39 research outputs found

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    The PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science

    The endoscopic endonasal approach for the management of craniopharyngiomas: a series of 103 patients.

    No full text
    Object. Despite their benign histological appearance, craniopharyngiomas can be considered a challenge for the neurosurgeon and a possible source of poor prognosis for the patient. With the widespread use of the endoscope in endonasal surgery, this route has been proposed over the past decade as an alternative technique for the removal of craniopharyngiomas. Methods. The authors retrospectively analyzed data from a series of 103 patients who underwent the endoscopic endonasal approach at two institutions (Division of Neurosurgery of the Universit\uc3\ua0 degli Studi di Napoli Federico II, Naples, Italy, and Division of Neurosurgery of the Bellaria Hospital, Bologna, Italy), between January 1997 and December 2012, for the removal of infra- and/or supradiaphragmatic craniopharyngiomas. Twenty-nine patients (28.2%) had previously been surgically treated. Results. The authors achieved overall gross-total removal in 68.9% of the cases: 78.9% in purely infradiaphragmatic lesions and 66.3% in lesions involving the supradiaphragmatic space. Among lesions previously treated surgically, the gross-total removal rate was 62.1%. The overall improvement rate in visual disturbances was 74.7%, whereas worsening occurred in 2.5%. No new postoperative defect was noted. Worsening of the anterior pituitary function was reported in 46.2% of patients overall, and there were 38 new cases (48.1% of 79) of postoperative diabetes insipidus. The most common complication was postoperative CSF leakage; the overall rate was 14.6%, and it diminished to 4% in the last 25 procedures, thanks to improvement in reconstruction techniques. The mortality rate was 1.9%, with a mean follow-up duration of 48 months (range 3-246 months). Conclusions. The endoscopic endonasal approach has become a valid surgical technique for the management of craniopharyngiomas. It provides an excellent corridor to infra- and supradiaphragmatic midline craniopharyngiomas, including the management of lesions extending into the third ventricle chamber. Even though indications for this approach are rigorously lesion based, the data in this study confirm its effectiveness in a large patient series. \uc2\ua9AANS, 2014

    Efficacy of Pharmacokinetics-Directed Busulfan, Cyclophosphamide, and Etoposide Conditioning and Autologous Stem Cell Transplantation for Lymphoma: Comparison of a Multicenter Phase II Study and CIBMTR Outcomes.

    Get PDF
    Busulfan, cyclophosphamide, and etoposide (BuCyE) is a commonly used conditioning regimen for autologous stem cell transplantation (ASCT). This multicenter, phase II study examined the safety and efficacy of BuCyE with individually adjusted busulfan based on preconditioning pharmacokinetics. The study initially enrolled Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) patients ages 18 to 80 years but was amended due to high early treatment-related mortality (TRM) in patients > 65 years. BuCyE outcomes were compared with contemporaneous recipients of carmustine, etoposide, cytarabine, and melphalan (BEAM) from the Center for International Blood and Marrow Transplant Research. Two hundred seven subjects with HL (n = 66) or NHL (n = 141) were enrolled from 32 centers in North America, and 203 underwent ASCT. Day 100 TRM for all subjects (n = 203), patients > 65 years (n = 17), and patients ≤ 65 years (n = 186) were 4.5%, 23.5%, and 2.7%, respectively. The estimated rates of 2-year progression-free survival (PFS) were 33% for HL and 58%, 77%, and 43% for diffuse large B cell lymphoma (DLBCL; n = 63), mantle cell lymphoma (MCL; n = 29), and follicular lymphoma (FL; n = 23), respectively. The estimated rates of 2-year overall survival (OS) were 76% for HL and 65%, 89%, and 89% for DLBCL, MCL, and FL, respectively. In the matched analysis rates of 2-year TRM were 3.3% for BuCyE and 3.9% for BEAM, and there were no differences in outcomes for NHL. Patients with HL had lower rates of 2-year PFS with BuCyE, 33% (95% CI, 21% to 46%), than with BEAM, 59% (95% CI, 52% to 66%), with no differences in TRM or OS. BuCyE provided adequate disease control and safety in B cell NHL patients ≤ 65 years but produced worse PFS in HL patients when compared with BEAM

    Unpolarized transverse momentum dependent parton distribution functions beyond leading twist in quark models

    No full text
    corecore