615 research outputs found

    On the Initial Singularity Problem in Two Dimensional Quantum Cosmology

    Get PDF
    The problem of how to put interactions in two-dimensional quantum gravity in the strong coupling regime is studied. It shows that the most general interaction consistent with this symmetry is a Liouville term that contain two parameters (α,β)(\alpha, \beta) satisfying the algebraic relation 2βα=22\beta - \alpha =2 in order to assure the closure of the diffeomorphism algebra. The model is classically soluble and it contains as general solution the temporal singularity. The theory is quantized and we show that the propagation amplitude fall tozero in τ=0\tau =0. This result shows that the classical singularities are smoothed by quantum effects and the bing-bang concept could be considered as a classical extrapolation instead of a physical concept.Comment: 9pp, Revtex 3.0. New references added. To appear in Phys. Rev.

    On the N=1 super Liouville four-point functions

    Full text link
    We construct the four-point correlation functions containing the top component of the supermultiplet in the Neveu-Schwarz sector of the N=1 SUSY Liouville field theory. The construction is based on the recursive representation for the NS conformal blocks. We test our results in the case where one of the fields is degenerate with a singular vector on the level 3/2. In this case, the correlation function satisfies a third-order ordinary differential equation, which we derive. We numerically verify the crossing symmetry relations for the constructed correlation functions in the nondegenerate case.Comment: 23 page

    Muon simulation codes MUSIC and MUSUN for underground physics

    Full text link
    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.Comment: 22 pages, 9 figures, 1 table, to be published in Computer Physics Communication

    On Paragrassmann Differential Calculus

    Get PDF
    Explicit general constructions of paragrassmann calculus with one and many variables are given. Relations of the paragrassmann calculus to quantum groups are outlined and possible physics applications are briefly discussed. This paper is the same as the original 9210075 except added Appendix and minor changes in Acknowledgements and References. IMPORTANT NOTE: This paper bears the same title as the Dubna preprint E5-92-392 but is NOT identical to it, containing new results, extended discussions, and references.Comment: 19p

    On Adler-Bell-Jackiw Anomaly in 3-brane Scenario

    Full text link
    We investigate the ABJ anomaly in the framework of an effective field theory for a 3-brane scenario and show that the contribution from induced gravity on the brane depends on both the topological structure of the bulk space-time and the embedding of the brane in the bulk. This fact implies the existence of a non-trivial vacuum structure of bulk quantum gravity. Furthermore, we argue that this axial gravitational anomaly may not necessarily be cancelled by choosing the matter content on the brane since it could be considered as a possible effect from bulk quantum gravity.Comment: 17 pages, RevTex, no figures. Some further misprints are correcte

    Anomalies, Anomalous U(1)'s and generalized Chern-Simons terms

    Get PDF
    A detailed analysis of anomalous U(1)'s and their effective couplings is performed both in field theory and string theory. It is motivated by the possible relevance of such couplings in particle physics, as well as a potential signal distinguishing string theory from other UV options. The most general anomaly related effective action is analyzed and parameterized. It contains Stuckelberg, axionic and Chern-Simons-like couplings. It is shown that such couplings are generically non-trivial in orientifold string vacua and are not in general fixed by anomalies. A similar analysis in quantum field theories provides similar couplings. The trilinear gauge boson couplings are also calculated and their phenomenological relevance is advocated. We do not find qualitative differences between string and field theory in this sector.Comment: 52 pages, 2 eps figures, LaTeX, feynmf & youngtab packages (v2 - Minor corrections, references added

    Polarization phenomena in open charm photoproduction processes

    Get PDF
    We analyze polarization effects in associative photoproduction of pseudoscalar (Dˉ\bar{D}) charmed mesons in exclusive processes γ+NYc+Dˉ\gamma+ N\to Y_c +\bar{D}, Yc=Λc+Y_c=\Lambda_c^+, Σc\Sigma_c. Circularly polarized photons induce nonzero polarization of the YcY_c-hyperon with xx- and zz-components (in the reaction plane) and non vanishing asymmetries Ax{\cal A}_x and Az{\cal A}_z for polarized nucleon target. These polarization observables can be predicted in model-independent way for exclusive Dˉ\bar{D}-production processes in collinear kinematics. The T-even YcY_c-polarization and asymmetries for non-collinear kinematics can be calculated in framework of an effective Lagrangian approach. The depolarization coefficients DabD_{ab}, characterizing the dependence of the YcY_c-polarization on the nucleon polarization are also calculated.Comment: 36 pages 13 figure

    Cosmic Neutrinos and the Energy Budget of Galactic and Extragalactic Cosmic Rays

    Get PDF
    Although kilometer-scale neutrino detectors such as IceCube are discovery instruments, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 10^{20} eV and 10^{13} eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. We will discuss how the cosmic ray connection sets the scale of the anticipated cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube.Comment: 13 pages, Latex2e, 3 postscript figures included. Talk presented at the International Workshop on Energy Budget in the High Energy Universe, Kashiwa, Japan, February 200

    The structure of radiatively induced Lorentz and CPT violation in QED at finite temperature

    Get PDF
    We obtain the induced Lorentz- and CPT-violating term in QED at finite temperature using imaginary-time formalism and dimensional regularization. Its form resembles a Chern-Simons-like structure, but, unexpectedly, it does not depend on the temporal component of the fixed bμb_\mu constant vector that is coupled to the axial current. Nevertheless Ward identities are respected and its coefficient vanishes at T=0, consistently with previous computations with the same regularization procedure, and it is a non-trivial function of temperature. We argue that at finite TT a Chern-Simons-like Lorentz- and CPT-violating term is generically present, the value of its coefficient being unambiguously determined up to a TT-independent constant, related to the zero-temperature renormalization conditions.Comment: 15 pages, Latex, 1 figure in eps-format (included

    Field Theoretical Quantum Effects on the Kerr Geometry

    Get PDF
    We study quantum aspects of the Einstein gravity with one time-like and one space-like Killing vector commuting with each other. The theory is formulated as a \coset nonlinear σ\sigma-model coupled to gravity. The quantum analysis of the nonlinear σ\sigma-model part, which includes all the dynamical degrees of freedom, can be carried out in a parallel way to ordinary nonlinear σ\sigma-models in spite of the existence of an unusual coupling. This means that we can investigate consistently the quantum properties of the Einstein gravity, though we are limited to the fluctuations depending only on two coordinates. We find the forms of the beta functions to all orders up to numerical coefficients. Finally we consider the quantum effects of the renormalization on the Kerr black hole as an example. It turns out that the asymptotically flat region remains intact and stable, while, in a certain approximation, it is shown that the inner geometry changes considerably however small the quantum effects may be.Comment: 16 pages, LaTeX. The hep-th number added on the cover, and minor typos correcte
    corecore