166 research outputs found

    Valkai András (1540–1586) Báthory-genealógiája. Báthory István király mint az Árpádok leszármazottja

    Get PDF
    Purpose Heat adaptation (HA) is critical to performance and health in a hot environment. Transition from short-term heat acclimatisation (STHA) to long-term heat acclimatisation (LTHA) is characterised by decreased autonomic disturbance and increased protection from thermal injury. A standard heat tolerance test (HTT) is recommended for validating exercise performance status, but any role in distinguishing STHA from LTHA is unreported. The aims of this study were to (1) define performance status by serial HTT during structured natural HA, (2) evaluate surrogate markers of autonomic activation, including heart rate variability (HRV), in relation to HA status. Methods Participants (n = 13) were assessed by HTT (60-min block-stepping, 50% VO2peak) during STHA (Day 2, 6 and 9) and LTHA (Day 23). Core temperature (Tc) and heart rate (HR) were measured every 5 min. Sampling for HRV indices (RMSSD, LF:HF) and sympathoadrenal blood measures (cortisol, nephrines) was undertaken before and after (POST) each HTT. Results Significant (P < 0.05) interactions existed for Tc, logLF:HF, cortisol and nephrines (two-way ANOVA; HTT by Day). Relative to LTHA, POST results differed significantly for Tc (Day 2, 6 and 9), HR (Day 2), logRMSSD (Day 2 and Day 6), logLF:HF (Day 2 and Day 6), cortisol (Day 2) and nephrines (Day 2 and Day 9). POST differences in HRV (Day 6 vs. 23) were + 9.9% (logRMSSD) and − 18.6% (logLF:HF). Conclusions Early reductions in HR and cortisol characterised STHA, whereas LTHA showed diminished excitability by Tc, HRV and nephrine measures. Measurement of HRV may have potential to aid real-time assessment of readiness for activity in the heat

    Valuing Insect Pollination Services with Cost of Replacement

    Get PDF
    Value estimates of ecosystem goods and services are useful to justify the allocation of resources towards conservation, but inconclusive estimates risk unsustainable resource allocations. Here we present replacement costs as a more accurate value estimate of insect pollination as an ecosystem service, although this method could also be applied to other services. The importance of insect pollination to agriculture is unequivocal. However, whether this service is largely provided by wild pollinators (genuine ecosystem service) or managed pollinators (commercial service), and which of these requires immediate action amidst reports of pollinator decline, remains contested. If crop pollination is used to argue for biodiversity conservation, clear distinction should be made between values of managed- and wild pollination services. Current methods either under-estimate or over-estimate the pollination service value, and make use of criticised general insect and managed pollinator dependence factors. We apply the theoretical concept of ascribing a value to a service by calculating the cost to replace it, as a novel way of valuing wild and managed pollination services. Adjusted insect and managed pollinator dependence factors were used to estimate the cost of replacing insect- and managed pollination services for the Western Cape deciduous fruit industry of South Africa. Using pollen dusting and hand pollination as suitable replacements, we value pollination services significantly higher than current market prices for commercial pollination, although lower than traditional proportional estimates. The complexity associated with inclusive value estimation of pollination services required several defendable assumptions, but made estimates more inclusive than previous attempts. Consequently this study provides the basis for continued improvement in context specific pollination service value estimates

    The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection

    Get PDF
    Nitric oxide (NO) is a toxic free radical produced by neutrophils and macrophages in response to infection. Uropathogenic Escherichia coli (UPEC) induces a variety of defence mechanisms in response to NO, including direct NO detoxification (Hmp, NorVW, NrfA), iron-sulphur cluster repair (YtfE), and the expression of the NO-tolerant cytochrome bd-I respiratory oxidase (CydAB). The current study quantifies the relative contribution of these systems to UPEC growth and survival during infection. Loss of the flavohemoglobin Hmp and cytochrome bd-I elicit the greatest sensitivity to NO-mediated growth inhibition, whereas all but the periplasmic nitrite reductase NrfA provide protection against neutrophil killing and promote survival within activated macrophages. Intriguingly, the cytochrome bd-I respiratory oxidase was the only system that augmented UPEC survival in a mouse model after 2 days, suggesting that maintaining aerobic respiration under conditions of nitrosative stress is a key factor for host colonisation. These findings suggest that while UPEC have acquired a host of specialized mechanisms to evade nitrosative stresses, the cytochrome bd-I respiratory oxidase is the main contributor to NO tolerance and host colonisation under microaerobic conditions. This respiratory complex is therefore of major importance for the accumulation of high bacterial loads during infection of the urinary tract

    Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells

    Get PDF
    Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase—some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR−/− and Eμmyc+mTR−/−) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR−/− tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR−/− cells that had short telomeres. Using mouse mTR+/− and human hTERT+/− primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length

    Examination of NRCAM, LRRN3, KIAA0716, and LAMB1 as autism candidate genes

    Get PDF
    BACKGROUND: A substantial body of research supports a genetic involvement in autism. Furthermore, results from various genomic screens implicate a region on chromosome 7q31 as harboring an autism susceptibility variant. We previously narrowed this 34 cM region to a 3 cM critical region (located between D7S496 and D7S2418) using the Collaborative Linkage Study of Autism (CLSA) chromosome 7 linked families. This interval encompasses about 4.5 Mb of genomic DNA and encodes over fifty known and predicted genes. Four candidate genes (NRCAM, LRRN3, KIAA0716, and LAMB1) in this region were chosen for examination based on their proximity to the marker most consistently cosegregating with autism in these families (D7S1817), their tissue expression patterns, and likely biological relevance to autism. METHODS: Thirty-six intronic and exonic single nucleotide polymorphisms (SNPs) and one microsatellite marker within and around these four candidate genes were genotyped in 30 chromosome 7q31 linked families. Multiple SNPs were used to provide as complete coverage as possible since linkage disequilibrium can vary dramatically across even very short distances within a gene. Analyses of these data used the Pedigree Disequilibrium Test for single markers and a multilocus likelihood ratio test. RESULTS: As expected, linkage disequilibrium occurred within each of these genes but we did not observe significant LD across genes. None of the polymorphisms in NRCAM, LRRN3, or KIAA0716 gave p < 0.05 suggesting that none of these genes is associated with autism susceptibility in this subset of chromosome 7-linked families. However, with LAMB1, the allelic association analysis revealed suggestive evidence for a positive association, including one individual SNP (p = 0.02) and three separate two-SNP haplotypes across the gene (p = 0.007, 0.012, and 0.012). CONCLUSIONS: NRCAM, LRRN3, KIAA0716 are unlikely to be involved in autism. There is some evidence that variation in or near the LAMB1 gene may be involved in autism

    Telomere Shortening Impairs Regeneration of the Olfactory Epithelium in Response to Injury but Not Under Homeostatic Conditions

    Get PDF
    Atrophy of the olfactory epithelium (OE) associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging) on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc−/−) with short telomeres compared to wild type mice (mTerc+/+) with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc−/− mice compared to mTerc+/+ mice. Seven days after chemical induced damage, G3 mTerc−/− mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc+/+ mice (p = 0.031). Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21) rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people

    Modelling the regulation of telomere length: the effects of telomerase and G-quadruplex stabilising drugs

    Get PDF
    Telomeres are guanine-rich sequences at the end of chromosomes which shorten during each replication event and trigger cell cycle arrest and/or controlled death (apoptosis) when reaching a threshold length. The enzyme telomerase replenishes the ends of telomeres and thus prolongs the life span of cells, but also causes cellular immortalisation in human cancer. G-quadruplex (G4) stabilising drugs are a potential anticancer treatment which work by changing the molecular structure of telomeres to inhibit the activity of telomerase. We investigate the dynamics of telomere length in different conformational states, namely t-loops, G-quadruplex structures and those being elongated by telomerase. By formulating deterministic differential equation models we study the effects of various levels of both telomerase and concentrations of a G4-stabilising drug on the distribution of telomere lengths, and analyse how these effects evolve over large numbers of cell generations. As well as calculating numerical solutions, we use quasicontinuum methods to approximate the behaviour of the system over time, and predict the shape of the telomere length distribution. We find those telomerase and G4-concentrations where telomere length maintenance is successfully regulated. Excessively high levels of telomerase lead to continuous telomere lengthening, whereas large concentrations of the drug lead to progressive telomere erosion. Furthermore, our models predict a positively skewed distribution of telomere lengths, that is, telomeres accumulate over lengths shorter than the mean telomere length at equilibrium. Our model results for telomere length distributions of telomerase-positive cells in drug-free assays are in good agreement with the limited amount of experimental data available

    Association and Mutation Analyses of 16p11.2 Autism Candidate Genes

    Get PDF
    Autism is a complex childhood neurodevelopmental disorder with a strong genetic basis. Microdeletion or duplication of a approximately 500-700-kb genomic rearrangement on 16p11.2 that contains 24 genes represents the second most frequent chromosomal disorder associated with autism. The role of common and rare 16p11.2 sequence variants in autism etiology is unknown.To identify common 16p11.2 variants with a potential role in autism, we performed association studies using existing data generated from three microarray platforms: Affymetrix 5.0 (777 families), Illumina 550 K (943 families), and Affymetrix 500 K (60 families). No common variants were identified that were significantly associated with autism. To look for rare variants, we performed resequencing of coding and promoter regions for eight candidate genes selected based on their known expression patterns and functions. In total, we identified 26 novel variants in autism: 13 exonic (nine non-synonymous, three synonymous, and one untranslated region) and 13 promoter variants. We found a significant association between autism and a coding variant in the seizure-related gene SEZ6L2 (12/1106 autism vs. 3/1161 controls; p = 0.018). Sez6l2 expression in mouse embryos was restricted to the spinal cord and brain. SEZ6L2 expression in human fetal brain was highest in post-mitotic cortical layers, hippocampus, amygdala, and thalamus. Association analysis of SEZ6L2 in an independent sample set failed to replicate our initial findings.We have identified sequence variation in at least one candidate gene in 16p11.2 that may represent a novel genetic risk factor for autism. However, further studies are required to substantiate these preliminary findings
    corecore