1,099 research outputs found

    On spin-1 massive particles coupled to a Chern-Simons field

    Get PDF
    We study spin one particles interacting through a Chern-Simons field. In the Born approximation, we calculate the two body scattering amplitude considering three possible ways to introduce the interaction: (a) a Proca like model minimally coupled to a Chern-Simons field, (b) the model obtained from (a) by replacing the Proca's mass by a Chern-Simons term and (c) a complex Maxwell-Chern-Simons model minimally coupled to a Chern-Simons field. In the low energy regime the results show similarities with the Aharonov-Bohm scattering for spin 1/2 particles. We discuss the one loop renormalization program for the Proca's model. In spite of the bad ultraviolet behavior of the matter field propagator, we show that, up to one loop the model is power counting renormalizable thanks to the Ward identities satisfied by the interaction vertices.Comment: 14 pages, 5 figures, revte

    The Casimir force and the quantum theory of lossy optical cavities

    Get PDF
    We present a new derivation of the Casimir force between two parallel plane mirrors at zero temperature. The two mirrors and the cavity they enclose are treated as quantum optical networks. They are in general lossy and characterized by frequency dependent reflection amplitudes. The additional fluctuations accompanying losses are deduced from expressions of the optical theorem. A general proof is given for the theorem relating the spectral density inside the cavity to the reflection amplitudes seen by the inner fields. This density determines the vacuum radiation pressure and, therefore, the Casimir force. The force is obtained as an integral over the real frequencies, including the contribution of evanescent waves besides that of ordinary waves, and, then, as an integral over imaginary frequencies. The demonstration relies only on general properties obeyed by real mirrors which also enforce general constraints for the variation of the Casimir force.Comment: 18 pages, 6 figures, minor amendment

    Low energy electron/recoil discrimination for directional Dark Matter detection

    Full text link
    Directional detection is a promising Dark Matter search strategy. Even though it could accommodate to a sizeable background contamination, electron/recoil discrimination remains a key and challenging issue as for direction-insensitive detectors. The measurement of the 3D track may be used to discriminate electrons from nuclear recoils. While a high rejection power is expected above 20 keV ionization, a dedicated data analysis is needed at low energy. After identifying discriminant observables, a multivariate analysis, namely a Boosted Decision Tree, is proposed, enabling an efficient event tagging for Dark Matter search. We show that it allows us to optimize rejection while keeping a rather high efficiency which is compulsory for rare event search.With respect to a sequential analysis, the rejection is about 20 times higher with a multivariate analysis, for the same Dark Matter exclusion limit.Comment: 20 pages, 20 figure

    Exchange Bias and Vertical Shift in CoFe2O4 nanoparticles

    Full text link
    Magnetic properties of core-shell cobalt ferrite nanoparticles 15 to 48nm prepared by a sol-gel route have been studied. It is shown that the coercivity follows non-monotonic size dependence varying as 1/d above the maximum (d is the particle size). Field cooled magnetization exhibited both horizontal (exchange bias) and vertical shifts. The exchange bias is understood as originating at the interface between a surface region with structural and spin disorder and a core ferrimagnetic region. The dependence of the exchange bias and vertical shifts on the particle sizes and cooling fields are found to have significant differences and the differences are explained in the light of recent results which suggest that both weakly and strongly pinned spins are present at the interface. It is suggested that the exchange bias is dominated by the weakly pinned spins while the vertical shift is affected by the strongly pinned ones.Comment: 2

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters

    Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for the production of neutral Higgs bosons decaying into tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into tautau pairs, and we then interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
    corecore