353 research outputs found

    Lipid-soluble Vitamins A, D, and E in HIV-Infected Pregnant women in Tanzania.

    Get PDF
    There is limited published research examining lipid-soluble vitamins in human immunodeficiency virus (HIV)-infected pregnant women, particularly in resource-limited settings. This is an observational analysis of 1078 HIV-infected pregnant women enrolled in a trial of vitamin supplementation in Tanzania. Baseline data on sociodemographic and anthropometric characteristics, clinical signs and symptoms, and laboratory parameters were used to identify correlates of low plasma vitamin A (<0.7 micromol/l), vitamin D (<80 nmol/l) and vitamin E (<9.7 micromol/l) status. Binomial regression was used to estimate risk ratios and 95% confidence intervals. Approximately 35, 39 and 51% of the women had low levels of vitamins A, D and E, respectively. Severe anemia (hemoglobin <85 g/l; P<0.01), plasma vitamin E (P=0.02), selenium (P=0.01) and vitamin D (P=0.02) concentrations were significant correlates of low vitamin A status in multivariate models. Erythrocyte Sedimentation Rate (ESR) was independently related to low vitamin A status in a nonlinear manner (P=0.01). The correlates of low vitamin D status were CD8 cell count (P=0.01), high ESR (ESR >81 mm/h; P<0.01), gestational age at enrollment (nonlinear; P=0.03) and plasma vitamins A (P=0.02) and E (P=0.01). For low vitamin E status, the correlates were money spent on food per household per day (P<0.01), plasma vitamin A concentration (nonlinear; P<0.01) and a gestational age <16 weeks at enrollment (P<0.01). Low concentrations of lipid-soluble vitamins are widely prevalent among HIV-infected women in Tanzania and are correlated with other nutritional insufficiencies. Identifying HIV-infected persons at greater risk of poor nutritional status and infections may help inform design and implementation of appropriate interventions

    Heat Stress Enhances the Accumulation of Polyadenylated Mitochondrial Transcripts in Arabidopsis thaliana

    Get PDF
    Background: Polyadenylation of RNA has a decisive influence on RNA stability. Depending on the organisms or subcellular compartment, it either enhances transcript stability or targets RNAs for degradation. In plant mitochondria, polyadenylation promotes RNA degradation, and polyadenylated mitochondrial transcripts are therefore widely considered to be rare and unstable. We followed up a surprising observation that a large number of mitochondrial transcripts are detectable in microarray experiments that used poly(A)-specific RNA probes, and that these transcript levels are significantly enhanced after heat treatment. Methodology/Principal Findings: As the Columbia genome contains a complete set of mitochondrial genes, we had to identify polymorphisms to differentiate between nuclear and mitochondrial copies of a mitochondrial transcript. We found that the affected transcripts were uncapped transcripts of mitochondrial origin, which were polyadenylated at multiple sites within their 39region. Heat-induced enhancement of these transcripts was quickly restored during a short recovery period. Conclusions/Significance: Our results show that polyadenylated transcripts of mitochondrial origin are more stable than previously suggested, and that their steady-state levels can even be significantly enhanced under certain conditions. As many microarrays contain mitochondrial probes, due to the frequent transfer of mitochondrial genes into the genome

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes

    MEK2 Is Sufficient but Not Necessary for Proliferation and Anchorage-Independent Growth of SK-MEL-28 Melanoma Cells

    Get PDF
    Mitogen-activated protein kinase kinases (MKK or MEK) 1 and 2 are usually treated as redundant kinases. However, in assessing their relative contribution towards ERK-mediated biologic response investigators have relied on tests of necessity, not sufficiency. In response we developed a novel experimental model using lethal toxin (LeTx), an anthrax toxin-derived pan-MKK protease, and genetically engineered protease resistant MKK mutants (MKKcr) to test the sufficiency of MEK signaling in melanoma SK-MEL-28 cells. Surprisingly, ERK activity persisted in LeTx-treated cells expressing MEK2cr but not MEK1cr. Microarray analysis revealed non-overlapping downstream transcriptional targets of MEK1 and MEK2, and indicated a substantial rescue effect of MEK2cr on proliferation pathways. Furthermore, LeTx efficiently inhibited the cell proliferation and anchorage-independent growth of SK-MEL-28 cells expressing MKK1cr but not MEK2cr. These results indicate in SK-MEL-28 cells MEK1 and MEK2 signaling pathways are not redundant and interchangeable for cell proliferation. We conclude that in the absence of other MKK, MEK2 is sufficient for SK-MEL-28 cell proliferation. MEK1 conditionally compensates for loss of MEK2 only in the presence of other MKK

    Adolescence As Risk Factor for Adverse Pregnancy Outcome in Central Africa – A Cross-Sectional Study

    Get PDF
    BACKGROUND: Sub-Saharan Africa has the highest rates of maternal and neonatal mortality worldwide. Young maternal age at delivery has been proposed as risk factor for adverse pregnancy outcome, yet there is insufficient data from Sub-Saharan Africa. The present study aimed to investigate the influence of maternal adolescence on pregnancy outcomes in the Central African country Gabon. METHODOLOGY AND PRINCIPAL FINDINGS: Data on maternal age, parity, birth weight, gestational age, maternal Plasmodium falciparum infection, use of bednets, and intake of intermittent preventive treatment of malaria in pregnancy were collected in a cross-sectional survey in 775 women giving birth in three mother-child health centers in Gabon. Adolescent women (≤16 years of age) had a significantly increased risk to deliver a baby with low birth weight in univariable analysis (22.8%, 13/57, vs. 9.3%, 67/718, OR: 2.9, 95% CI: 1.5-5.6) and young maternal age showed a statistically significant association with the risk for low birth weight in multivariable regression analysis after correction for established risk factors (OR: 2.7; 95% CI: 1.1-6.5). In further analysis adolescent women were shown to attend significantly less antenatal care visits than adult mothers (3.3±1.9 versus 4.4±1.9 mean visits, p<0.01, n = 356) and this difference accounted at least for part of the excess risk for low birth weight in adolescents. CONCLUSION: Our data demonstrate the importance of adolescent age as risk factor for adverse pregnancy outcome. Antenatal care programs specifically tailored for the needs of adolescents may be necessary to improve the frequency of antenatal care visits and pregnancy outcomes in this risk group in Central Africa

    A single molecule assay to probe monovalent and multivalent bonds between hyaluronan and its key leukocyte receptor CD44 under force

    Get PDF
    Glycosaminoglycans (GAGs), a category of linear, anionic polysaccharides, are ubiquitous in the extracellular space, and important extrinsic regulators of cell function. Despite the recognized significance of mechanical stimuli in cellular communication, however, only few single molecule methods are currently available to study how monovalent and multivalent GAG•protein bonds respond to directed mechanical forces. Here, we have devised such a method, by combining purpose-designed surfaces that afford immobilization of GAGs and receptors at controlled nanoscale organizations with single molecule force spectroscopy (SMFS). We apply the method to study the interaction of the GAG polymer hyaluronan (HA) with CD44, its receptor in vascular endothelium. Individual bonds between HA and CD44 are remarkably resistant to rupture under force in comparison to their low binding affinity. Multiple bonds along a single HA chain rupture sequentially and independently under load. We also demonstrate how strong non-covalent bonds, which are versatile for controlled protein and GAG immobilization, can be effectively used as molecular anchors in SMFS. We thus establish a versatile method for analyzing the nanomechanics of GAG•protein interactions at the level of single GAG chains, which provides new molecular-level insight into the role of mechanical forces in the assembly and function of GAG-rich extracellular matrices

    A multidisciplinary program of preparation for childbirth and motherhood: maternal anxiety and perinatal outcomes

    Get PDF
    Background: To study maternal anxiety and perinatal outcomes in pregnant women submitted to a Multidisciplinary Program for Childbirth and Motherhood Preparation (MPCM).Methods: This is a not randomized controlled trial on 67 nulliparous pregnant women divided into two groups according to participation (MPCM Group; n = 38) or not (Control Group; n = 29) in MPCM. the program consisted of 10 meetings (between the 18th and the 38th gestational week) during which educational, physiotherapeutic and interaction activities were developed. Anxiety was quantified at the beginning and at the end of the gestational period by the Trace-State Anxiety Inventory (STAI).Results: Initial maternal anxiety was equivalent between the groups. At the end of the gestational period, it was observed that anxiety levels increased in the Control Group and were maintained in the MPCM Group. A higher occurrence of vaginal deliveries (83.8%) and hospital discharge of three-day-older newborns (81.6%) as a result of MPCM was also significant. Levels of state-anxiety at the end of pregnancy showed a negative correlation with vaginal delivery, gestational age, birth weight and Apgar index at the first minute and positive correlation with the hospital period remaining of the newborns.Conclusion: in the study conditions, MPCM was associated with lower levels of maternal anxiety, a larger number of vaginal deliveries and shorter hospitalization time of newborns. It was not related to adverse perinatal outcomes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Paulista, Botucatu Sch Med, Dept Neurol Psychol & Psychiat, Botucatu, SP, BrazilUniv Estadual Paulista, Botucatu Sch Med, Dept Gynecol & Obstet, Botucatu, SP, BrazilUniv Sagrado Coracao, Dept Hlth Sci, Physiotherapy Sch, Bauru, BrazilSão Paulo Fed Univ Unifesp, Dept Hlth Sci, Phys Therapy Program, Santos, BrazilSão Paulo Fed Univ Unifesp, Dept Hlth Sci, Phys Therapy Program, Santos, BrazilWeb of Scienc

    Mutations in MITF and PAX3 Cause “Splashed White” and Other White Spotting Phenotypes in Horses

    Get PDF
    During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The “splashed white” pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes

    Biomass and Burning Characteristics of Sugar Pine Cones

    Get PDF
    We investigated the physical and burning characteristics of sugar pine (Pinus lambertiana Douglas) cones and their contribution to woody surface fuel loadings. Field sampling was conducted at the Yosemite Forest Dynamics Plot (YFDP), a 25.6 ha mapped study plot in Yosemite National Park, California, USA. We developed a classification system to describe sugar pine cones of different sizes and decay conditions, and examined differences among cone classes in biomass, bulk density, flame length, burning time, consumption, and relative contribution to surface fuel loads. Sugar pine cones comprised 601 kg ha-1 of surface fuels. Mature cones comprised 54% of cone biomass, and aborted juvenile cones accounted for 44%. Cone biomass, diameter, and bulk density differed among cone condition classes, as did burning characteristics (one-way ANOVA, P \u3c 0.001 in all cases). Flame lengths ranged from 5 cm to 94 cm for juvenile cones, and 71 cm to 150 cm for mature cones. Our results showed that the developmental stage at which sugar pine cones become surface fuels determines their potential contribution to surface fire behavior in Sierra Nevada mixed-conifer forests. Sugar pine cones burn with greater flame lengths and flame times than the cones of other North American fire-tolerant pine species studied to date, indicating that cones augment the surface fire regime of sugar pine forests, and likely do so to a greater degree than do cones of other pine species

    Essential Role of Cdc42 in Ras-Induced Transformation Revealed by Gene Targeting

    Get PDF
    The ras proto-oncogene is one of the most frequently mutated genes in human cancer. However, given the prevalence of activating mutations in Ras and its association with aggressive forms of cancer, attempts to therapeutically target aberrant Ras signaling have been largely disappointing. This lack of progress highlights the deficiency in our understanding of cellular pathways required for Ras-mediated tumorigenesis and suggests the importance of identifying new molecular pathways associated with Ras-driven malignancies. Cdc42 is a Ras-related small GTPase that is known to play roles in oncogenic processes such as cell growth, survival, invasion, and migration. A pan-dominant negative mutant overexpression approach to suppress Cdc42 and related pathways has previously shown a requirement for Cdc42 in Ras-induced anchorage-independent cell growth, however the lack of specificity of such approaches make it difficult to determine if effects are directly related to changes in Cdc42 activity or other Rho family members. Therefore, in order to directly and unambiguously address the role of Cdc42 in Ras-mediated transformation, tumor formation and maintenance, we have developed a model of conditional cdc42 gene in Ras-transformed cells. Loss of Cdc42 drastically alters the cell morphology and inhibits proliferation, cell cycle progression and tumorigenicity of Ras-transformed cells, while non-transformed cells or c-Myc transformed cells are largely unaffected. The loss of Cdc42 in Ras-transformed cells results in reduced Akt signaling, restoration of which could partially rescues the proliferation defects associated with Cdc42 loss. Moreover, disruption of Cdc42 function in established tumors inhibited continued tumor growth. These studies implicate Cdc42 in Ras-driven tumor growth and suggest that targeting Cdc42 is beneficial in Ras-mediated malignancies
    corecore