122 research outputs found

    Competition between Replicative and Translesion Polymerases during Homologous Recombination Repair in Drosophila

    Get PDF
    In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s) that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis

    Air ambulance flights in northern Norway 2002-2008. Increased number of secondary fixed wing (FW) operations and more use of rotor wing (RW) transports

    Get PDF
    Air ambulance service in Norway has been upgraded during the last years. European regulations concerning pilots’ working time and new treatment guidelines/strategies have called for more resources. The objective was to describe and analyse the two supplementary air ambulance [fixed wing (FW) and rotor wing (RW)] alternatives’ activity during the study period (2002-2008). Furthermore we aimed to compare our findings with reports from other north European regions. This is a retrospective analysis. The air ambulance fleet’s activity according to the electronic patient record database of β€œLuftambulansetjenesten ANS” (LABAS) was analysed. The subject was the fleet’s operations in northern Norway, logistics, and patients handled. Type of flight, distances, frequency, and patients served were the main outcome measures. A significant increase (45%) in the use of RW and a shift in FW operations (less primary and more secondary) were revealed. The shift in FW operations reflected the centralisation of several health care services [i.e. percutaneous cardiac intervention (PCI), trauma, and cancer surgery] during the study period. Cardiovascular disease (CVD) and injuries were the main diagnoses and constituted half of all operations. CVD was the most common cause of FW operations and injuries of the RW ones. The number of air ambulance operations was 16 per 1,000 inhabitants. This was more frequent than in other north European regions. The use of air ambulances and especially RW was significantly increased during the study period. The change in secondary FW operations reflected centralisation of medical care. When health care services are centralised, air ambulance services must be adjusted to the new settings

    Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair

    Get PDF
    Double strand breaks (DSBs) and interstrand crosslinks (ICLs) are toxic DNA lesions that can be repaired through multiple pathways, some of which involve shared proteins. One of these proteins, DNA Polymerase theta (Pol theta), coordinates a mutagenic DSB repair pathway named microhomology-mediated end joining (MMEJ) and is also a critical component for bypass or repair of ICLs in several organisms. Pol theta contains both polymerase and helicase-like domains that are tethered by an unstructured central region. While the role of the polymerase domain in promoting MMEJ has been studied extensively both in vitro and in vivo, a function for the helicase-like domain, which possesses DNA-dependent ATPase activity, remains unclear. Here, we utilize genetic and biochemical analyses to examine the roles of the helicase-like and polymerase domains of Drosophila Pol theta. We demonstrate an absolute requirement for both polymerase and ATPase activities during ICL repair in vivo. However, similar to mammalian systems, polymerase activity, but not ATPase activity, is required for ionizing radiation-induced DSB repair. Using a site-specific break repair assay, we show that overall end-joining efficiency is not affected in ATPase-dead mutants, but there is a significant decrease in templated insertion events. In vitro, Pol theta can efficiently bypass a model unhooked nitrogen mustard crosslink and promote DNA synthesis following microhomology annealing, although ATPase activity is not required for these functions. Together, our data illustrate the functional importance of the helicase-like domain of Pol theta and suggest that its tethering to the polymerase domain is important for its multiple functions in DNA repair and damage tolerance

    The Proportion of Endometrial Tumours Associated with Lynch Syndrome (PETALS): a prospective cross-sectional study

    Get PDF
    This is the final version. Available on open access from the Public Library of Science via the DOI in this recordBackground: Lynch syndrome (LS) predisposes to endometrial (EC), colorectal and other cancers through inherited pathogenic variants affecting mismatch-repair (MMR) genes. Diagnosing LS in women with EC can reduce subsequent cancer mortality through colonoscopic surveillance and aspirin chemoprevention; it also enables cascade testing of relatives. A growing consensus supports LS screening in EC, however, the expected proportion of test-positives and optimal testing strategy is uncertain. Previous studies from insurance-based healthcare systems were limited by narrow selection criteria, failure to apply reference standard tests consistently and poor conversion to definitive testing. The aim of this study was to establish the prevalence of LS and the diagnostic accuracy of LS testing strategies in an unselected EC population. Methods and Findings: This was a prospective cross-sectional study carried out at a large UK gynaecological cancer centre between October/2015 and January/2017. Women diagnosed with EC or atypical hyperplasia (AH) were offered LS testing. Tumours underwent MMR immunohistochemistry (IHC), microsatellite instability (MSI) and targeted MLH1-methylation testing. Women <50 years, with strong family histories and/or indicative tumour molecular features underwent MMR germline sequencing. Somatic MMR sequencing was performed when indicative molecular features were unexplained by LS or MLH1-hypermethylation. The main outcome measures were the prevalence of LS in an unselected EC population and the diagnostic accuracy of clinical and tumour testing strategies for risk stratifying women with EC for MMR germline sequencing. In total, 500 women participated in the study; only 2 (<1%) declined. Germline sequencing was indicated and conducted for 136 and 135 women, respectively. 16/500 women (3.2%, 95% CI 1.8% to 5.1%) had LS and 11 more (2.2%) had MMR variants of uncertain significance. Restricting testing to age <50 years, indicative family history (revised Bethesda guidelines or Amsterdam-II criteria) or endometrioid histology alone would have missed 9 (56%), 11 (69%) or 12 (75%), and 5 (31%) of the 16 cases of LS, respectively. In total 132/500 tumours were MMR-deficient by IHC, of which 83/132 (63%) had MLH1-hypermethylation and 16/49 (33%) of the remaining patients had LS (16/132 with MMR-deficiency, 12%). MMR-IHC with targeted MLH1-methylation testing was more discriminatory for LS than MSI/methylation testing, with 100% versus 56.3% (16/16 versus 9/16) sensitivity (p=0.016) and equal 97.5% (468/484) specificity. 64% MSI-H and 73% MMR-deficient tumours unexplained by LS or MLH1-hypermethylation had somatic MMR-mutations. The main limitation of the study was failure to conduct MMR germline sequencing for the whole study population, which means that the sensitivity and specificity of tumour triage strategies for LS detection may be over-estimated, although the risk of LS in women with no clinical or tumour predictors is expected to be extremely low. Conclusions: In this study, we observed that age, family history and histology are imprecise clinical correlates of LS-EC. IHC outperformed MSI for tumour triage, and reliably identified both germline and somatic MMR mutations. The 3.2% proportion of LS-EC is similar to colorectal cancer, supporting unselected screening of EC for LS.

    Breakpoint characterization of large deletions in EXT1 or EXT2 in 10 Multiple Osteochondromas families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteochondromas (cartilage-capped bone tumors) are by far the most commonly treated of all primary benign bone tumors (50%). In 15% of cases, these tumors occur in the context of a hereditary syndrome called multiple osteochondromas (MO), an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped bone tumors at children's metaphyses. MO is caused by various mutations in <it>EXT1 </it>or <it>EXT2</it>, whereby large genomic deletions (single-or multi-exonic) are responsible for up to 8% of MO-cases.</p> <p>Methods</p> <p>Here we report on the first molecular characterization of ten large <it>EXT1</it>- and <it>EXT2</it>-deletions in MO-patients. Deletions were initially indentified using MLPA or FISH analysis and were subsequently characterized using an MO-specific tiling path array, allele-specific PCR-amplification and sequencing analysis.</p> <p>Results</p> <p>Within the set of ten large deletions, the deleted regions ranged from 2.7 to 260 kb. One <it>EXT2 </it>exon 8 deletion was found to be recurrent. All breakpoints were located outside the coding exons of <it>EXT1 </it>and <it>EXT2</it>. Non-allelic homologous recombination (NAHR) mediated by <it>Alu</it>-sequences, microhomology mediated replication dependent recombination (MMRDR) and non-homologous end-joining (NHEJ) were hypothesized as the causal mechanisms in different deletions.</p> <p>Conclusions</p> <p>Molecular characterization of <it>EXT1</it>- and <it>EXT2</it>-deletion breakpoints in MO-patients indicates that NAHR between <it>Alu-</it>sequences as well as NHEJ are causal and that the majority of these deletions are nonrecurring. These observations emphasize once more the huge genetic variability which is characteristic for MO. To our knowledge, this is the first study characterizing large genomic deletions in <it>EXT1 </it>and <it>EXT2</it>.</p

    CtIP tetramer assembly is required for DNA-end resection and repair.

    Get PDF
    Mammalian CtIP protein has major roles in DNA double-strand break (DSB) repair. Although it is well established that CtIP promotes DNA-end resection in preparation for homology-dependent DSB repair, the molecular basis for this function has remained unknown. Here we show by biophysical and X-ray crystallographic analyses that the N-terminal domain of human CtIP exists as a stable homotetramer. Tetramerization results from interlocking interactions between the N-terminal extensions of CtIP's coiled-coil region, which lead to a 'dimer-of-dimers' architecture. Through interrogation of the CtIP structure, we identify a point mutation that abolishes tetramerization of the N-terminal domain while preserving dimerization in vitro. Notably, we establish that this mutation abrogates CtIP oligomer assembly in cells, thus leading to strong defects in DNA-end resection and gene conversion. These findings indicate that the CtIP tetramer architecture described here is essential for effective DSB repair by homologous recombination.We thank M. Kilkenny for help with the collection of X-ray diffraction data, A. Sharff and P. Keller for help with X-ray data processing and J.D. Maman for assistance with SEC-MALS. This work was supported by a Wellcome Trust Senior Research Fellowship award in basic biomedical sciences (L.P.), an Isaac Newton Trust research grant (L.P. and O.R.D.) and a Cambridge Overseas Trust PhD studentship (M.D.S.). Research in the laboratory of S.P.J. is funded by Cancer Research UK (CRUK; programme grant C6/A11224), the European Research Council and the European Community Seventh Framework Programme (grant agreement no. HEALTH-F2-2010-259893 (DDResponse)). Core funding is provided by Cancer Research UK (C6946/A14492) and the Wellcome Trust (WT092096). S.P.J. receives his salary from the University of Cambridge, supplemented by CRUK. J.V.F. is funded by Cancer Research UK programme grant C6/A11224 and the Ataxia Telangiectasia Society. R.B. and J.C. are funded by Cancer Research UK programme grant C6/A11224. Y.G. and M.D. are funded by the European Research Council grant DDREAM.This is the accepted manuscript of a paper published in Nature Structural & Molecular Biology, 22, 150–157 (2015) doi: 10.1038/nsmb.293

    Heterochromatic Genome Stability Requires Regulators of Histone H3 K9 Methylation

    Get PDF
    Heterochromatin contains many repetitive DNA elements and few protein-encoding genes, yet it is essential for chromosome organization and inheritance. Here, we show that Drosophila that lack the Su(var)3-9 H3K9 methyltransferase display significantly elevated frequencies of spontaneous DNA damage in heterochromatin, in both somatic and germ-line cells. Accumulated DNA damage in these mutants correlates with chromosomal defects, such as translocations and loss of heterozygosity. DNA repair and mitotic checkpoints are also activated in mutant animals and are required for their viability. Similar effects of lower magnitude were observed in animals that lack the RNA interference pathway component Dcr2. These results suggest that the H3K9 methylation and RNAi pathways ensure heterochromatin stability

    Two distinct catalytic pathways for GH43 xylanolytic enzymes unveiled by X-ray and QM/MM simulations

    Get PDF
    Xylanolytic enzymes from glycoside hydrolase family 43 (GH43) are involved in the breakdown of hemicellulose, the second most abundant carbohydrate in plants. Here, we kinetically and mechanistically describe the non-reducing-end xylose-releasing exo-oligoxylanase activity and report the crystal structure of a native GH43 Michaelis complex with its substrate prior to hydrolysis. Two distinct calcium-stabilized conformations of the active site xylosyl unit are found, suggesting two alternative catalytic routes. These results are confirmed by QM/MM simulations that unveil the complete hydrolysis mechanism and identify two possible reaction pathways, involving different transition state conformations for the cleavage of xylooligosaccharides. Such catalytic conformational promiscuity in glycosidases is related to the open architecture of the active site and thus might be extended to other exo-acting enzymes. These findings expand the current general model of catalytic mechanism of glycosidases, a main reaction in nature, and impact on our understanding about their interaction with substrates and inhibitors

    Ku Regulates the Non-Homologous End Joining Pathway Choice of DNA Double-Strand Break Repair in Human Somatic Cells

    Get PDF
    The repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ consists of at least two sub-pathwaysβ€”the main Ku heterodimer-dependent or β€œclassic” NHEJ (C-NHEJ) pathway and an β€œalternative” NHEJ (A-NHEJ) pathway, which usually generates microhomology-mediated signatures at repair junctions. In our study, recombinant adeno-associated virus knockout vectors were utilized to construct a series of isogenic human somatic cell lines deficient in the core C-NHEJ factors (Ku, DNA-PKcs, XLF, and LIGIV), and the resulting cell lines were characterized for their ability to carry out DNA DSB repair. The absence of DNA-PKcs, XLF, or LIGIV resulted in cell lines that were profoundly impaired in DNA DSB repair activity. Unexpectedly, Ku86-null cells showed wild-type levels of DNA DSB repair activity that was dominated by microhomology joining events indicative of A-NHEJ. Importantly, A-NHEJ DNA DSB repair activity could also be efficiently de-repressed in LIGIV-null and DNA-PKcs-null cells by subsequently reducing the level of Ku70. These studies demonstrate that in human cells C-NHEJ is the major DNA DSB repair pathway and they show that Ku is the critical C-NHEJ factor that regulates DNA NHEJ DSB pathway choice
    • …
    corecore