15 research outputs found

    Generation and characterization of human induced pluripotent stem cell line METUi001-A from a 25-year-old male patient with relapsing-remitting multiple sclerosis

    Get PDF
    © 2021Multiple sclerosis is a chronic disease characterized by inflammation, demyelination, and axonal damage in the central nervous system. Here, we established an induced pluripotent stem cell (iPSC) line METUi001-A from the peripheral blood mononuclear cells of a 25-year-old male individual with clinically diagnosed Relapsing-Remitting Multiple Sclerosis (RRMS) using the integration-free Sendai reprogramming method. We demonstrated that the iPSCs are free of exogenous Sendai reprogramming vectors, have a normal male karyotype, express pluripotency markers, and differentiate into the three germ layers. The iPSC line can serve as a valuable resource to generate cellular model systems to investigate molecular mechanisms underlying RRMS

    Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-catenin mutations that constitutively activate the canonical Wnt signaling have been observed in a subset of hepatocellular carcinomas (HCCs). These mutations are associated with chromosomal stability, low histological grade, low tumor invasion and better patient survival. We hypothesized that canonical Wnt signaling is selectively activated in well-differentiated, but repressed in poorly differentiated HCCs. To this aim, we characterized differentiation status of HCC cell lines and compared their expression status of Wnt pathway genes, and explored their activity of canonical Wnt signaling.</p> <p>Results</p> <p>We classified human HCC cell lines into "well-differentiated" and "poorly differentiated" subtypes, based on the expression of hepatocyte lineage, epithelial and mesenchymal markers. Poorly differentiated cell lines lost epithelial and hepatocyte lineage markers, and overexpressed mesenchymal markers. Also, they were highly motile and invasive. We compared the expression of 45 Wnt pathway genes between two subtypes. TCF1 and TCF4 factors, and LRP5 and LRP6 co-receptors were ubiquitously expressed. Likewise, six Frizzled receptors, and canonical Wnt3 ligand were expressed in both subtypes. In contrast, canonical ligand Wnt8b and noncanonical ligands Wnt4, Wnt5a, Wnt5b and Wnt7b were expressed selectively in well- and poorly differentiated cell lines, respectively. Canonical Wnt signaling activity, as tested by a TCF reporter assay was detected in 80% of well-differentiated, contrary to 14% of poorly differentiated cell lines. TCF activity generated by ectopic mutant β-catenin was weak in poorly differentiated SNU449 cell line, suggesting a repressive mechanism. We tested Wnt5a as a candidate antagonist. It strongly inhibited canonical Wnt signaling that is activated by mutant β-catenin in HCC cell lines.</p> <p>Conclusion</p> <p>Differential expression of Wnt ligands in HCC cells is associated with selective activation of canonical Wnt signaling in well-differentiated, and its repression in poorly differentiated cell lines. One potential mechanism of repression involved Wnt5a, acting as an antagonist of canonical Wnt signaling. Our observations support the hypothesis that Wnt pathway is selectively activated or repressed depending on differentiation status of HCC cells. We propose that canonical and noncanonical Wnt pathways have complementary roles in HCC, where the canonical signaling contributes to tumor initiation, and noncanonical signaling to tumor progression.</p

    Graphene Oxide Nanosheets Interact and Interfere with SARS‐CoV‐2 Surface Proteins and Cell Receptors to Inhibit Infectivity

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-03-13, pub-electronic 2021-05-14Article version: VoRPublication status: PublishedFunder: University of PaduaFunder: UKRI EPSRC; Grant(s): EP/P00119X/1Funder: Turkish Academy of Sciences (TUBA)Funder: Scientific and Technology Council of Turkey; Grant(s): 18AG020Funder: Türkiye Bilimler Akademisi; Id: http://dx.doi.org/10.13039/501100004412; Grant(s): GEBIP 2018Funder: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu; Id: http://dx.doi.org/10.13039/501100004410; Grant(s): 18AG020Funder: Engineering and Physical Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000266; Grant(s): EP/P00119X/1Abstract: Nanotechnology can offer a number of options against coronavirus disease 2019 (COVID‐19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for interaction with SARS‐CoV‐2. Molecular docking analyses of GO sheets on interaction with three different structures: SARS‐CoV‐2 viral spike (open state – 6VYB or closed state – 6VXX), ACE2 (1R42), and the ACE2‐bound spike complex (6M0J) are performed. GO shows high affinity for the surface of all three structures (6M0J, 6VYB and 6VXX). When binding affinities and involved bonding types are compared, GO interacts more strongly with the spike or ACE2, compared to 6M0J. Infection experiments using infectious viral particles from four different clades as classified by Global Initiative on Sharing all Influenza Data (GISAID), are performed for validation purposes. Thin, biological‐grade GO nanoscale (few hundred nanometers in lateral dimension) sheets are able to significantly reduce copies for three different viral clades. This data has demonstrated that GO sheets have the capacity to interact with SARS‐CoV‐2 surface components and disrupt infectivity even in the presence of any mutations on the viral spike. GO nanosheets are proposed to be further explored as a nanoscale platform for development of antiviral strategies against COVID‐19

    Expression of bcl-2

    No full text

    Generation and characterization of human induced pluripotent stem cell line METUi001-A from a 25-year-old male patient with relapsing-remitting multiple sclerosis

    Get PDF
    © 2021Multiple sclerosis is a chronic disease characterized by inflammation, demyelination, and axonal damage in the central nervous system. Here, we established an induced pluripotent stem cell (iPSC) line METUi001-A from the peripheral blood mononuclear cells of a 25-year-old male individual with clinically diagnosed Relapsing-Remitting Multiple Sclerosis (RRMS) using the integration-free Sendai reprogramming method. We demonstrated that the iPSCs are free of exogenous Sendai reprogramming vectors, have a normal male karyotype, express pluripotency markers, and differentiate into the three germ layers. The iPSC line can serve as a valuable resource to generate cellular model systems to investigate molecular mechanisms underlying RRMS

    Determination Of The Presence Of Diphtheria Toxin In The Myocardial Tissue Of Rabbits And A Female Subject By Using An Immunofluorescent Antibody Method

    No full text
    Background Clinical diagnosis of diphtheria is often difficult, in particular in countries where the disease is rarely observed, such as Turkey. In 2011, after 12 years of no recorded diphtheria cases in Turkey, a 34-year-old woman was diagnosed with diphtheria; she later died of myocarditis. In this study, we aimed to demonstrate the diagnostic potential of an immunofluorescent antibody method to determine the presence of diphtheria toxin (DT) in the myocardial cells of DT-injected rabbits and the female subject. Methods We randomly divided rabbits into two groups: a control group and a DT-injected group. Diphtheria intoxication was simulated in the rabbits by intravenous injection of DT. The myocardium of the rabbits and the female subject were harvested for histopathologic and immunofluorescence examination. A mouse monoclonal anti-DT antibody was used for the immunofluorescent antibody method. Results The presence of DT in the myocardial cells of both the rabbits and the female subject was visualized using the immunofluorescent method. Conclusions Laboratory diagnosis of diphtheria is challenging because of non-toxigenic C. diphtheriae strains and/or the dysfunction of DT. However, visualizing the presence of DT in the myocardial tissue may act as an indicator of biologically active DT. We validated that an immunofluorescent method, which utilizes a monoclonal anti-DT (A-subunit specific) antibody, is a useful diagnostic tool to determine the presence of DT in the myocardium of rabbits and human.PubMe

    Ribavirin shows antiviral activity against SARS-CoV-2 and downregulates the activity of TMPRSS2 and the expression of ACE2 In Vitro

    No full text
    Ribavirin is a guanosine analog and has a broad-spectrum antiviral activity against RNA viruses. Based on this, we aimed to show the anti-SARS-CoV-2 activity of this drug molecule via in vitro, in silico and molecular techniques. Ribavirin showed antiviral activity in Vero E6 cells following SARS-CoV-2 infection whereas the drug itself did not show any toxic effect over the concentration range tested. In silico analysis suggested that Ribarivin has a broad-spectrum impact on SARS-CoV-2, acting at different viral proteins. According to the detailed molecular techniques, Ribavirin was shown to decrease the expression of TMPRSS2 both at mRNA and protein levels 48 hours after treatment. The suppressive effect of Ribavirin in ACE2 protein expression was shown to be dependent on cell types. Finally, proteolytic activity assays showed that Ribavirin also showed an inhibitory effect on TMPRSS2 enzyme. Based on these results, we hypothesized that Ribavirin may inhibit the expression of TMPRSS2 by modulating the formation of inhibitory G-quadruplex structures at the TMPRSS2 promoter. As a conclusion, Ribavirin is a potential antiviral drug for the treatment against SARS-CoV-2, and it interferes with the effect of TMPRSS2 and ACE2 expression.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore