643 research outputs found

    Autonomous Tissue Retraction in Robotic Assisted Minimally Invasive Surgery – A Feasibility Study

    Get PDF
    In this letter, we describe a novel framework for planning and executing semi-autonomous tissue retraction in minimally invasive robotic surgery. The approach is aimed at removing tissue flaps or connective tissue from the surgical area autonomously, thus exposing the underlying anatomical structures. First, a deep neural network is used to analyse the endoscopic image and detect candidate tissue flaps obstructing the surgical field. A procedural algorithm for planning and executing the retraction gesture is then developed from extended discussions with clinicians. Experimental validation, carried out on a DaVinci Research Kit, shows an average 25% increase of the visible background after retraction. Another significant contribution of this letter is a dataset containing 1,080 labelled surgical stereo images and the associated depth maps, representing tissue flaps in different scenarios. The work described in this letter is a fundamental step towards the autonomous execution of tissue retraction, and the first example of simultaneous use of deep learning and procedural algorithms. The same framework could be applied to a wide range of autonomous tasks, such as debridement and placement of laparoscopic clips

    RCAN1.4 regulates VEGFR-2 internalisation, cell polarity and migration in human microvascular endothelial cells

    Get PDF
    Regulator of calcineurin 1 (RCAN1) is an endogenous inhibitor of the calcineurin pathway in cells. It is expressed as two isoforms in vertebrates: RCAN1.1 is constitutively expressed in most tissues, whereas transcription of RCAN1.4 is induced by several stimuli that activate the calcineurin-NFAT pathway. RCAN1.4 is highly upregulated in response to VEGF in human endothelial cells in contrast to RCAN1.1 and is essential for efficient endothelial cell migration and tubular morphogenesis. Here, we show that RCAN1.4 has a role in the regulation of agonist-stimulated VEGFR-2 internalisation and establishment of endothelial cell polarity. siRNA-mediated gene silencing revealed that RCAN1 plays a vital role in regulating VEGF-mediated cytoskeletal reorganisation and directed cell migration and sprouting angiogenesis. Adenoviral-mediated overexpression of RCAN1.4 resulted in increased endothelial cell migration. Antisense-mediated morpholino silencing of the zebrafish RCAN1.4 orthologue revealed a disrupted vascular development further confirming a role for the RCAN1.4 isoform in regulating vascular endothelial cell physiology. Our data suggest that RCAN1.4 plays a novel role in regulating endothelial cell migration by establishing endothelial cell polarity in response to VEGF

    Prostate-specific membrane antigen: evidence for the existence of a second related human gene.

    Get PDF
    Prostate-specific membrane antigen (PSM) is a glycoprotein recognised by the prostate-specific monoclonal antibody 7E11-C5, which was raised against the human prostatic carcinoma cell line LNCaP. A cDNA clone for PSM has been described. PSM is of clinical importance for a number of reasons. Radiolabelled antibody is being evaluated both as an imaging agent and as an immunotherapeutic in prostate cancer. Use of the PSM promoter has been advocated for gene therapy applications to drive prostate-specific gene expression. Although PSM is expressed in normal prostate as well as in primary and secondary prostatic carcinoma, different splice variants in malignant tissue afford the prospect of developing reverse transcription-polymerase chain reaction (RT-PCR)-based diagnostic screens for the presence of prostatic carcinoma cells in the circulation. We have undertaken characterisation of the gene for PSM in view of the protein's interesting characteristics. Unexpectedly, we have found that there are other sequences apparently related to PSM in the human genome and that PSM genomic clones map to two separate and distinct loci on human chromosome 11. Investigation of the function of putative PSM-related genes will be necessary to enable us to define fully the role of PSM itself in the development of prostatic carcinoma and in the clinical management of this malignancy

    Ingredients for understanding brain and behavioral evolution: Ecology, phylogeny, and mechanism

    Get PDF
    This is the final version of the article. Available from The Comparative Cognition Society via the DOI in this record.Uncovering the neural correlates and evolutionary drivers of behavioral and cognitive traits has been held back by traditional perspectives on which correlations to look for-in particular, anthropocentric conceptions of cognition and coarse-grained brain measurements. We welcome our colleagues' comments on our overview of the field and their suggestions for how to move forward. Here, we counter, clarify, and extend some points, focusing on the merits of looking for the "best" predictor of cognitive ability, the sources and meaning of "noise," and the ways in which we can deduce and test meaningful conclusions from comparative analyses of complex traits

    Beyond brain size: Uncovering the neural correlates of behavioral and cognitive specialization

    Get PDF
    © Comparative Cognition Society. Despite prolonged interest in comparing brain size and behavioral proxies of "intelligence" across taxa, the adaptive and cognitive significance of brain size variation remains elusive. Central to this problem is the continued focus on hominid cognition as a benchmark and the assumption that behavioral complexity has a simple relationship with brain size. Although comparative studies of brain size have been criticized for not reflecting how evolution actually operates, and for producing spurious, inconsistent results, the causes of these limitations have received little discussion. We show how these issues arise from implicit assumptions about what brain size measures and how it correlates with behavioral and cognitive traits. We explore how inconsistencies can arise through heterogeneity in evolutionary trajectories and selection pressures on neuroanatomy or neurophysiology across taxa. We examine how interference from ecological and life history variables complicates interpretations of brain-behavior correlations and point out how this problem is exacerbated by the limitations of brain and cognitive measures. These considerations, and the diversity of brain morphologies and behavioral capacities, suggest that comparative brain-behavior research can make greater progress by focusing on specific neuroanatomical and behavioral traits within relevant ecological and evolutionary contexts. We suggest that a synergistic combination of the "bottom-up" approach of classical neuroethology and the "top-down" approach of comparative biology/psychology within closely related but behaviorally diverse clades can limit the effects of heterogeneity, interference, and noise. We argue that this shift away from broad-scale analyses of superficial phenotypes will provide deeper, more robust insights into brain evolution

    fMRI evidence of ‘mirror’ responses to geometric shapes

    Get PDF
    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control

    Contorted and ordinary body postures in the human brain

    Get PDF
    Social interaction and comprehension of non-verbal behaviour requires a representation of people’s bodies. Research into the neural underpinnings of body representation implicates several brain regions including extrastriate and fusiform body areas (EBA and FBA), superior temporal sulcus (STS), inferior frontal gyrus (IFG) and inferior parietal lobule (IPL). The different roles played by these regions in parsing familiar and unfamiliar body postures remain unclear. We examined the responses of this body observation network to static images of ordinary and contorted postures by using a repetition suppression design in functional neuroimaging. Participants were scanned whilst observing static images of a contortionist or a group of objects in either ordinary or unusual configurations, presented from different viewpoints. Greater activity emerged in EBA and FBA when participants viewed contorted compared to ordinary body postures. Repeated presentation of the same posture from different viewpoints lead to suppressed responses in the fusiform gyrus as well as three regions that are characteristically activated by observing moving bodies, namely STS, IFG and IPL. These four regions did not distinguish the image viewpoint or the plausibility of the posture. Together, these data define a broad cortical network for processing static body postures, including regions classically associated with action observation

    Expecting to lift a box together makes the load look lighter

    Get PDF
    The action abilities of an individual observer modulate his or her perception of spatial properties of the environment and of objects. The present study investigated how joint action abilities shape perception. Four experiments examined how the intention to lift an object with another individual affects perceived weight. In Experiments 1, 2a, and 2b, participants judged the perceived weight of boxes while expecting to lift them either alone or with a co-actor. In Experiment 3, the co-actor was healthy or injured. Participants intending to lift a box with a co-actor perceived the box as lighter than participants intending to lift the same box alone, provided that the co-actor appeared healthy and therefore capable of helping. These findings suggest that anticipated effort modulates the perception of object properties in the context of joint action. We discuss implications for the role of action prediction and action simulation processes in social interaction

    LKB1/AMPK and PKA Control ABCB11 Trafficking and Polarization in Hepatocytes.

    Get PDF
    Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation
    • …
    corecore