826 research outputs found

    Controlling Hydrogen Activation, Spillover, and Desorption with Pd-Au Single-Atom Alloys

    Get PDF
    Key descriptors in hydrogenation catalysis are the nature of the active sites for H2 activation and the adsorption strength of H atoms to the surface. Using atomically resolved model systems of dilute Pd-Au surface alloys and density functional theory calculations, we determine key aspects of H2 activation, diffusion, and desorption. Pd monomers in a Au(111) surface catalyze the dissociative adsorption of H2 at temperatures as low as 85 K, a process previously expected to require contiguous Pd sites. H atoms preside at the Pd sites and desorb at temperatures significantly lower than those from pure Pd (175 versus 310 K). This facile H2 activation and weak adsorption of H atom intermediates are key requirements for active and selective hydrogenations. We also demonstrate weak adsorption of CO, a common catalyst poison, which is sufficient to force H atoms to spill over from Pd to Au sites, as evidenced by low-temperature H2 desorption

    The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    Get PDF
    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network's enantioselective interaction with other molecules

    Atomic-Scale Picture of the Composition, Decay, and Oxidation of Two-Dimensional Radioactive Films

    Get PDF
    Two-dimensional radioactive (125)I monolayers are a recent development that combines the fields of radiochemistry and nanoscience. These Au-supported monolayers show great promise for understanding the local interaction of radiation with 2D molecular layers, offer different directions for surface patterning, and enhance the emission of chemically and biologically relevant low-energy electrons. However, the elemental composition of these monolayers is in constant flux due to the nuclear transmutation of (125)I to (125)Te, and their precise composition and stability under ambient conditions has yet to be elucidated. Unlike I, which is stable and unreactive when bound to Au, the newly formed Te atoms would be expected to be more reactive. We have used electron emission and X-ray photoelectron spectroscopy (XPS) to quantify the emitted electron energies and to track the film composition in vacuum and the effect of exposure to ambient conditions. Our results reveal that the Auger electrons emitted during the ultrafast radioactive decay process have a kinetic energy corresponding to neutral Te. By combining XPS and scanning tunneling microscopy experiments with density functional theory, we are able to identify the reaction of newly formed Te to TeO2 and its subsequent dimerization. The fact that the Te2O4 units stay intact during major lateral rearrangement of the monolayer illustrates their stability. These results provide an atomic-scale picture of the composition and mobility of surface species in a radioactive monolayer as well as an understanding of the stability of the films under ambient conditions, which is a critical aspect in their future applications

    Preparation, Structure, and Surface Chemistry of Ni-Au Single Atom Alloys

    Get PDF
    Ni/Au is an alloy combination that while, immiscible in the bulk, exhibits a rich array of surface geometries that may offer improved catalytic properties. It has been demonstrated that the addition of small amounts of Au to Ni tempers its reactivity and reduces coking during the steam reforming of methane. Herein, we report the first successful preparation of dilute Ni-Au alloys (up to 0.04 ML) in which small amounts of Ni are deposited on, and alloyed into, Au(111) using physical vapor deposition. We find that the surface structure can be tuned during deposition via control of the substrate temperature. By adjusting the surface temperature in the 300-650 K range, we are able to produce first Ni islands, then mixtures of Ni islands and Ni-Au surface alloys, and finally, when above 550 K, predominantly island-free Ni-Au single atom alloys (SAAs). Low-temperature scanning tunneling microscopy (STM) combined with density functional theory calculations confirm that the Ni-Au SAAs formed at high temperature correspond to Ni atoms exchanged with surface Au atoms. Ni-Au SAAs form preferentially at the elbow regions of the Au(111) herringbone reconstruction, but at high coverage also appear over the whole surface. To investigate the adsorption properties of Ni-Au SAAs, we studied the adsorption and desorption of CO using STM which allowed us to determine at which atomic sites the CO adsorbs on these heterogeneous alloys. We find that small amounts of Ni in the form of single atoms increases the reactivity of the substrate by creating single Ni sites in the Au surface to which CO binds significantly more strongly than Au. These results serve as a guide in the design of surface architectures that combine Au's weak binding and selective chemistry with localized, strong binding Ni atom sites that serve to increase reactivity

    Addition of multiple rare SNPs to known common variants improves the association between disease and gene in the Genetic Analysis Workshop 17 data

    Get PDF
    The upcoming release of new whole-genome genotyping technologies will shed new light on whether there is an associative effect of previously immeasurable rare variants on incidence of disease. For Genetic Analysis Workshop 17, our team focused on a statistical method to detect associations between gene-based multiple rare variants and disease status. We added a combination of rare SNPs to a common variant shown to have an influence on disease status. This method provides us with an enhanced ability to detect the effect of these rare variants, which, modeled alone, would normally be undetectable. Adjusting for significant clinical parameters, several genes were found to have multiple rare variants that were significantly associated with disease outcome

    Walks4work: Rationale and study design to investigate walking at lunchtime in the workplace setting

    Get PDF
    Background: Following recruitment of a private sector company, an 8week lunchtime walking intervention was implemented to examine the effect of the intervention on modifiable cardiovascular disease risk factors, and further to see if walking environment had any further effect on the cardiovascular disease risk factors. Methods. For phase 1 of the study participants were divided into three groups, two lunchtime walking intervention groups to walk around either an urban or natural environment twice a week during their lunch break over an 8week period. The third group was a waiting-list control who would be invited to join the walking groups after phase 1. In phase 2 all participants were encouraged to walk during their lunch break on self-selecting routes. Health checks were completed at baseline, end of phase 1 and end of phase 2 in order to measure the impact of the intervention on cardiovascular disease risk. The primary outcome variables of heart rate and heart rate variability were measured to assess autonomic function associated with cardiovascular disease. Secondary outcome variables (Body mass index, blood pressure, fitness, autonomic response to a stressor) related to cardiovascular disease were also measured. The efficacy of the intervention in increasing physical activity was objectively monitored throughout the 8-weeks using an accelerometer device. Discussion. The results of this study will help in developing interventions with low researcher input with high participant output that may be implemented in the workplace. If effective, this study will highlight the contribution that natural environments can make in the reduction of modifiable cardiovascular disease risk factors within the workplace. © 2012 Brown et al.; licensee BioMed Central Ltd

    'Just’ punishment? Offenders’ views on the meaning and severity of punishment

    Get PDF
    In England and Wales, ‘punishment’ is a central element of criminal justice. What punishment entails exactly, however, and how it relates to the other aims of sentencing (crime reduction, rehabilitation, public protection and reparation), remains contested. This article outlines different conceptualizations of punishment and explores to what extent offenders subscribe to these perspectives. The analysis is supported by findings from two empirical studies on the subjective experiences of imprisonment and probation, respectively. Semi-structured interviews were conducted with 15 male and 15 female prisoners and seven male and two female probationers. Two primary conceptualizations of punishment were identified: ‘punishment as deprivation of liberty’ and ‘punishment as hard treatment’. The comparative subjective severity of different sentences and the collateral (unintended) consequences of punishment are also discussed. It is shown that there are large individual differences in the interpretation and subjective experience of punishment, which has implications for the concept of retributive proportionality, as well as the function of punishment more generally

    The impact of iron supplementation efficiency in female blood donors with a decreased ferritin level and no anaemia. Rationale and design of a randomised controlled trial: a study protocol

    Get PDF
    ABSTRACT: BACKGROUND: There is no recommendation to screen ferritin level in blood donors, even though several studies have noted the high prevalence of iron deficiency after blood donation, particularly among menstruating females. Furthermore, some clinical trials have shown that non-anaemic women with unexplained fatigue may benefit from iron supplementation. Our objective is to determine the clinical effect of iron supplementation on fatigue in female blood donors without anaemia, but with a mean serum ferritin </= 30 ng/ml. METHODS/DESIGN: In a double blind randomised controlled trial, we will measure blood count and ferritin level of women under age 50 yr, who donate blood to the University Hospital of Lausanne Blood Transfusion Department, at the time of the donation and after 1 week. One hundred and forty donors with a ferritin level </= 30 ng/ml and haemoglobin level >/= 120 g/l (non-anaemic) a week after the donation will be included in the study and randomised. A one-month course of oral ferrous sulphate (80 mg/day of elemental iron) will be introduced vs. placebo. Self-reported fatigue will be measured using a visual analogue scale. Secondary outcomes are: score of fatigue (Fatigue Severity Scale), maximal aerobic power (Chester Step Test), quality of life (SF-12), and mood disorders (Prime-MD). Haemoglobin and ferritin concentration will be monitored before and after the intervention. DISCUSSION: Iron deficiency is a potential problem for all blood donors, especially menstruating women. To our knowledge, no other intervention study has yet evaluated the impact of iron supplementation on subjective symptoms after a blood donation. TRIAL REGISTRATION: NCT00689793

    Resolving the ancestry of Austronesian-speaking populations

    Get PDF
    There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The “out-of-Taiwan” model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion
    • 

    corecore