71 research outputs found

    How often should we monitor for reliable detection of atrial fibrillation recurrence? Efficiency considerations and implications for study design

    Get PDF
    OBJECTIVE: Although atrial fibrillation (AF) recurrence is unpredictable in terms of onset and duration, current intermittent rhythm monitoring (IRM) diagnostic modalities are short-termed and discontinuous. The aim of the present study was to investigate the necessary IRM frequency required to reliably detect recurrence of various AF recurrence patterns. METHODS: The rhythm histories of 647 patients (mean AF burden: 12±22% of monitored time; 687 patient-years) with implantable continuous monitoring devices were reconstructed and analyzed. With the use of computationally intensive simulation, we evaluated the necessary IRM frequency to reliably detect AF recurrence of various AF phenotypes using IRM of various durations. RESULTS: The IRM frequency required for reliable AF detection depends on the amount and temporal aggregation of the AF recurrence (p<0.0001) as well as the duration of the IRM (p<0.001). Reliable detection (>95% sensitivity) of AF recurrence required higher IRM frequencies (>12 24-hour; >6 7-day; >4 14-day; >3 30-day IRM per year; p<0.0001) than currently recommended. Lower IRM frequencies will under-detect AF recurrence and introduce significant bias in the evaluation of therapeutic interventions. More frequent but of shorter duration, IRMs (24-hour) are significantly more time effective (sensitivity per monitored time) than a fewer number of longer IRM durations (p<0.0001). CONCLUSIONS: Reliable AF recurrence detection requires higher IRM frequencies than currently recommended. Current IRM frequency recommendations will fail to diagnose a significant proportion of patients. Shorter duration but more frequent IRM strategies are significantly more efficient than longer IRM durations. CLINICAL TRIAL REGISTRATION URL: Unique identifier: NCT00806689

    Panmixia in a fragmented and unstable environment: the hydrothermal shrimp Rimicaris exoculata disperses extensively along the Mid-Atlantic ridge

    Get PDF
    Dispersal plays a fundamental role in the evolution and persistence of species, and especially for species inhabiting extreme, ephemeral and highly fragmented habitats as hydrothermal vents. The Mid-Atlantic Ridge endemic shrimp species Rimicaris exoculata was studied using microsatellite markers to infer connectivity along the 7100-Km range encompassing the sampled sites. Astonishingly, no genetic differentiation was found between individuals from the different geographic origins, supporting a scenario of widespread large-scale dispersal despite the habitat distance and fragmentation. We hypothesize that delayed metamorphosis associated to temperature differences or even active directed migration dependent on physical and/or chemical stimuli could explain these results and warrant further studies on adaptation and dispersal mechanisms

    Geographical heterogeneity of clinical and serological phenotypes of systemic sclerosis observed at tertiary referral centres. The experience of the Italian SIR-SPRING registry and review of the world literature

    Get PDF
    Introduction: Systemic sclerosis (SSc) is characterized by a complex etiopathogenesis encompassing both host genetic and environmental -infectious/toxic- factors responsible for altered fibrogenesis and diffuse microangiopathy. A wide spectrum of clinical phenotypes may be observed in patients' populations from different geographical areas. We investigated the prevalence of specific clinical and serological phenotypes in patients with definite SSc enrolled at tertiary referral centres in different Italian geographical macro-areas. The observed findings were compared with those reported in the world literature.Materials and methods: The clinical features of 1538 patients (161 M, 10.5%; mean age 59.8 +/- 26.9 yrs.; mean disease duration 8.9 +/- 7.7 yrs) with definite SSc recruited in 38 tertiary referral centres of the SPRING (Systemic sclerosis Progression INvestiGation Group) registry promoted by Italian Society of Rheumatology (SIR) were obtained and clustered according to Italian geographical macroareas.Results: Patients living in Southern Italy were characterized by more severe clinical and/or serological SSc phenotypes compared to those in Northern and Central Italy; namely, they show increased percentages of diffuse cutaneous SSc, digital ulcers, sicca syndrome, muscle involvement, arthritis, cardiopulmonary symptoms, interstitial lung involvement at HRCT, as well increased prevalence of serum anti-Scl70 autoantibodies. In the same SSc population immunusppressive drugs were frequently employed. The review of the literature underlined the geographical heterogeneity of SSc phenotypes, even if the observed findings are scarcely comparable due to the variability of methodological approaches.Conclusion: The phenotypical differences among SSc patients' subgroups from Italian macro-areas might be correlated to genetic/environmental co-factors, and possibly to a not equally distributed national network of information and healthcare facilities

    An integrated ontology resource to explore and study host-virus relationships.

    Get PDF
    Our growing knowledge of viruses reveals how these pathogens manage to evade innate host defenses. A global scheme emerges in which many viruses usurp key cellular defense mechanisms and often inhibit the same components of antiviral signaling. To accurately describe these processes, we have generated a comprehensive dictionary for eukaryotic host-virus interactions. This controlled vocabulary has been detailed in 57 ViralZone resource web pages which contain a global description of all molecular processes. In order to annotate viral gene products with this vocabulary, an ontology has been built in a hierarchy of UniProt Knowledgebase (UniProtKB) keyword terms and corresponding Gene Ontology (GO) terms have been developed in parallel. The results are 65 UniProtKB keywords related to 57 GO terms, which have been used in 14,390 manual annotations; 908,723 automatic annotations and propagated to an estimation of 922,941 GO annotations. ViralZone pages, UniProtKB keywords and GO terms provide complementary tools to users, and the three resources have been linked to each other through host-virus vocabulary

    How Do Human Cells React to the Absence of Mitochondrial DNA?

    Get PDF
    Mitochondrial biogenesis is under the control of two different genetic systems: the nuclear genome (nDNA) and the mitochondrial genome (mtDNA). The mtDNA is a circular genome of 16.6 kb encoding 13 of the approximately 90 subunits that form the respiratory chain, the remaining ones being encoded by the nDNA. Eukaryotic cells are able to monitor and respond to changes in mitochondrial function through alterations in nuclear gene expression, a phenomenon first defined in yeast and known as retrograde regulation. To investigate how the cellular transcriptome is modified in response to the absence of mtDNA, we used Affymetrix HG-U133A GeneChip arrays to study the gene expression profile of two human cell lines, 143BTK(-) and A549, which had been entirely depleted of mtDNA (rho(o) cells), and compared it with that of corresponding undepleted parental cells (rho(+) cells).Our data indicate that absence of mtDNA is associated with: i) a down-regulation of cell cycle control genes and a reduction of cell replication rate, ii) a down-regulation of nuclear-encoded subunits of complex III of the respiratory chain and iii) a down-regulation of a gene described as the human homolog of ELAC2 of E. coli, which encodes a protein that we show to also target to the mitochondrial compartment.Our results indicate a strong correlation between mitochondrial biogenesis and cell cycle control and suggest that some proteins could have a double role: for instance in controlling both cell cycle progression and mitochondrial functions. In addition, the finding that ELAC2 and maybe other transcripts that are located into mitochondria, are down-regulated in rho(o) cells, make them good candidates for human disorders associated with defective replication and expression of mtDNA

    Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, <it>Riftia pachyptila</it>, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift.</p> <p>Results</p> <p>Genetic differentiation (<it>F</it><sub><it>ST</it></sub>) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically.</p> <p>Conclusions</p> <p>Compared to other vent species, DNA sequence diversity is extremely low in <it>R. pachyptila</it>. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events.</p

    An RIG-I-Like RNA Helicase Mediates Antiviral RNAi Downstream of Viral siRNA Biogenesis in Caenorhabditis elegans

    Get PDF
    Dicer ribonucleases of plants and invertebrate animals including Caenorhabditis elegans recognize and process a viral RNA trigger into virus-derived small interfering RNAs (siRNAs) to guide specific viral immunity by Argonaute-dependent RNA interference (RNAi). C. elegans also encodes three Dicer-related helicase (drh) genes closely related to the RIG-I-like RNA helicase receptors which initiate broad-spectrum innate immunity against RNA viruses in mammals. Here we developed a transgenic C. elegans strain that expressed intense green fluorescence from a chromosomally integrated flock house virus replicon only after knockdown or knockout of a gene required for antiviral RNAi. Use of the reporter nematode strain in a feeding RNAi screen identified drh-1 as an essential component of the antiviral RNAi pathway. However, RNAi induced by either exogenous dsRNA or the viral replicon was enhanced in drh-2 mutant nematodes, whereas exogenous RNAi was essentially unaltered in drh-1 mutant nematodes, indicating that exogenous and antiviral RNAi pathways are genetically distinct. Genetic epistatic analysis shows that drh-1 acts downstream of virus sensing and viral siRNA biogenesis to mediate specific antiviral RNAi. Notably, we found that two members of the substantially expanded subfamily of Argonautes specific to C. elegans control parallel antiviral RNAi pathways. These findings demonstrate both conserved and unique strategies of C. elegans in antiviral defense

    Dysglycemias in pregnancy: from diagnosis to treatment. Brazilian consensus statement

    Get PDF
    There is an urgent need to find consensus on screening, diagnosing and treating all degrees of DYSGLYCEMIA that may occur during pregnancies in Brazil, considering that many cases of DYSGLYCEMIA in pregnant women are currently not diagnosed, leading to maternal and fetal complications. For this reason the Brazilian Diabetes Society (SBD) and the Brazilian Federation of Gynecology and Obstetrics Societies (FEBRASGO), got together to introduce this proposal. We present here a joint consensus regarding the standardization of clinical management for pregnant women with any degree of Dysglycemia, on the basis of current information, to improve medical assistance and to avoid related complications of Dysglycemia in pregnancy to the mother and the fetus. This consensus aims to standardize the diagnosis among general practitioners, endocrinologists and obstetricians allowing the dissemination of information in basic health units, public and private services, that are responsible for screening, diagnosing and treating disglycemic pregnant patients

    Evidence of Infection by H5N2 Highly Pathogenic Avian Influenza Viruses in Healthy Wild Waterfowl

    Get PDF
    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl

    Global Analyses of Small Interfering RNAs Derived from Bamboo mosaic virus and Its Associated Satellite RNAs in Different Plants

    Get PDF
    Background: Satellite RNAs (satRNAs), virus parasites, are exclusively associated with plant virus infection and have attracted much interest over the last 3 decades. Upon virus infection, virus-specific small interfering RNAs (vsiRNAs) are produced by dicer-like (DCL) endoribonucleases for anti-viral defense. The composition of vsiRNAs has been studied extensively; however, studies of satRNA-derived siRNAs (satsiRNAs) or siRNA profiles after satRNA co-infection are limited. Here, we report on the small RNA profiles associated with infection with Bamboo mosaic virus (BaMV) and its two satellite RNAs (satBaMVs) in Nicotiana benthamiana and Arabidopsis thaliana. Methodology/Principal Findings: Leaves of N. benthamiana or A. thaliana inoculated with water, BaMV alone or coinoculated with interfering or noninterfering satBaMV were collected for RNA extraction, then large-scale Solexa sequencing. Up to about 20% of total siRNAs as BaMV-specific siRNAs were accumulated in highly susceptible N. benthamiana leaves inoculated with BaMV alone or co-inoculated with noninterfering satBaMV; however, only about 0.1% of vsiRNAs were produced in plants co-infected with interfering satBaMV. The abundant region of siRNA distribution along BaMV and satBaMV genomes differed by host but not by co-infection with satBaMV. Most of the BaMV and satBaMV siRNAs were 21 or 22 nt, of both (+) and (-) polarities; however, a higher proportion of 22-nt BaMV and satBaMV siRNAs were generated in N. benthamiana than in A. thaliana. Furthermore, the proportion of non-viral 24-nt siRNAs was greatly increased in N. benthamiana after virus infection. Conclusions/Significance: The overall composition of vsiRNAs and satsiRNAs in the infected plants reflect the combined action of virus, satRNA and different DCLs in host plants. Our findings suggest that the structure and/or sequence demands of various DCLs in different hosts may result in differential susceptibility to the same virus. DCL2 producing 24-nt siRNAs under biotic stresses may play a vital role in the antiviral mechanism in N. benthamiana
    corecore