2,717 research outputs found

    Inositol-requiring 1/X-box-binding protein 1 is a regulatory hub that links endoplasmic reticulum homeostasis with innate immunity and metabolism

    Full text link
    Inositol-requiring 1 (IRE1)/X-box-binding protein 1 (XBP1)-mediated signalling represents the most conserved branch of the unfolded protein response. A series of recent studies reveal novel and potentially ancient roles for this pathway in the coordination of metabolic and immune responses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77427/1/189_ftp.pd

    Serum Dioxin-like Activity Is Associated with Reproductive Parameters in Young Men from the General Flemish Population

    Get PDF
    BACKGROUND: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and some related environmental contaminants are aryl hydrocarbon receptor (AhR) ligands that exert reproductive and developmental toxicity in laboratory animals. In humans, fertility-related effects are less documented. OBJECTIVE: The aim of this study was to investigate the relationship between dioxin-like biological activity in serum and parameters of reproductive status in men from the general population 5 months after a polychlorinated biphenyl and dioxin food-contamination episode in Belgium. DESIGN: In the framework of the cross-sectional Flemish Environment and Health Study (FLEHS), we recruited 101 men 20–40 years of age and evaluated sperm parameters, measured sex hormones, and gathered information on a number of lifestyle factors. In addition, we determined the AhR-mediated enzymatic response elicited by individual serum samples and expressed it as TCDD equivalent concentrations (CALUX-TEQs) using an established transactivation assay. RESULTS: Age (p = 0.04) and the frequency of fish (p = 0.02) and egg (p = 0.001) consumption were independent positive determinants of serum dioxin-like activity. After correcting for possible confounders, we found that a 2-fold increase in CALUX-TEQ > 16 pg/L was associated with a 7.1% and 6.8% (both p = 0.04) decrease in total and free testosterone, respectively. We also observed a more pronounced drop in semen volume of 16.0% (p = 0.03), whereas sperm concentration rose by 25.2% (p = 0.07). No relationship was found with total sperm count or sperm morphology. CONCLUSIONS: These data suggest an interaction of dioxin-like compounds with the secretory function of the seminal vesicles or prostate, possibly indirectly through an effect on testosterone secretion, at levels not affecting spermatogenesis as such

    Modulating attentional load affects numerosity estimation: evidence against a pre-attentive subitizing mechanism

    Get PDF
    Traditionally, the visual enumeration of a small number of items (1 to about 4), referred to as subitizing, has been thought of as a parallel and pre-attentive process and functionally different from the serial attentive enumeration of larger numerosities. We tested this hypothesis by employing a dual task paradigm that systematically manipulated the attentional resources available to an enumeration task. Enumeration accuracy for small numerosities was severely decreased as more attentional resources were taken away from the numerical task, challenging the traditionally held notion of subitizing as a pre-attentive, capacity-independent process. Judgement of larger numerosities was also affected by dual task conditions and attentional load. These results challenge the proposal that small numerosities are enumerated by a mechanism separate from large numerosities and support the idea of a single, attention-demanding enumeration mechanism

    Observation of discrete time-crystalline order in a disordered dipolar many-body system

    Full text link
    Understanding quantum dynamics away from equilibrium is an outstanding challenge in the modern physical sciences. It is well known that out-of-equilibrium systems can display a rich array of phenomena, ranging from self-organized synchronization to dynamical phase transitions. More recently, advances in the controlled manipulation of isolated many-body systems have enabled detailed studies of non-equilibrium phases in strongly interacting quantum matter. As a particularly striking example, the interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic "time-crystalline" phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of 106\sim 10^6 dipolar spin impurities in diamond at room-temperature. We observe long-lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.Comment: 6 + 3 pages, 4 figure

    On the nonequilibrium entropy of large and small systems

    Full text link
    Thermodynamics makes definite predictions about the thermal behavior of macroscopic systems in and out of equilibrium. Statistical mechanics aims to derive this behavior from the dynamics and statistics of the atoms and molecules making up these systems. A key element in this derivation is the large number of microscopic degrees of freedom of macroscopic systems. Therefore, the extension of thermodynamic concepts, such as entropy, to small (nano) systems raises many questions. Here we shall reexamine various definitions of entropy for nonequilibrium systems, large and small. These include thermodynamic (hydrodynamic), Boltzmann, and Gibbs-Shannon entropies. We shall argue that, despite its common use, the last is not an appropriate physical entropy for such systems, either isolated or in contact with thermal reservoirs: physical entropies should depend on the microstate of the system, not on a subjective probability distribution. To square this point of view with experimental results of Bechhoefer we shall argue that the Gibbs-Shannon entropy of a nano particle in a thermal fluid should be interpreted as the Boltzmann entropy of a dilute gas of Brownian particles in the fluid

    Nonlinear atom interferometer surpasses classical precision limit

    Full text link
    Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom interferometers, allowing for high-precision inertia measurements [1, 2]. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an interferometer is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest [3]. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the interferometer; this represents an alternative approach to the use of non-classical input states [4-8]. Extending quantum interferometry [9] to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the "one-axis-twisting" scheme [10] and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the interferometer and detect coherent spin squeezing with a squeezing factor of -8.2dB [11-15]. The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms [16]

    Exploring out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system

    Get PDF
    Understanding quantum thermalization through entanglement build-up in isolated quantum systems addresses fundamental questions on how unitary dynamics connects to statistical physics. Here, we study the spin dynamics and approach towards local thermal equilibrium of a macroscopic ensemble of S = 3 spins prepared in a pure coherent spin state, tilted compared to the magnetic field, under the effect of magnetic dipole-dipole interactions. The experiment uses a unit filled array of 104 chromium atoms in a three dimensional optical lattice, realizing the spin-3 XXZ Heisenberg model. The buildup of quantum correlation during the dynamics, especially as the angle approaches pi/2, is supported by comparison with an improved numerical quantum phase-space method and further confirmed by the observation that our isolated system thermalizes under its own dynamics, reaching a steady state consistent with the one extracted from a thermal ensemble with a temperature dictated from the system's energy. This indicates a scenario of quantum thermalization which is tied to the growth of entanglement entropy. Although direct experimental measurements of the Renyi entropy in our macroscopic system are unfeasible, the excellent agreement with the theory, which can compute this entropy, does indicate entanglement build-up.Comment: 12 figure

    A Standardised Procedure for Evaluating Creative Systems: Computational Creativity Evaluation Based on What it is to be Creative

    Get PDF
    Computational creativity is a flourishing research area, with a variety of creative systems being produced and developed. Creativity evaluation has not kept pace with system development with an evident lack of systematic evaluation of the creativity of these systems in the literature. This is partially due to difficulties in defining what it means for a computer to be creative; indeed, there is no consensus on this for human creativity, let alone its computational equivalent. This paper proposes a Standardised Procedure for Evaluating Creative Systems (SPECS). SPECS is a three-step process: stating what it means for a particular computational system to be creative, deriving and performing tests based on these statements. To assist this process, the paper offers a collection of key components of creativity, identified empirically from discussions of human and computational creativity. Using this approach, the SPECS methodology is demonstrated through a comparative case study evaluating computational creativity systems that improvise music

    Worker well-being and the importance of work: bridging the gap

    Get PDF
    The importance of worker well-being is widely-embraced both in theory and policy, but there are numerous perspectives on what it is, how to measure it, whether it needs improving and if so, how to improve it. We argue that a more complete approach to worker well-being needs to consider workers as full citizens who derive and experience both public and private benefits and costs from working. A broad framework on the meanings of work is used to expand the boundaries of worker well-being to reflect the broad importance of work in human life
    corecore