1,064 research outputs found

    Evolution of a stream ecosystem in recently deglaciated terrain

    No full text
    Climate change and associated glacial recession create new stream habitat that leads to the assembly of new riverine communities through primary succession. However, there are still very few studies of the patterns and processes of community assembly during primary succession for stream ecosystems. We illustrate the rapidity with which biotic communities can colonize and establish in recently formed streams by examining Stonefly Creek in Glacier Bay, Alaska (USA), which began to emerge from a remnant glacial ice mass between 1976 and 1979. By 2002, 57 macroinvertebrate and 27 microcrustacea species had become established. Within 10 years of the stream's formation, pink salmon and Dolly Varden charr colonized, followed by other fish species, including juvenile red and silver salmon, Coast Range sculpin, and sticklebacks. Stable-isotope analyses indicate that marine-derived nitrogen from the decay of salmon carcasses was substantially assimilated within the aquatic food web by 2004. The findings from Stonefly Creek are compared with those from a long-term study of a similarly formed but older stream (12 km to the northeast) to examine possible similarities in macroinvertebrate community and biological trait composition between streams at similar stages of development. Macroinvertebrate community assembly appears to have been initially strongly deterministic owing to low water temperature associated with remnant ice masses. In contrast, microcrustacean community assembly appears to have been more stochastic. However, as stream age and water temperature increased, macroinvertebrate colonization was also more stochastic, and taxonomic similarity between Stonefly Creek and a stream at the same stage of development was,<50%. However the most abundant taxa were similar, and functional diversity of the two communities was almost identical. Tolerance is suggested as the major mechanism of community assembly. The rapidity with which salmonids and invertebrate communities have become established across an entire watershed has implications for the conservation of biodiversity in freshwater habitats

    Identification and validation of oncologic miRNA biomarkers for Luminal A-like breast cancer

    Get PDF
    Introduction: Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting. Methods: Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n=54) and controls (n=56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n=10 Luminal A-like; n=10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n=44 Luminal A; n=46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated. Results: Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis ( miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652 ). The biomarker potential of 4 miRNAs ( miR-29a, miR-181a , miR-223 and miR-652 ) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p=0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs ( miR-29a, miR-181a and miR-652 ) could reliably differentiate between cancers and controls with an AUC of 0.80. Conclusion: This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype- specific breast tumor detection

    Development and use of prediction models for classification of cardiovascular risk of remote indigenous Australians

    Get PDF
    Background: Cardiovascular disease (CVD) is the leading cause of death for Indigenous Australians. There is widespread belief that current tools have deficiencies for assessing CVD risk in this high-risk population. We sought to develop a 5-year CVD risk score using a wide range of known risk factors to further improve CVD risk prediction in this population.Methods: We used clinical and demographic information on Indigenous people aged between 30 and 74 years without a history of CVD events who participated in the Well Person's Health Check (WPHC), a community-based survey. Baseline assessments were conducted between 1998 and 2000, and data were linked to administrative hospitalisation and death records for identification of CVD events. We used Cox proportional hazard models to estimate the 5-year CVD risk, and the Harrell's c-statistic and the modified Hosmer-Lemeshow (mH-L) χ2 statistic to assess the model discrimination and calibration, respectively.Results: The study sample consisted of 1,583 individuals (48.1% male; mean age 45.0 year). The risk score consisted of sex, age, systolic blood pressure, diabetes mellitus, waist circumference, triglycerides, and albumin creatinine ratio. The bias-corrected c-statistic was 0.72 and the bias-corrected mH-L χ2 statistic was 12.01 (p-value, 0.212), indicating good discrimination and calibration, respectively. Using our risk score, the CVD risk of the Indigenous Australians could be stratified to a greater degree compared to a recalibrated Framingham risk score.Conclusions: A seven-factor risk score could satisfactorily stratify 5-year risk of CVD in an Indigenous Australian cohort. These findings inform future research targeting CVD risk in Indigenous Australians

    On supersymmetric quantum mechanics

    Full text link
    This paper constitutes a review on N=2 fractional supersymmetric Quantum Mechanics of order k. The presentation is based on the introduction of a generalized Weyl-Heisenberg algebra W_k. It is shown how a general Hamiltonian can be associated with the algebra W_k. This general Hamiltonian covers various supersymmetrical versions of dynamical systems (Morse system, Poschl-Teller system, fractional supersymmetric oscillator of order k, etc.). The case of ordinary supersymmetric Quantum Mechanics corresponds to k=2. A connection between fractional supersymmetric Quantum Mechanics and ordinary supersymmetric Quantum Mechanics is briefly described. A realization of the algebra W_k, of the N=2 supercharges and of the corresponding Hamiltonian is given in terms of deformed-bosons and k-fermions as well as in terms of differential operators.Comment: Review paper (31 pages) to be published in: Fundamental World of Quantum Chemistry, A Tribute to the Memory of Per-Olov Lowdin, Volume 3, E. Brandas and E.S. Kryachko (Eds.), Springer-Verlag, Berlin, 200

    Validity and reliability of fitbit flex for step count, moderate to vigorous physical activity and activity energy expenditure

    Get PDF
    Objectives: To examine the validity and reliability of the Fitbit Flex against direct observation for measuring steps in the laboratory and against the Actigraph for step counts in free-living conditions and for moderate-to-vigorous physical activity (MVPA) and activity energy expenditure (AEE) overall. Methods: Twenty-five adults (12 females, 13 males) wore a Fitbit Flex and an Actigraph GT3X+ during a laboratory based protocol (including walking, incline walking, running and stepping) and free-living conditions during a single day period to examine measurement of steps, AEE and MVPA. Twenty-four of the participants attended a second session using the same protocol. Results: Intraclass correlations (ICC) for test-retest reliability of the Fitbit Flex were strong for walking (ICC = 0.57), moderate for stair stepping (ICC = 0.34), and weak for incline walking (ICC = 0.22) and jogging (ICC = 0.26). The Fitbit significantly undercounted walking steps in the laboratory (absolute proportional difference: 21.2%, 95%CI 13.0-29.4%), but it was more accurate, despite slightly over counting, for both jogging (6.4%, 95%CI 3.7-9.0%) and stair stepping (15.5%, 95%CI 10.1-20.9%). The Fitbit had higher coefficients of variation (Cv) for step counts compared to direct observation and the Actigraph. In free-living conditions, the average MVPA minutes were lower in the Fitbit (35.4 minutes) compared to the Actigraph (54.6 minutes), but AEE was greater from the Fitbit (808.1 calories) versus the Actigraph (538.9 calories). The coefficients of variation were similar for AEE for the Actigraph (Cv = 36.0) and Fitbit (Cv = 35.0), but lower in the Actigraph (Cv = 25.5) for MVPA against the Fitbit (Cv = 32.7). Conclusion: The Fitbit Flex has moderate validity for measuring physical activity relative to direct observation and the Actigraph. Test-rest reliability of the Fitbit was dependant on activity type and had greater variation between sessions compared to the Actigraph. Physical activity surveillance studies using the Fitbit Flex should consider the potential effect of measurement reactivity and undercounting of steps

    Solid-state NMR applied to photosynthetic light-harvesting complexes

    Get PDF
    This short review describes how solid-state NMR has provided a mechanistic and electronic picture of pigment–protein and pigment–pigment interactions in photosynthetic antenna complexes. NMR results on purple bacterial antenna complexes show how the packing of the protein and the pigments inside the light-harvesting oligomers induces mutual conformational stress. The protein scaffold produces deformation and electrostatic polarization of the BChl macrocycles and leads to a partial electronic charge transfer between the BChls and their coordinating histidines, which can tune the light-harvesting function. In chlorosome antennae assemblies, the NMR template structure reveals how the chromophores can direct their self-assembly into higher macrostructures which, in turn, tune the light-harvesting properties of the individual molecules by controlling their disorder, structural deformation, and electronic polarization without the need for a protein scaffold. These results pave the way for addressing the next challenge, which is to resolve the functional conformational dynamics of the lhc antennae of oxygenic species that allows them to switch between light-emitting and light-energy dissipating states

    Comprehensive analysis of Long non-coding RNA expression in dorsal root ganglion reveals cell type specificity and dysregulation following nerve injury

    Get PDF
    Dorsal root ganglion (DRG) neurons provide connectivity between peripheral tissues and spinal cord. Transcriptional plasticity within DRG sensory neurons after peripheral nerve injury contributes to nerve repair but also leads to maladaptive plasticity, including the development of neuropathic pain. This study presents tissue and neuron specific expression profiling of both known and novel Long Non-Coding RNAs (LncRNAs) in rodent DRG following nerve injury. We have identified a large number of novel LncRNAs expressed within rodent DRG, a minority of which were syntenically conserved between mouse, rat and human and which including both- intergenic and antisense LncRNAs. We have also identified neuron type-specific LncRNAs in mouse DRG, and LncRNAs that are expressed in human IPS cell-derived sensory neurons. We show significant plasticity in LncRNA expression following nerve injury, which in mouse is strain and gender dependant. This resource is publicly available and will aid future studies of DRG neuron identity and the transcriptional landscape in both naïve and injured DRG. We present our work regarding novel antisense and intergenic LncRNAs as an online searchable database, accessible from PainNetworks (http://www.painnetworks.org/). We have also integrated all annotated gene expression data in PainNetworks so they can be examined in the context of their protein interactions
    corecore