771 research outputs found

    How equitable is vocational rehabilitation in Sweden? A review of evidence on the implementation of a national policy framework

    Get PDF
    Purpose. Under the national framework law in Sweden, all eligible people should have equal chances of receiving vocational rehabilitation. We aimed to review the evidence on (1) whether access to vocational rehabilitation is equitable in practice and (2) whether the outcomes vary for different groups in the population. Method. Systematic review of studies in Sweden that reported diagnostic or socio-demographic characteristics of people offered or taking up rehabilitation programmes and outcomes of such programmes for different diagnostic and socio-demographic groups. Searches of 11 relevant electronic databases, 15 organisational websites, citation searching and contact with experts in the field, for the period 1990–2009. Results. A total of 11 studies were included in the final review, six of which addressed review question (1) and seven addressed review question (2). All the six observational studies of access reported biased selection into vocational rehabilitation: greater likelihood for men, younger people, those with longer-term sick leave, those with lower income, employed rather than unemployed people and those with musculoskeletal and mental disorders or alcohol abuse. Having had a rehabilitation investigation also increased the likelihood of receiving vocational rehabilitation. Differential outcome of rehabilitation was reported in seven studies: outcomes were better for men, younger people, employed individuals, those with shorter sick leave and those with higher income. Selection into vocational rehabilitation was perceived as important for successful outcomes, but success also depended on the state of the local labour market. Conclusions. There is evidence of socio-demographic differences in access to and outcomes of vocational rehabilitation in Sweden, even though the national framework law is meant to apply to everyone. Few studies have deliberately measured differential access or outcomes, and there is a need for this kind of equity analysis of population-wide policies. Studies evaluating the effects of vocational rehabilitation must consider selection into the programmes for adequate interpretation of impact results

    Impaired Spleen Formation Perturbs Morphogenesis of the Gastric Lobe of the Pancreas

    Get PDF
    Despite the extensive use of the mouse as a model for studies of pancreas development and disease, the development of the gastric pancreatic lobe has been largely overlooked. In this study we use optical projection tomography to provide a detailed three-dimensional and quantitative description of pancreatic growth dynamics in the mouse. Hereby, we describe the epithelial and mesenchymal events leading to the formation of the gastric lobe of the pancreas. We show that this structure forms by perpendicular growth from the dorsal pancreatic epithelium into a distinct lateral domain of the dorsal pancreatic mesenchyme. Our data support a role for spleen organogenesis in the establishment of this mesenchymal domain and in mice displaying perturbed spleen development, including Dh +/−, Bapx1−/− and Sox11−/−, gastric lobe development is disturbed. We further show that the expression profile of markers for multipotent progenitors is delayed in the gastric lobe as compared to the splenic and duodenal pancreatic lobes. Altogether, this study provides new information regarding the developmental dynamics underlying the formation of the gastric lobe of the pancreas and recognizes lobular heterogeneities regarding the time course of pancreatic cellular differentiation. Collectively, these data are likely to constitute important elements in future interpretations of the developing and/or diseased pancreas

    Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake.

    Get PDF
    During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m–2 · a–1 (1,42 tC · lake–1 · a–1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (< 7 mg · m–3) and comparatively high background light attenuation (kw = 0,525 m–1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent. Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (A) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis

    Retinoic Acid Promotes the Generation of Pancreatic Endocrine Progenitor Cells and Their Further Differentiation into β-Cells

    Get PDF
    The identification of secreted factors that can selectively stimulate the generation of insulin producing β-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based β-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of β-cells during normal pancreatic development such putative factors may be identified. In the mouse, β-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of β-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when β-cells are generated. We also provide evidence that RA induces the generation of Ngn3+ endocrine progenitor cells and stimulates their further differentiation into β-cells by activating a program of cell differentiation that recapitulates the normal temporal program of β-cell differentiation

    PAX4 Enhances Beta-Cell Differentiation of Human Embryonic Stem Cells

    Get PDF
    Background Human embryonic stem cells (HESC) readily differentiate into an apparently haphazard array of cell types, corresponding to all three germ layers, when their culture conditions are altered, for example by growth in suspension as aggregates known as embryoid bodies (EBs). However, this diversity of differentiation means that the efficiency of producing any one particular cell type is inevitably low. Although pancreatic differentiation has been reported from HESC, practicable applications for the use of β-cells derived from HESC to treat diabetes will only be possible once techniques are developed to promote efficient differentiation along the pancreatic lineages. Methods and Findings Here, we have tested whether the transcription factor, Pax4 can be used to drive the differentiation of HESC to a β-cell fate in vitro. We constitutively over-expressed Pax4 in HESCs by stable transfection, and used Q-PCR analysis, immunocytochemistry, ELISA, Ca2+ microfluorimetry and cell imaging to assess the role of Pax4 in the differentiation and intracellular Ca2+ homeostasis of β-cells developing in embryoid bodies produced from such HESC. Cells expressing key β-cell markers were isolated by fluorescence-activated cell sorting after staining for high zinc content using the vital dye, Newport Green. Conclusion Constitutive expression of Pax4 in HESC substantially enhances their propensity to form putative β-cells. Our findings provide a novel foundation to study the mechanism of pancreatic β-cells differentiation during early human development and to help evaluate strategies for the generation of purified β-cells for future clinical applications

    Dietary Essential Amino Acids Affect the Reproduction of the Keystone Herbivore Daphnia pulex

    Get PDF
    Recent studies have indicated that nitrogen availability can be an important determinant of primary production in freshwater lakes and that herbivore growth can be limited by low dietary nitrogen availability. Furthermore, a lack of specific essential nitrogenous biochemicals (such as essential amino acids) might be another important constraint on the fitness of consumers. This might be of particular importance for cladoceran zooplankton, which can switch between two alternative reproductive strategies – the production of subitaneously developing and resting eggs. Here, we hypothesize that both the somatic growth and the type of reproduction of the aquatic keystone herbivore Daphnia is limited by the availability of specific essential amino acids in the diet. In laboratory experiments, we investigated this hypothesis by feeding a high quality phytoplankton organism (Cryptomonas) and a green alga of moderate nutritional quality (Chlamydomonas) to a clone of Daphnia pulex with and without the addition of essential amino acids. The somatic growth of D. pulex differed between the algae of different nutritional quality, but not dependent on the addition of dissolved amino acids. However, in reproduction experiments, where moderate crowding conditions at saturating food quantities were applied, addition of the essential amino acids arginine and histidine (but not lysine and threonine) increased the total number and the developmental stage of subitaneous eggs. While D. pulex did not produce resting eggs on Cryptomonas, relatively high numbers of resting eggs were released on Chlamydomonas. When arginine and histidine were added to the green algal diet, the production of resting eggs was effectively suppressed. This demonstrates the high, but previously overlooked importance of single essential amino acids for the reproductive strategy of the aquatic keystone herbivore Daphnia

    Gene Expression Profiling of a Mouse Model of Pancreatic Islet Dysmorphogenesis

    Get PDF
    In the past decade, several transcription factors critical for pancreas organogenesis have been identified. Despite this success, many of the factors necessary for proper islet morphogenesis and function remain uncharacterized. Previous studies have shown that transgenic over-expression of the transcription factor Hnf6 specifically in the pancreatic endocrine cell lineage resulted in disruptions in islet morphogenesis, including dysfunctional endocrine cell sorting, increased individual islet size, increased number of peripheral endocrine cell types, and failure of islets to migrate away from the ductal epithelium. The mechanisms whereby maintained Hnf6 causes defects in islet morphogenesis have yet to be elucidated.We exploited the dysmorphic islets in Hnf6 transgenic animals as a tool to identify factors important for islet morphogenesis. Genome-wide microarray analysis was used to identify differences in the gene expression profiles of late gestation and early postnatal total pancreas tissue from wild type and Hnf6 transgenic animals. Here we report the identification of genes with an altered expression in Hnf6 transgenic animals and highlight factors with potential importance in islet morphogenesis. Importantly, gene products involved in cell adhesion, cell migration, ECM remodeling and proliferation were found to be altered in Hnf6 transgenic pancreata, revealing specific candidates that can now be analyzed directly for their role in these processes during islet development.This study provides a unique dataset that can act as a starting point for other investigators to explore the role of the identified genes in pancreatogenesis, islet morphogenesis and mature beta cell function

    Differentiation of Mouse Embryonic Stem Cells toward Functional Pancreatic ß-Cell Surrogates through Epigenetic Regulation of Pdx1 by Nitric Oxide

    Get PDF
    Pancreatic and duodenal homeobox 1 (Pdx1) is a transcription factor that regulates the embryonic development of the pancreas and the differentiation toward ß cells. Previously, we have shown that exposure of mouse embryonic stem cells (mESCs) to high concentrations of diethylenetriamine nitric oxide adduct (DETA-NO) triggers differentiation events and promotes the expression of Pdx1. Here we report evidence that Pdx1 expression is associated with release of polycomb repressive complex 2 (PRC2) and P300 from its promoter region. These events are accompanied by epigenetic changes in bivalent markers of histones trimethylated histone H3 lysine 27 (H3K27me3) and H3K4me3, site-specific changes in DNA methylation, and no change in H3 acetylation. On the basis of these findings, we developed a protocol to differentiate mESCs toward insulin-producing cells consisting of sequential exposure to DETA-NO, valproic acid, and P300 inhibitor (C646) to enhance Pdx1 expression and a final maturation step of culture in suspension to form cell aggregates. This small molecule-based protocol succeeds in obtaining cells that express pancreatic ß-cell markers such as PDX1, INS1, GCK, and GLUT2 and respond in vitro to high glucose and KClCentro Anadaluz de Biología Molecular y Medicina Regenerativa (CABIMER)Postprin

    Common Variation in ISL1 Confers Genetic Susceptibility for Human Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common birth abnormality and the etiology is unknown in the overwhelming majority of cases. ISLET1 (ISL1) is a transcription factor that marks cardiac progenitor cells and generates diverse multipotent cardiovascular cell lineages. The fundamental role of ISL1 in cardiac morphogenesis makes this an exceptional candidate gene to consider as a cause of complex congenital heart disease. We evaluated whether genetic variation in ISL1 fits the common variant–common disease hypothesis. A 2-stage case-control study examined 27 polymorphisms mapping to the ISL1 locus in 300 patients with complex congenital heart disease and 2,201 healthy pediatric controls. Eight genic and flanking ISL1 SNPs were significantly associated with complex congenital heart disease. A replication study analyzed these candidate SNPs in 1,044 new cases and 3,934 independent controls and confirmed that genetic variation in ISL1 is associated with risk of non-syndromic congenital heart disease. Our results demonstrate that two different ISL1 haplotypes contribute to risk of CHD in white and black/African American populations

    Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.

    Get PDF
    Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol.LB is supported by an EMBO Postdoctoral fellowship (EMBO ALTF 794-2014). CH is supported by a Cambridge Stem Cell Institute Seed Fund award and the Herchel Smith Fund. BK is supported by a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society. MH is a Wellcome Trust Sir Henry Dale Fellow and is jointly funded by the Wellcome Trust and the Royal Society (104151/Z/14/Z).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nprot.2016.097
    • …
    corecore