547 research outputs found
A revised Cepheid distance to NGC 4258 and a test of the distance scale
In a previous paper (Maoz et al. 1999), we reported a Hubble Space Telescope
(HST) Cepheid distance to the galaxy NGC 4258 obtained using the calibrations
and methods then standard for the Key Project on the Extragalactic Distance
Scale. Here, we reevaluate the Cepheid distance using the revised Key Project
procedures described in Freedman et al. (2001). These revisions alter the zero
points and slopes of the Cepheid Period-Luminosity (P-L) relations derived at
the Large Magellanic Cloud (LMC), the calibration of the HST WFPC2 camera, and
the treatment of metallicity differences. We also provide herein full
information on the Cepheids described in Maoz et al. 1999. Using the refined
Key Project techniques and calibrations, we determine the distance modulus of
NGC 4258 to be 29.47 +/- 0.09 mag (unique to this determination) +/- 0.15 mag
(systematic uncertainties in Key Project distances), corresponding to a metric
distance of 7.8 +/- 0.3 +/- 0.5 Mpc and 1.2 sigma from the maser distance of
7.2 +/- 0.5 Mpc. We also test the alternative Cepheid P-L relations of Feast
(1999), which yield more discrepant results. Additionally, we place weak limits
upon the distance to the LMC and upon the effect of metallicity in Cepheid
distance determinations.Comment: 26 pages in emulateapj5 format, including 6 figures and 5 tables.
Accepted for publication in the Astrophysical Journa
A Cepheid Distance to NGC 4603 in Centaurus
In an attempt to use Cepheid variables to determine the distance to the
Centaurus cluster, we have obtained images of NGC 4603 with the Hubble Space
Telescope on 9 epochs using WFPC2 and the F555W and F814W filters. This galaxy
has been suggested to lie within the ``Cen30'' portion of the cluster and is
the most distant object for which this method has been attempted. Previous
distance estimates for Cen30 have varied significantly and some have presented
disagreements with the peculiar velocity predicted from redshift surveys,
motivating this investigation. Using our observations, we have found 61
candidate Cepheid variable stars; however, a significant fraction of these
candidates are likely to be nonvariable stars whose magnitude measurement
errors happen to fit a Cepheid light curve of significant amplitude for some
choice of period and phase. Through a maximum likelihood technique, we
determine that we have observed 43 +/- 7 real Cepheids and that NGC 4603 has a
distance modulus of 32.61 +0.11/-0.10 (random, 1 sigma) +0.24/-0.25
(systematic, adding in quadrature), corresponding to a distance of 33.3 Mpc.
This is consistent with a number of recent estimates of the distance to NGC
4603 or Cen30 and implies a small peculiar velocity consistent with predictions
from the IRAS 1.2 Jy redshift survey if the galaxy lies in the foreground of
the cluster.Comment: Accepted for publication in the Astrophysical Journal. 17 pages with
17 embedded figures and 3 tables using emulateapj.sty. Additional figures and
images may be obtained from http://astro.berkeley.edu/~marc/n4603
TOI-1055 b: Neptunian planet characterised with HARPS, TESS, and CHEOPS
Context. TOI-1055 is a Sun-like star known to host a transiting Neptune-sized planet on a 17.5-day orbit (TOI-1055 b). Radial velocity (RV) analyses carried out by two independent groups using nearly the same set of HARPS spectra have provided measurements of planetary masses that differ by âŒ2Ï.
Aims. Our aim in this work is to solve the inconsistency in the published planetary masses by significantly extending the set of HARPS RV measurements and employing a new analysis tool that is able to account and correct for stellar activity. Our further aim was to improve the precision on measurements of the planetary radius by observing two transits of the planet with the CHEOPS space telescope.
Methods. We fit a skew normal function to each cross correlation function extracted from the HARPS spectra to obtain RV measurements and hyperparameters to be used for the detrending. We evaluated the correlation changes of the hyperparameters along the RV time series using the breakpoint technique. We performed a joint photometric and RV analysis using a Markov chain Monte Carlo scheme to simultaneously detrend the light curves and the RV time series.
Results. We firmly detected the Keplerian signal of TOI-1055 b, deriving a planetary mass of Mbâ
=â
20.4â2.5+2.6â
Mâ (âŒ12%). This value is in agreement with one of the two estimates in the literature, but it is significantly more precise. Thanks to the TESS transit light curves combined with exquisite CHEOPS photometry, we also derived a planetary radius of Rbâ
=â
3.490â0.064+0.070â
Râ (âŒ1.9%). Our mass and radius measurements imply a mean density of Ïbâ
=â
2.65â0.35+0.37 g cmâ3 (âŒ14%). We further inferred the planetary structure and found that TOI-1055 b is very likely to host a substantial gas envelope with a mass of 0.41â0.20+0.34â
Mâ and a thickness of 1.05â0.29+0.30â
Râ.
Conclusions. Our RV extraction combined with the breakpoint technique has played a key role in the optimal removal of stellar activity from the HARPS time series, enabling us to solve the tension in the planetary mass values published so far for TOI-1055 b
An extrasolar planetary system with three Neptune-mass planets
Over the past two years, the search for low-mass extrasolar planets has led
to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around
Sun-like stars. These planets have masses 5-20 times larger than the Earth and
are mainly found on close-in orbits with periods of 2-15 days. Here we report a
system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days,
orbiting the nearby star HD 69830. This star was already known to show an
infrared excess possibly caused by an asteroid belt within 1 AU (the Sun-Earth
distance). Simulations show that the system is in a dynamically stable
configuration. Theoretical calculations favour a mainly rocky composition for
both inner planets, while the outer planet probably has a significant gaseous
envelope surrounding its rocky/icy core; the outer planet orbits within the
habitable zone of this star.Comment: 17 pages, 3 figures, preprint of the paper published in Nature on May
18, 200
The unstable CO2 feedback cycle on ocean planets
Ocean planets are volatile-rich planets, not present in our Solar system, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilizing carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilizing effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planet
On the stability of very massive primordial stars
The stability of metal-free very massive stars ( = 0; M = 120 - 500
\msol) is analyzed and compared with metal-enriched stars. Such zero-metal
stars are unstable to nuclear-powered radial pulsations on the main sequence,
but the growth time scale for these instabilities is much longer than for their
metal-rich counterparts. Since they stabilize quickly after evolving off the
ZAMS, the pulsation may not have sufficient time to drive appreciable mass loss
in Z = 0 stars. For reasonable assumptions regarding the efficiency of
converting pulsational energy into mass loss, we find that, even for the larger
masses considered, the star may die without losing a large fraction of its
mass. We find a transition between the - and -mechanisms for
pulsational instability at Z\sim 2\E{-4} - 2\E{-3}. For the most metal-rich
stars, the -mechanism yields much shorter -folding times, indicating
the presence of a strong instability. We thus stress the fundamental difference
of the stability and late stages of evolution between very massive stars born
in the early universe and those that might be born today.Comment: 7 pages, 5 figures. Minor changes, more results given in Table 1,
accepted for publication in Ap
Classical Cepheid Pulsation Models. III. The Predictable Scenario
Within the current uncertainties in the treatment of the coupling between
pulsation and convection, limiting amplitude, nonlinear, convective models
appear the only viable approach for providing theoretical predictions about the
intrinsic properties of radial pulsators. In this paper we present the results
of a comprehensive set of Cepheid models computed within such theoretical
framework for selected assumptions on their original chemical composition.Comment: 24 pages, 1 latex file containing 6 tables, 10 postscript figures,
accepted for publication on Ap
Intermediate-mass star models with different helium and metal contents
We present a comprehensive theoretical investigation of the evolutionary
properties of intermediate-mass stars. The evolutionary sequences were computed
from the Zero Age Main Sequence up to the central He exhaustion and often up to
the phases which precede the carbon ignition or to the reignition of the
H-shell which marks the beginning of the thermal pulse phase. The evolutionary
tracks were constructed by adopting a wide range of stellar masses
(\msun) and chemical compositions. In order to account for
current uncertainties on the He to heavy elements enrichment ratio, the stellar
models were computed by adopting at Z=0.02 two different He contents (Y=0.27,
0.289) and at Z=0.04 three different He contents (Y=0.29, 0.34, and 0.37). To
supply a homogeneous evolutionary scenario which accounts for young Magellanic
stellar systems the calculations were also extended toward lower metallicities
(Z=0.004, Z=0.01), by adopting different initial He abundances. We evaluated
for both solar (Z=0.02) and super-metal-rich (SMR, Z=0.04) models the
transition mass between the stellar structures igniting carbon and
those which develop a full electron degeneracy inside the CO core. This
evolutionary scenario allows us to investigate in detail the properties of
classical Cepheids. In particular, we find that the range of stellar masses
which perform the blue loop during the central He-burning phase narrows when
moving toward metal-rich and SMR structures.Comment: 25 pages, 10 figures (4 postscript + 6 gif files), 7 postscript
tables. accepted for publication on ApJ (November 2000
Planet gaps in the dust layer of 3D protoplanetary disks. II. Observability with ALMA
[Abridged] Aims: We provide predictions for ALMA observations of planet gaps
that account for the specific spatial distribution of dust that results from
consistent gas+dust dynamics. Methods: In a previous work, we ran full 3D,
two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet
embedded in a gas+dust T Tauri disk for different planet masses and grain
sizes. In this work, the resulting dust distributions are passed to the Monte
Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA
wavebands. We then use the ALMA simulator to produce images that include
thermal and phase noise for a range of angular resolutions, wavelengths, and
integration times, as well as for different inclinations, declinations and
distances. We also produce images which assume that gas and dust are well mixed
with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all
made under this hypothesis. Results: Our findings clearly demonstrate the
importance of correctly incorporating the dust dynamics. We show that the gap
carved by a 1 M_J planet orbiting at 40 AU is visible with a much higher
contrast than the well-mixed assumption would predict. In the case of a 5 M_J
planet, we clearly see a deficit in dust emission in the inner disk, and point
out the risk of interpreting the resulting image as that of a transition disk
with an inner hole if observed in unfavorable conditions. Planet signatures are
fainter in more distant disks but declination or inclination to the
line-of-sight have little effect on ALMA's ability to resolve the gaps.
Conclusions: ALMA has the potential to see signposts of planets in disks of
nearby star-forming regions. We present optimized observing parameters to
detect them in the case of 1 and 5 M_J planets on 40 AU orbits.Comment: 15 pages, 21 figures, accepted by Astronomy & Astrophysics, a higher
resolution version of the paper is available at
http://www-obs.univ-lyon1.fr/labo/perso/jean-francois.gonzalez/Papers/Gaps_ALMA.pd
Exoplanet albedo spectra and colors as a function of planet phase, separation, and metallicity
First generation optical coronagraphic telescopes will obtain images of cool
gas and ice giant exoplanets around nearby stars. The albedo spectra of
exoplanets at planet-star separations larger than about 1 AU are dominated by
reflected light to beyond 1 {\mu}m and are punctuated by molecular absorption
features. We consider how exoplanet albedo spectra and colors vary as a
function of planet-star separation, metallicity, mass, and observed phase for
Jupiter and Neptune analogs from 0.35 to 1 {\mu}m. We model Jupiter analogs
with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with
10x and 30x. Our model planets orbit a solar analog parent star at separations
of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to
compute temperature-pressure profiles. The giant exoplanets are cloud-free at
0.8 AU, have H2O clouds at 2 AU, and have both NH3 and H2O clouds at 5 AU and
10 AU. For each model planet we compute moderate resolution spectra as a
function of phase. The presence and structure of clouds strongly influence the
spectra. Since the planet images will be unresolved, their phase may not be
obvious, and multiple observations will be needed to discriminate between the
effects of planet-star separation, metallicity, and phase. We consider the
range of these combined effects on spectra and colors. For example, we find
that the spectral influence of clouds depends more on planet-star separation
and hence temperature than metallicity, and it is easier to discriminate
between cloudy 1x and 3x Jupiters than between 10x and 30x Neptunes. In
addition to alkalis and methane, our Jupiter models show H2O absorption
features near 0.94 {\mu}m. We also predict that giant exoplanets receiving
greater insolation than Jupiter will exhibit higher equator to pole temperature
gradients than are found on Jupiter and thus may have differing atmospheric
dynamics.Comment: 62 pages, 19 figures, 6 tables Accepted for publication in Ap
- âŠ