1,077 research outputs found

    Intrinsic symmetry groups of links with 8 and fewer crossings

    Full text link
    We present an elementary derivation of the "intrinsic" symmetry groups for knots and links of 8 or fewer crossings. The standard symmetry group for a link is the mapping class group \MCG(S^3,L) or \Sym(L) of the pair (S3,L)(S^3,L). Elements in this symmetry group can (and often do) fix the link and act nontrivially only on its complement. We ignore such elements and focus on the "intrinsic" symmetry group of a link, defined to be the image ÎŁ(L)\Sigma(L) of the natural homomorphism \MCG(S^3,L) \rightarrow \MCG(S^3) \cross \MCG(L). This different symmetry group, first defined by Whitten in 1969, records directly whether LL is isotopic to a link Lâ€ČL' obtained from LL by permuting components or reversing orientations. For hyperbolic links both \Sym(L) and ÎŁ(L)\Sigma(L) can be obtained using the output of \texttt{SnapPea}, but this proof does not give any hints about how to actually construct isotopies realizing ÎŁ(L)\Sigma(L). We show that standard invariants are enough to rule out all the isotopies outside ÎŁ(L)\Sigma(L) for all links except 7627^2_6, 81328^2_{13} and 8538^3_5 where an additional construction is needed to use the Jones polynomial to rule out "component exchange" symmetries. On the other hand, we present explicit isotopies starting with the positions in Cerf's table of oriented links which generate ÎŁ(L)\Sigma(L) for each link in our table. Our approach gives a constructive proof of the ÎŁ(L)\Sigma(L) groups.Comment: 72 pages, 66 figures. This version expands the original introduction into three sections; other minor changes made for improved readabilit

    A two-nuclease pathway involving RNase H1 is required for primer removal at human mitochondrial OriL.

    Get PDF
    The role of Ribonuclease H1 (RNase H1) during primer removal and ligation at the mitochondrial origin of light-strand DNA synthesis (OriL) is a key, yet poorly understood, step in mitochondrial DNA maintenance. Here, we reconstitute the replication cycle of L-strand synthesis in vitro using recombinant mitochondrial proteins and model OriL substrates. The process begins with initiation of DNA replication at OriL and ends with primer removal and ligation. We find that RNase H1 partially removes the primer, leaving behind the last one to three ribonucleotides. These 5'-end ribonucleotides disturb ligation, a conclusion which is supported by analysis of RNase H1-deficient patient cells. A second nuclease is therefore required to remove the last ribonucleotides and we demonstrate that Flap endonuclease 1 (FEN1) can execute this function in vitro. Removal of RNA primers at OriL thus depends on a two-nuclease model, which in addition to RNase H1 requires FEN1 or a FEN1-like activity. These findings define the role of RNase H1 at OriL and help to explain the pathogenic consequences of disease causing mutations in RNase H1

    The role of social networks in students’ learning experiences

    No full text
    The aim of this research is to investigate the role of social networks in computer science education. The Internet shows great potential for enhancing collaboration between people and the role of social software has become increasingly relevant in recent years. This research focuses on analyzing the role that social networks play in students’ learning experiences. The construction of students’ social networks, the evolution of these networks, and their effects on the students’ learning experience in a university environment are examined

    A (Running) Bolt for New Reasons

    Full text link
    We construct a four-parameter family of smooth, horizonless, stationary solutions of ungauged five-dimensional supergravity by using the four-dimensional Euclidean Schwarzschild metric as a base space and "magnetizing" its bolt. We then generalize this to a five-parameter family based upon the Euclidean Kerr-Taub-Bolt. These "running Bolt" solutions are necessarily non-static. They also have the same charges and mass as a non-extremal black hole with a classically-large horizon area. Moreover, in a certain regime their mass can decrease as their charges increase. The existence of these solutions supports the idea that the singularities of non-extremal black holes are resolved by low-mass modes that correct the singularity of the classical black hole solution on large (horizon-sized) scales.Comment: 25 pages, 3 figures, LaTeX; v2: minor changes, references adde

    Multi-Center non-BPS Black Holes - the Solution

    Full text link
    We construct multi-center, non-supersymmetric four-dimensional solutions describing a rotating anti-D6-D2 black hole and an arbitrary number of D4-D2-D0 black holes in a line. These solutions correspond to an arbitrary number of extremal non-BPS black rings in a Taub-NUT space with a rotating three-charge black hole in the middle. The positions of the centers are determined by solving a set of "bubble" or "integrability" equations that contain cubic polynomials of the inter-center distance, and that allow scaling solutions even when the total four-dimensional angular momentum of the scaling centers is non-zero.Comment: 16 pages, LaTe

    Assessing Islamic religious education curriculum in Flemish public secondary schools

    Get PDF
    Islamic tradition promotes a holistic approach of personality development in which, we argue, three educational concepts take the centre stage: tarbiyah, ta’leem and ta’deeb. Looking through the lens of these concepts, we analyse two Islamic religious education (IRE) curricula: the 2001 and 2012 curricula for Flemish public secondary education provided by the Representative Body for IRE. We conduct a systematic thematic document analysis of the 2001 and 2012 curricula to map curricula elements that potentially contribute to Islamic personality development through IRE classes. Crucially, this article seeks to investigate whether the 2001 and 2012 curricula for Flemish public secondary education are in line with these central IRE concepts. We observe that the 2012 curriculum does contain relevant anchor points to work on tarbiyah, ta’leem and ta’deeb and to strengthen an Islamic personality in Muslim pupils. Hence, we argue that there is an urgent need for a new, adequate and sufficiently comprehensive IRE curriculum for Flemish public secondary education, developed by an expert committee—which should include Belgian-educated educational experts—in order to meet the expectations of all the stakeholders. Since in our view, this is the first step for a qualitative update of Flemish IRE. Further reflections on both curricula and recommendations for a new IRE curriculum are outlined in the discussion and conclusion sections

    Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal VO2 beams

    Full text link
    Spatial phase inhomogeneity at the nano- to microscale is widely observed in strongly-correlated electron materials. The underlying mechanism and possibility of artificially controlling the phase inhomogeneity are still open questions of critical importance for both the phase transition physics and device applications. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO2. By continuously tuning strain over a wide range in single-crystal VO2 micro- and nanobeams, here we demonstrate the nucleation and manipulation of one-dimensionally ordered metal-insulator domain arrays along the beams. Mott transition is achieved in these beams at room temperature by active control of strain. The ability to engineer phase inhomogeneity with strain lends insight into correlated electron materials in general, and opens opportunities for designing and controlling the phase inhomogeneity of correlated electron materials for micro- and nanoscale device applications.Comment: 14 pages, 4 figures, with supplementary informatio

    The Nuts and Bolts of Einstein-Maxwell Solutions

    Get PDF
    We find new non-supersymmetric solutions of five-dimensional ungauged supergravity coupled to two vector multiplets. The solutions are regular, horizonless and have the same asymptotic charges as non-extremal charged black holes. An essential ingredient in our construction is a four-dimensional Euclidean base which is a solution to Einstein-Maxwell equations. We construct stationary solutions based on the Euclidean dyonic Reissner-Nordstrom black hole as well as a six-parameter family with a dyonic Kerr-Newman-NUT base. These solutions can be viewed as compactifications of eleven-dimensional supergravity on a six-torus and we discuss their brane interpretation.Comment: 29 pages, 3 figure

    Non-extremal Black Hole Microstates: Fuzzballs of Fire or Fuzzballs of Fuzz ?

    Full text link
    We construct the first family of microstate geometries of near-extremal black holes, by placing metastable supertubes inside certain scaling supersymmetric smooth microstate geometries. These fuzzballs differ from the classical black hole solution macroscopically at the horizon scale, and for certain probes the fluctuations between various fuzzballs will be visible as thermal noise far away from the horizon. We discuss whether these fuzzballs appear to infalling observers as fuzzballs of fuzz or as fuzzballs of fire. The existence of these solutions suggests that the singularity of non-extremal black holes is resolved all the way to the outer horizon and this "backwards in time" singularity resolution can shed light on the resolution of spacelike cosmological singularities.Comment: 34 pages, 10 figure

    Supergravity Solutions from Floating Branes

    Get PDF
    We solve the equations of motion of five-dimensional ungauged supergravity coupled to three U(1) gauge fields using a floating-brane Ansatz in which the electric potentials are directly related to the gravitational warp factors. We find a new class of non-BPS solutions, that can be obtained linearly starting from an Euclidean four-dimensional Einstein-Maxwell base. This class - the largest known so far - reduces to the BPS and almost-BPS solutions in certain limits. We solve the equations explicitly when the base space is given by the Israel-Wilson metric, and obtain solutions describing non-BPS D6 and anti-D6 branes kept in equilibrium by flux. We also examine the action of spectral flow on solutions with an Israel-Wilson base and show that it relates these solutions to almost-BPS solutions with a Gibbons-Hawking base.Comment: 24 pages, 1 figur
    • 

    corecore