26 research outputs found

    Deep-Focus Diagnostics of Sunspot Structure

    Full text link
    In sequel to Moradi et al. [2009, ApJ, 690, L72], we employ two established numerical forward models (a 3D ideal MHD solver and MHD ray theory) in conjunction with time-distance helioseismology to probe the lateral extent of wave-speed perturbations produced in regions of strong, near-surface magnetic fields. We continue our comparisons of forward modeling approaches by extending our previous surface-focused travel-time measurements with a common midpoint deep-focusing scheme that avoids the use of oscillation signals within the sunspot region. The idea is to also test MHD ray theory for possible application in future inverse methods.Comment: 8 pages, 4 figures, published in the conference proceedings "Magnetic Coupling between the Interior and Atmosphere of the Sun", edited by S.S. Hasan and R.J. Rutten; Astrophysics and Space Science Proceeding

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Dynamism in the solar core

    Full text link
    Recent results of a mixed shell model heated asymmetrically by transient increases in nuclear burning indicate the transient generation of small hot spots inside the Sun somewhere between 0.1 and 0.2 solar radii. These hot bubbles are followed by a nonlinear differential equation system with finite amplitude non-homologous perturbations which is solved in a solar model. Our results show the possibility of a direct connection between the dynamic phenomena of the solar core and the atmospheric activity. Namely, an initial heating about DQ_0 ~ 10^{31}-10^{37} ergs can be enough for a bubble to reach the outer convective zone. Our calculations show that a hot bubble can arrive into subphotospheric regions with DQ_final ~ 10^{28} - 10^{34} ergs with a high speed, up to 10 km s-1, approaching the local sound speed. We point out that the developing sonic boom transforms the shock front into accelerated particle beam injected upwards into the top of loop carried out by the hot bubble above its forefront traveling from the solar interior. As a result, a new perspective arises to explain flare energetics. We show that the particle beams generated by energetic deep-origin hot bubbles in the subphotospheric layers have masses, energies, and chemical compositions in the observed range of solar chromospheric and coronal flares. It is shown how the emergence of a hot bubble into subphotospheric regions offers a natural mechanism that can generate both the eruption leading to the flare and the observed coronal magnetic topology for reconnection. We show a list of long-standing problems of solar physics that our model explains. We present some predictions for observations, some of which are planned to be realized in the near future.Comment: 44 pages, 20 figure

    Angular-momentum coupling through the tachocline

    Full text link
    Astronomical observation of stellar rotation suggests that at least the surface layers of the Sun have lost a substantial amount of the angular momentum that they possessed at the beginning of the main-sequence phase of evolution; and solar-wind observations indicate that magnetic coupling is still draining angular momentum from the Sun today. In addition, helioseismological analysis has shown that the specific angular momentum at the top of the almost uniformly rotating radiative interior is approximately (although not exactly) the same as the spherically averaged value at the base of the (differentially rotating) convection zone, suggesting that angular momentum is being transported through the tachocline. The mechanism by which that transport is taking place is not understood. Nor is there a consensus of opinion. I review some of the suggestions that have been put forward, biassing my discussion, no doubt, according to my own opinions.Comment: 19 pages, 7 figures, conference on `Magnetic coupling between the interior and the atmosphere of the Sun' ed. S. S. Hasan and R. J. Rutten, Bangalore, December 200

    Stochastic Seismic Emission From Acoustic Glories and the Quiet Sun

    Full text link
    Abstract. Helioseismic images of multipolar active regions show enhanced seismic emission in 5-mHz oscillations in a halo surrounding the active region called the ‘acoustic glory’. The acoustic glories contain elements that sustain an average seismic emission 50 % greater than similar elements in the quiet Sun. The most intense seismic emitters tend to form strings in non-magnetic regions, sometimes marking the borders of weak magnetic regions and the separation between weak magnetic regions of opposite polarity. This study compares the temporal character of seismic emission from acoustic glories with that from the quiet Sun. The power distribution of quiet-Sun seismic emission far from solar activity is exponential, as for random Gaussian noise, and therefore not perceivably episodic. The distribution of seismic power emanating from the most intense elements that comprise the acoustic glories is exponential out to approximately 4 times the average power emitted by the quiet Sun. Above this threshold the latter distribution shows significant saturation, suggesting the operation of a hydromechanical non-linearity that sets limits on the acoustic power generated by the convection zone. This could give us considerable insight into the physical mechanism of seismic emission from the near subphotosphere. 1

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Exploiting solar visible-range observations by inversion techniques: from flows in the solar subsurface to a flaring atmosphere

    Full text link
    Observations of the Sun in the visible spectral range belong to standard measurements obtained by instruments both on the ground and in the space. Nowadays, both nearly continuous full-disc observations with medium resolution and dedicated campaigns of high spatial, spectral and/or temporal resolution constitute a holy grail for studies that can capture (both) the long- and short-term changes in the dynamics and energetics of the solar atmosphere. Observations of photospheric spectral lines allow us to estimate not only the intensity at small regions, but also various derived data products, such as the Doppler velocity and/or the components of the magnetic field vector. We show that these measurements contain not only direct information about the dynamics of solar plasmas at the surface of the Sun but also imprints of regions below and above it. Here, we discuss two examples: First, the local time-distance helioseismology as a tool for plasma dynamic diagnostics in the near subsurface and second, the determination of the solar atmosphere structure during flares. The methodology in both cases involves the technique of inverse modelling.Comment: 29 pages, 15 figures. Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    The PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science
    corecore