8 research outputs found

    Cyclodextrin-based multivalent glycodisplays: covalent and supramolecular conjugates to assess carbohydrate–protein interactions

    Full text link

    Glycopolymers as Antiadhesives of E. coil Strains Inducing Inflammatory Bowel Diseases

    No full text
    International audiencen-Heptyl alpha-D-mannose (HM) is a nanomolar antagonist of FimH, a virulence factor of E. coli. Herein we report on the construction of multivalent HM-based glycopolymers as potent antiadhesives of type 1 piliated E. coli. We investigate glycopolymer/FimH and glycopolymer/bacteria interactions and show that HM-based glycopolymers efficiently inhibit bacterial adhesion and disrupt established cell-bacteria interactions in vitro at very low concentration (0.1 mu M on a mannose unit basis). On a valency-corrected basis, HM-based glycopolymers are, respectively, 10(2) and 10(6) times more potent than HM and D-mannose for their capacity to disrupt the binding of adherent-invasive E. coli to T84 intestinal epithelial cells. Finally, we demonstrate that the antiadhesive capacities of HM-based glycopolymers are preserved ex vivo in the colonic loop of a transgenic mouse model of Crohns disease. All together, these results underline the promising scope of HM-based macromolecular ligands for the antiadhesive treatment of E. coli induced inflammatory bowel diseases

    Glycodendrimers: versatile tools for nanotechnology

    No full text
    Combining nanotechnology with glycobiology has triggered an exponential growth of research activities in the design of novel functional bionanomaterials (glyconanotechnology). More specifically, recent synthetic advances towards the tailored and versatile design of glycosylated nanoparticles namely glyconanoparticles, considered as synthetic mimetics of natural glycoconjugates, paved the way toward diverse biomedical applications. The accessibility of a wide variety of these structured nanosystems, in terms of shapes, sizes, and organized around stable nanoparticles have readily contributed to their development and applications in nanomedicine. In this context, glycosylated gold-nanoparticles (GNPs), glycosylated quantum dots (QDs), fullerenes, single-wall natotubes (SWNTs), and self-assembled glycononanoparticles using amphiphilic glycopolymers or glycodendrimers have received considerable attention to afford powerful imaging, therapeutic, and biodiagnostic devices. This review will provide an overview of the most recent syntheses and applications of glycodendrimers in glycoscience that have permitted to deepen our understanding of multivalent carbohydrate-protein interactions. Together with synthetic breast cancer vaccines, inhibitors of bacterial adhesions to host tissues including sensitive detection devices, these novel bionanomaterials are finding extensive relevance

    Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands

    No full text
    corecore