes in freshwater species are unclear. Here, using purified MC-LR and crude extract of toxigenic Microcystis aeruginosa, we tested the individual and combined effects of three water temperatures (15, 20, 25 °C) and a range of environmentally relevant concentrations of dissolved microcystin and crude extract (0.01–10 µg·L−1) on survival, growth inhibition, grazing and predation rates in three freshwater species: phytoplankton (Scenedesmus quadricauda), zooplankton (Daphnia pulex), and an invertebrate predator (Ischnura elegans). Purified MC-LR exerted a higher growth inhibitory effect on S. quadricauda compared to crude extract with the same concentration of MC-LR, while neither treatment affected its chlorophyll-a content or survival of D. pulex. Crude extract reduced grazing and survival of D. pulex and I. elegans, respectively. The combined effect of higher temperature and crude extract reduced I. elegans survival by 50%. Increased temperature reduced prey handing time in I. elegans by 49%, suggesting a higher predation rate. However, warming together with higher concentrations of crude extract jointly increased zooplankton grazing and reduced damselfly predation. Taken together, these results suggest crude extract, and not necessarily microcystin, can affect survival and productivity in freshwater species, although these effects may vary unevenly across trophic levels. Our findings highlight the importance of complex ecological mechanisms by which warming can exacerbate toxic effects of cyanobacterial bloom extracts on survival and functions among species in eutrophic freshwaters

    An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour.

    Get PDF
    Serpins are important regulators of proteolytic pathways with an anti-protease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an inter-molecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of a number of pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39, and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of pre-formed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for rational design of ligands that is able to dynamically influence α1-AT polymerisation

    Bisphenol A exposure and cardiac electrical conduction in excised rat hearts

    Get PDF
    BACKGROUND: Bisphenol A (BPA) is used to produce polycarbonate plastics and epoxy resins that are widely used in everyday products, such as food and beverage containers, toys and medical devices. Human biomonitoring studies have suggested that a large proportion of the population may be exposed to BPA. Recent epidemiological studies have reported correlations between increased BPA urinary concentrations and cardiovascular disease; yet the direct effects of BPA on the heart are unknown. OBJECTIVES: The goal of our studies was to measure BPA\u27s effect (0.1-100 μM) on cardiac impulse propagation ex vivo, using excised whole hearts from adult rats. METHODS: We measured atrial and ventricular activation times during sinus and paced rhythms using epicardial electrodes and optical mapping of transmembrane potential. Atrioventricular activation intervals and epicardial conduction velocities were computed using recorded activation times. RESULTS: Cardiac BPA exposure resulted in prolonged PR segment and decreased epicardial conduction velocity (0.1 - 100 μM), prolonged action potential duration (1 - 100 μM) and delayed atrioventricular conduction (10 - 100 μM). Importantly, these effects were observed after acute exposure (≤ 15 min), underscoring the potential detrimental effects of continuous BPA exposure. The highest BPA concentration used (100 μM) resulted in prolonged QRS intervals, dropped ventricular beats and eventually resulted in complete heart block. CONCLUSIONS: Our results show that acute BPA exposure slows electrical conduction in excised hearts from female rats. These findings emphasize the importance of examining BPA\u27s effect on heart electrophysiology and determining whether chronic in vivo exposure can cause/exacerbate conduction abnormalities in patients with pre-existing heart conditions and other high-risk populations

    The Social and Political Dimensions of the Ebola Response: Global Inequality, Climate Change, and Infectious Disease

    Get PDF
    The 2014 Ebola crisis has highlighted public-health vulnerabilities in Liberia, Sierra Leone, and Guinea – countries ravaged by extreme poverty, deforestation and mining-related disruption of livelihoods and ecosystems, and bloody civil wars in the cases of Liberia and Sierra Leone. Ebola’s emergence and impact are grounded in the legacy of colonialism and its creation of enduring inequalities within African nations and globally, via neoliberalism and the Washington Consensus. Recent experiences with new and emerging diseases such as SARS and various strains of HN influenzas have demonstrated the effectiveness of a coordinated local and global public health and education-oriented response to contain epidemics. To what extent is international assistance to fight Ebola strengthening local public health and medical capacity in a sustainable way, so that other emerging disease threats, which are accelerating with climate change, may be met successfully? This chapter considers the wide-ranging socio-political, medical, legal and environmental factors that have contributed to the rapid spread of Ebola, with particular emphasis on the politics of the global and public health response and the role of gender, social inequality, colonialism and racism as they relate to the mobilization and establishment of the public health infrastructure required to combat Ebola and other emerging diseases in times of climate change

    LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA.

    Get PDF
    The DExD/H box RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene-5 (mda-5) sense viral RNA in the cytoplasm of infected cells and activate signal transduction pathways that trigger the production of type I interferons (IFNs). Laboratory of genetics and physiology 2 (LGP2) is thought to influence IFN production by regulating the activity of RIG-I and mda-5, although its mechanism of action is not known and its function is controversial. Here we show that expression of LGP2 potentiates IFN induction by polyinosinic-polycytidylic acid [poly(I:C)], commonly used as a synthetic mimic of viral dsRNA, and that this is particularly significant at limited levels of the inducer. The observed enhancement is mediated through co-operation with mda-5, which depends upon LGP2 for maximal activation in response to poly(I:C). This co-operation is dependent upon dsRNA binding by LGP2, and the presence of helicase domain IV, both of which are required for LGP2 to interact with mda-5. In contrast, although RIG-I can also be activated by poly(I:C), LGP2 does not have the ability to enhance IFN induction by RIG-I, and instead acts as an inhibitor of RIG-I-dependent poly(I:C) signaling. Thus the level of LGP2 expression is a critical factor in determining the cellular sensitivity to induction by dsRNA, and this may be important for rapid activation of the IFN response at early times post-infection when the levels of inducer are low
    • …
    corecore