66 research outputs found

    Temperature Evolution in Nanoscale Carbon-Based Memory Devices Due to Local Joule Heating

    Get PDF
    © 2002-2012 IEEE. Tetrahedral amorphous (ta-C) carbon-based memory devices have recently gained traction due to their good scalability and promising properties like nanosecond switching speeds. However, cycling endurance is still a key challenge. In this paper, we present a model that takes local fluctuations in sp 2 and sp 3 content into account when describing the conductivity of ta-C memory devices. We present a detailed study of the conductivity of ta-C memory devices ranging from ohmic behavior at low electric fields to dielectric breakdown. The study consists of pulsed switching experiments and device-scale simulations, which allows us for the first time to provide insights into the local temperature distribution at the onset of memory switching

    AGTR2 and sprint/power performance: a case-control replication study for rs11091046 polymorphism in two ethnicities

    Get PDF
    We aimed to replicate, in a specific athletic event cohort (only track and field) and in two different ethnicities (Japanese and East European, i.e. Russian and Polish), original findings showing the association of the angiotensin-II receptor type-2 gene (AGTR2) rs11091046 A>C polymorphism with athlete status. We compared genotypic frequencies of the AGTR2 rs11091046 polymorphism among 282 track and field sprint/ power athletes (200 men and 82 women), including several national record holders and Olympic medallists (214 Japanese, 68 Russian and Polish), and 2024 control subjects (842 men and 1182 women) (804 Japanese, 1220 Russian and Polish). In men, a meta-analysis from the two combined cohorts showed a significantly higher frequency of the C allele in athletes than in controls (odds ratio: 1.62, P=0.008, heterogeneity index I 2 =0%). With regard to respective cohorts, C allele frequency was higher in Japanese male athletes than in controls (67.7% vs. 55.9%, P=0.022), but not in Russian/Polish male athletes (61.9% vs. 51.0%, P=0.172). In women, no significant results were obtained by meta-analysis for the two cohorts combination (P=0.850). The AC genotype frequency was significantly higher in Russian/Polish women athletes than in controls (69.2% vs. 42.1%, P=0.022), but not in Japanese women athletes (P=0.226). Our results, in contrast to previous findings, suggested by meta-analysis that the C allele of the AGTR2 rs11091046 polymorphism is associated with sprint/ power track and field athlete status in men, but not in women

    Measurement of local optomechanical properties of a direct bandgap 2D semiconductor

    Get PDF
    Strain engineering is a powerful tool for tuning physical properties of 2D materials, including monolayer transition metal dichalcogenides (TMDs)—direct bandgap semiconductors with strong excitonic response. Deformation of TMD monolayers allows inducing modulation of exciton potential and, ultimately, creating single-photon emitters at desired positions. The performance of such systems is critically dependent on the exciton energy profile and maximum possible exciton energy shift that can be achieved under local impact until the monolayer rupture. Here, we study the evolution of two-dimensional exciton energy profile induced in a MoSe2 monolayer under incremental local indentation until the rupture. We controllably stress the flake with an atomic force microscope tip and perform in situ spatiospectral mapping of the excitonic photoluminescence in the vicinity of the indentation point. In order to accurately fit the experimental data, we combine numerical simulations with a simple model of strain-induced modification of the local excitonic response and carefully account for the optical resolution of the setup. This allows us to extract deformation, strain, and exciton energy profiles obtained at each indentation depth. The maximum exciton energy shift induced by local deformation achieved at 300 nm indentation reaches the value of 36.5 meV and corresponds to 1.15% strain of the monolayer. Our approach is a powerful tool for in situ characterization of local optomechanical properties of 2D direct bandgap semiconductors with strong excitonic response

    No evidence of a common DNA variant profile specific to world class endurance athletes

    Get PDF
    There are strong genetic components to cardiorespiratory fitness and its response to exercise training. It would be useful to understand the differences in the genomic profile of highly trained endurance athletes of world class caliber and sedentary controls. An international consortium (GAMES) was established in order to compare elite endurance athletes and ethnicity-matched controls in a case-control study design. Genome-wide association studies were undertaken on two cohorts of elite endurance athletes and controls (GENATHLETE and Japanese endurance runners), from which a panel of 45 promising markers was identified. These markers were tested for replication in seven additional cohorts of endurance athletes and controls: from Australia, Ethiopia, Japan, Kenya, Poland, Russia and Spain. The study is based on a total of 1520 endurance athletes (835 who took part in endurance events in World Championships and/or Olympic Games) and 2760 controls. We hypothesized that world-class athletes are likely to be characterized by an even higher concentration of endurance performance alleles and we performed separate analyses on this subsample. The meta-analysis of all available studies revealed one statistically significant marker (rs558129 at GALNTL6 locus, p = 0.0002), even after correcting for multiple testing. As shown by the low heterogeneity index (I2 = 0), all eight cohorts showed the same direction of association with rs558129, even though p-values varied across the individual studies. In summary, this study did not identify a panel of genomic variants common to these elite endurance athlete groups. Since GAMES was underpowered to identify alleles with small effect sizes, some of the suggestive leads identified should be explored in expanded comparisons of world-class endurance athletes and sedentary controls and in tightly controlled exercise training studies. Such studies have the potential to illuminate the biology not only of world class endurance performance but also of compromised cardiac functions and cardiometabolic diseases

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Rad51 Polymerization Reveals a New Chromatin Remodeling Mechanism

    Get PDF
    Rad51 protein is a well known protagonist of homologous recombination in eukaryotic cells. Rad51 polymerization on single-stranded DNA and its role in presynaptic filament formation have been extensively documented. Rad51 polymerizes also on double-stranded DNA but the significance of this filament formation remains unclear. We explored the behavior of Saccharomyces cerevisiae Rad51 on dsDNA and the influence of nucleosomes on Rad51 polymerization mechanism to investigate its putative role in chromatin accessibility to recombination machinery. We combined biochemical approaches, transmission electron microscopy (TEM) and atomic force microscopy (AFM) for analysis of the effects of the Rad51 filament on chromatinized templates. Quantitative analyses clearly demonstrated the occurrence of chromatin remodeling during nucleoprotein filament formation. During Rad51 polymerization, recombinase proteins moved all the nucleosomal arrays in front of the progressing filament. This polymerization process had a powerful remodeling effect, as Rad51 destabilized the nucleosomes along considerable stretches of DNA. Similar behavior was observed with RecA. Thus, recombinase polymerization is a powerful mechanism of chromatin remodeling. These remarkable features open up new possibilities for understanding DNA recombination and reveal new types of ATP-dependent chromatin dynamics

    Genome-wide association study identifies three novel genetic markers associated with elite endurance performance

    Get PDF
    To investigate the association between multiple single-nucleotide polymorphisms (SNPs), aerobic performance and elite endurance athlete status in Russians. By using GWAS approach, we examined the association between 1,140,419 SNPs and relative maximal oxygen consumption rate (VO2max) in 80 international-level Russian endurance athletes (46 males and 34 females). To validate obtained results, we further performed case-control studies by comparing the frequencies of the most significant SNPs (with P<10-5-10-8) between 218 endurance athletes and opposite cohorts (192 Russian controls, 1367 European controls, and 230 Russian power athletes). Initially, six 'endurance alleles' were identified showing discrete associations with •VO2maxboth in males and females. Next, case-control studies resulted in remaining three SNPs (NFIA-AS2 rs1572312, TSHR rs7144481, RBFOX1 rs7191721) associated with endurance athlete status. The C allele of the most significant SNP, rs1572312, was associated with high values of •VO2max(males: P=0.0051; females: P=0.0005). Furthermore, the frequency of the rs1572312 C allele was significantly higher in elite endurance athletes (95.5%) in comparison with non-elite endurance athletes (89.8%, P=0.0257), Russian (88.8%, P=0.007) and European (90.6%, P=0.0197) controls and power athletes (86.2%, P=0.0005). The rs1572312 SNP is located on the nuclear factor I A antisense RNA 2 (NFIA-AS2) gene which is supposed to regulate the expression of the NFIA gene (encodes transcription factor involved in activation of erythropoiesis and repression of the granulopoiesis). Our data show that the NFIA-AS2 rs1572312, TSHR rs7144481 and RBFOX1 rs7191721 polymorphisms are associated with aerobic performance and elite endurance athlete status

    Kombinasi Format Factory, U-lead dan Microsoft Office Powerpoint dalam Upaya Meningkatkan Kualitas Media Pembelajaran

    Get PDF
    Peserta didik mempunyai gaya belajar yang berbeda-beda. Gaya belajar tersebut meliputi auditori, visual dan kinestetik (VAK). Seorang guru harus mampu memenuhi kebutuhan masing-masing gaya belajar peserta didik tersebut. Salah satu cara yang dapat dilakukan adalah dengan menggunakan media pembelajaran berbasis VAK. Media pembelajaran berbasis VAK dapat dipenuhi dengan menyisipkan file video di dalamnya. Selain itu, penggunaan file video sebagai media pembelajaran mendukung implementasi pembelajaran saintifik pada kurikulum 2013. Namun, belum semua guru memiliki kemampuan untuk mengemas file video tersebut dalam bentuk media pembelajaran. Tujuan penelitian ini adalah untuk meningkatkan kemampuan guru-guru di SMA Negeri 1 Teras dan SMA Negeri 1 Boyolali dalam membuat media pembelajaran berbasis VAK dengan kombinasi software Format Factory, U-Lead dan PowerPoint. Hasil penelitian menunjukkan bahwa terjadi peningkatan kemampuan para guru di SMA Negeri 1 Teras dan SMA Negeri 1 Boyolali dalam membuat media pembelajaran. Peningkatan kemampuan guru-guru tersebut berada di atas target yang direncanakan. Rerata peningkatan kemampuan guru-guru di SMA Negeri 1 Teras 7,87% di atas target, sedangkan di SMA Negeri 1 Boyolali 9,58% di atas target. Kata kunci: Media Pembelajaran, Format Factory, U-Lead, PowerPoint Students have different learning styles. Learning styles include visual learners, auditory learners, and kinesthetic learners. A teacher must be able to fulfill the needs of individual students\u27 learning styles. One way that can be applied is using Visual, Audio and Kinesthetic (VAK) learning media based. VAK-learning media based can be created by inserting video files on it. In addition, using video file as a learning media can support the implementation of scientific learning on the 2013 curriculum. However, not all teachers have the ability to use video files into a learning media. The purpose of this study is to improve the teachers\u27 ability at SMA Negeri 1 Teras and SMAN 1 Boyolali on making VAK-learning media based with a combination of Format Factory, U-Lead and PowerPoint software. The results showed that the teachers\u27 ability on making VAK-learning media based was increased. Increased the teachers\u27 ability was above planned target score. The mean score of the teachers\u27 ability at SMA Negeri 1 Teras 7.87% above the target, while at SMAN 1 Boyolali 9.58% above the target

    SOD2 gene polymorphism and muscle damage markers in elite athletes

    Get PDF
    Exercise-induced oxidative stress is a state that primarily occurs in athletes involved in high-intensity sports when pro-oxidants overwhelm the antioxidant defense system to oxidize proteins, lipids, and nucleic acids. During exercise, oxidative stress is linked to muscle metabolism and muscle damage, because exercise increases free radical production. The T allele of the Ala16Val (rs4880 C/T) polymorphism in the mitochondrial superoxide dismutase 2 (SOD2) gene has been reported to reduce SOD2 efficiency against oxidative stress. In the present study we tested the hypothesis that the SOD2 TT genotype would be underrepresented in elite athletes involved in high-intensity sports and associated with increased values of muscle and liver damage biomarkers. The study involved 2664 Caucasian (2262 Russian and 402 Polish) athletes. SOD2 genotype and allele frequencies were compared to 917 controls. Muscle and liver damage markers [creatine kinase (CK), creatinine, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP)] were examined in serum from 1444 Russian athletes. The frequency of the SOD2 TT genotype (18.6%) was significantly lower in power/strength athletes (n = 524) compared to controls (25.0%, p = 0.0076) or athletes involved in low-intensity sports (n = 180; 33.9%, p < 0.0001). Furthermore, the SOD2 T allele was significantly associated with increased activity of CK (females: p = 0.0144) and creatinine level (females: p = 0.0276; males: p = 0.0135) in athletes. Our data show that the SOD2 TT genotype might be unfavorable for high-intensity athletic events
    • …
    corecore