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Abstract

Cells organize in complex three-dimensional patterns by interacting with proteins along with the surrounding extracellular
matrix. This organization provides the mechanical and chemical cues that ultimately influence a cell’s differentiation and
function. Here, we computationally investigate the pattern formation process of vascular mesenchymal cells arising from
their interaction with Bone Morphogenic Protein-2 (BMP-2) and its inhibitor, Matrix Gla Protein (MGP). Using a first-principles
approach, we derive a reaction-diffusion model based on the biochemical interactions of BMP-2, MGP and cells. Simulations
of the model exhibit a wide variety of three-dimensional patterns not observed in a two-dimensional analysis. We
demonstrate the emergence of three types of patterns: spheres, tubes, and sheets, and show that the patterns can be tuned
by modifying parameters in the model such as the degradation rates of proteins and chemotactic coefficient of cells. Our
model may be useful for improved engineering of three-dimensional tissue structures as well as for understanding three
dimensional microenvironments in developmental processes.
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Introduction

The evolution of tissue form in development, wound healing,

and regeneration is a dynamic process that involves the integra-

tion of local cues on cell fate and function. These cues include

interactions with soluble factors (growth factors, morphogens,

dissolved gases) and insoluble factors (extracellular matrix,

neighboring cells) in a three-dimensional context. A fundamental

understanding of how tissue structure evolves is critical to the

rational development of engineered tissues for therapeutic

applications. There has been increasing evidence that culture of

cells in three-dimensions compared to two-dimensions can

dramatically impact cellular organization, polarity, and drug res-

ponsiveness[1–7]. Here we sought to isolate the role of diffu-

sion/reaction gradients in three dimensions while excluding

morphogenetic effects.

Although there have been several modeling efforts to study cell

pattern formation and organization in two dimensions[8–18],

there has not been much attention devoted to three-dimensional

systems[3,19]. Recently, a phenomenological two dimensional

reaction-diffusion model with morphogen identified as Bone

Morphogenic Protein 2 (BMP-2) and inhibitor Matrix Gla Protein

(MGP) was shown to produce the patterning of human vascular

mesenchymal cells[11]. Using a first-principles approach we de-

rive a model based on the underlying biochemical interactions

of BMP-2 and MGP and show that our model produces similar

patterns as two dimensional experiments. We then perform

simulations with our model in three dimensions and explored

the types of patterns observed and effect of model parameters. We

find that the patterns seen in three dimensions are strikingly

different than those seen in two-dimensions and we examine their

stability numerically. We discuss these findings in the context of

engineering desired tissue structures and also relate to the

important differences seen in cell organization between two and

three dimensional settings.

The morphogen in the model is Bone Morphogenic Protein 2

(BMP-2), a member of the TGF-b superfamily which to date has

over 20 members[20,21]. BMP-2 is able to dimerize to its

biologically active form [26 kDa for the dimer] and is a potent

stimulator of cells to differentiate to an osteoblast-like fate.

This occurs through the binding of a BMP-2 dimer to a TGF-b
receptor complex, which then functions to phosphorylate the

Smad proteins. These proteins then translocate to the nucleus and

act as transcription factors for various genes including the gene for

BMP-2[11,22]. In addition, BMP-2 has been shown to be a strong

chemoattractant for these cells and thus is a good candidate for a

morphogen in the reaction-diffusion model [11,23]. MGP is a

smaller (10.4 kDa) regulatory protein for BMP-2. MGP is thought

to inactivate BMP-2 by physical binding to BMP-2 and prevent

binding to the receptors [24–31]. The presence of BMP-2 also

stimulates production of MGP through an unknown mecha-

nism[11,32]. In Fig. 1, an illustration of the system is shown with

the relevant biochemical reactions.

Our simplified model for the reaction-diffusion process of the

vascular mesenchymal cell system is derived from the underlying

biochemical reactions. The reactions for BMP-2, MGP, and BMP-
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2 Receptor complexes on the surface of cells are shown

schematically in Fig. 1. Transcription, translation, and export

out of the cell for BMP-2 and MGP were lumped together for

simplicity. We simplified the model using a multiple time scale

analysis, which takes advantage of the difference in time scales

between the kinetic processes and assumes a local quasi-

equilibrium. Below, the model equations are presented in a scaled

form with dimensionless concentrations of BMP-2 (U), MGP (V),

and cells (n) as functions of space (x,y,z) and time (t). The

derivation of the model can be found in the Supplementary Info.
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In the first equation, the first term on the r.h.s represent

diffusion of BMP-2, the second term represents an autocatalytic

production of BMP-2 that saturates, the third term is a

degradation of BMP-2 at rate c, and the fourth is a nonlinear

degradation by physical binding of BMP-2 to MGP. The equation

for MGP has a similar diffusion term as well as production by

BMP-2 term which is known not to saturate[11,27], degradation

of MGP at rate e, and nonlinear degradation by physical binding

of BMP-2 to MGP. The equation for cell concentration (n) has a

diffusion term as well as chemotaxis term that accounts for cells

movement toward higher regions of chemoattractant (BMP-2) and

also depends on cell density. Parameters D =
DU
DV

,q~ Dn
DV

are the

ratios of diffusion coefficients for BMP-2 to MGP, Cells to MGP,

respectively. The coefficient b represents the relative production of

MGP to BMP-2, c and e represent the degradation of U and V,

and K represents the nonlinear degradation of U and V by physical

binding. The parameter c is a scaling parameter for the relation

between domain size and chemical kinetics.

The diffusion coefficients, production rate of BMP-2, degra-

dation rates of BMP-2 and MGP were taken from the literature

[11,33]. The production of MGP is known to be similar to BMP-

2 (although its value uncertain) and was set to a value of b~1:1.

The nonlinear degradation coefficient, K , can be expressed in

terms of kinetic rate parameters but these rates are also

unknown, and thus was set to K~0:25 along with b~1:1 to

reproduce the stripe patterns seen in previous work[11]. The

mean cell density n0, which is conserved in the dynamics is set to

n0 = 1.

Results

The mathematical model admits up to 3 real uniform steady

states for the parameter region we explored. Of these, one is

always the zero solution{U~0,V~0,n = 1}, the other is

low {U~0:1,V~0:2,n = 1}, and the third is high

{U~1:0,V~3:0,n~1}. In the supplementary info, a linear

stability analysis was carried out to analyze the stability of these

steady states and determine the region where patterns are found.

Briefly, the linear stability analysis analyzes a small perturbation

from the steady state and determines which modes of the

perturbation are unstable, which generally corresponds to the size

of the perturbation. Among these states, the zero solution is always

stable and the low solution is always unstable. The high state is

stable with respect to spatially uniform perturbations, but it can

be unstable with respect to spatially non-uniform modes. We

performed simulations and analyzed the stability of these steady

states (Supplementary Info) and found that only the higher steady

state produced patterns that resembled the experiments and is likely

the physiologically relevant one. We start with an initial condition at

this steady state and add a 1% relative random noise to model cell

variation[11]. The simulations shown in Figures 2 and 3 are the

state distribution of cells with red color indicating high levels of cell

density and blue levels indicating low levels of cell density. The

lowest values of cell density are made transparent for visual clarity.

The parameters used unless otherwise specified were D = 0.005,

q = 0.003, x~10{5, K = 0.25, B = 1.1, c = 600 and the box length

of the simulation is equivalent to 1 cm.

Figure 1. Diagram showing interactions between BMP-2, MGP, and cells in culture. The binding of a BMP-2 dimer to receptors R and S
stimulates production of BMP-2 and MGP, while the inding of MGP to BMP-2 outside of the cell prevents this process. The production of BMP-2 occurs
via the Smad signalling pathway and the production of MGP occurs through an unknown pathway.
doi:10.1371/journal.pone.0020182.g001
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Simulations in two dimensions varying the parameters c
(degradation of BMP-2) and k (saturation of production of

BMP-2) are shown in Figure 2. Three basic types of steady state

patterns emerge from the model (Fig. 2a–c): (a) spots, (b) stripes,

and (c) inverse spots. By stripe patterns we mean that cells ar-

range in higher densities along stripe regions with characteristic

thickness. The spot patterns correspond to clusters of cells and the

inverse spots show connected structures of cells with gaps of no

cells in between. The stripe and spot patterns were previously seen

in the experimental two-dimensional setting, although the inverse

spot patterns were not. Fig. 2(d) shows where the patterns are

found in parameter space upon scanning parameters c and k. The

solid line between the regions of no patterns and patterns is

predicted by our linear stability analysis and matches with our

visual inspection of the simulations. We used a 20620 grid of

numerical simulations and visually inspected the simulations to

determine their pattern type. In regions that show existence of

more than one pattern we labeled the pattern type by the majority

of the pattern seen.

In Fig. 3, we show the simulations in three dimensions varying

the same parameters c and k. In three dimensions, the steady state

patterns produced are (a) spheres of cells, (b) solid tubes, and (c)

highly interconnected tubes which have planar surfaces. These

three pattern types are somewhat analogous to the 2D patterns of

spots, stripes and inverse spots, respectively. Movies for each of

these cases can be found in the supplementary info(Supplementary

Movies S1, S2, S3). The distinguishing feature between types (b)

and (c) is that the cross section of the sheet like structures resemble

stripes while the cross section of the solid tubes resembles spots.

Fig. 3(d) also shows where the patterns are found in parameter

space with a 969 grid of numerical simulations.

Fig. 4 shows the evolution of cells with an initial condition of a

(a) spherical or (b) cylindrical region along the center axis

containing at 26 higher BMP-2 concentration than the steady

state. The surrounding region was set to the zero value. The

parameters set for these simulations were those in the stripe

pattern regime to mimic the previous experimental setting[11].

Discussion

Figures 2(d) and 3(d) show the locations of the types of patterns

in two dimensions and three dimensions as a function of

parameters c and k. We see that in the two-dimensional case

the spot patterns are seen over a wide range of parameters while in

three-dimensional case these patterns are only rarely seen. In

trying to correlate the 2D pattern region with the 3D pattern

region we scaled the diffusion and chemotactic coefficient by 3/2

to reflect the change from 2D to 3D. We found that this did not

significantly alter where the patterns are seen in the parameter

space. This difference in the pattern location may arise because of

Figure 2. 2D steady state patterns of cells. The derived model shows (a)spots(k = 0.2,c = 0.12), (b)stripes(k = 0.7,c = 0.04), and (c) inverse
spots(k = 0.95,c = 0.005) by varying k and c. The parameters used were D = 0.005, q = 0.003, K = 0.25, B = 1.1, c = 600 and the box length of the
simulation is equivalent to 1 cm. Red color indicates higher cell density while blue indicates low.
doi:10.1371/journal.pone.0020182.g002
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the spatial symmetry of the problem. For instance, the tubes which

are seen often in three-dimensions can be cut along different axes

to form either the spot or stripe patterns seen in two-dimensions.

Thus, they occupy a larger region in the parameter space

for three-dimensions than in two-dimensions. For an experimental

system with fixed parameters, we would predict that the or-

ganization of cells in two dimensions greatly differs from that in

three dimensions, suggesting a possible reason for the biological

differences seen in experimental culture of mammalian cells[1].

In the parameter space we explored, we found that multiple

patterns can coexist for a fixed set of parameters and we examined

the stability of each type. We ran a 2D simulation to steady state

which showed only spots (point C, Figure 2d), and then increased

the parameter k slowly while allowing the system to equilibrate.

Doing this from point C to point B in Figure 2d we found that the

spot patterns remained stable throughout the region and finally

disappeared when reaching the no pattern region(point A). In the

regions where stripes were found(point B), the spot patterns would

temporarily nucleate into stripes and then go back to their spot

pattern state. We also performed the opposite case starting at point

B and decreasing k. In this case we found the patterns to go from

the inverse spot pattern type to the stripe pattern, but then we

found that at point C the cells remained in the stripe pattern type

and did not change into the spot pattern type. This indicates that

the inverse spot type of pattern is least stable to perturbations,

while the stripe and spot patterns are more stable. Along with the

fact that the inverse spot type is seen least in parameter space, this

may suggest why this type of pattern has been difficult to realize

experimentally[11].

We also performed simulations that can be directly tested in

three-dimensional experiments. For instance, an experiment where

a higher concentration of BMP-2 is produced at the center region

can be represented by an analogous initial condition in our

simulation. In Fig. 4, simulations were performed with an initial

condition set so that a local (a) sphere or (b) cylindrical region of

BMP-2 is at a 26 higher concentration than the steady state

value(see Supplementary Movies S1, S2, S3). The parameters

set for these simulations were those in the stripe pattern regime

to mimic previous experimental observations for the vascular

mesenchymal cell system. For the spherical case, we found that the

morphogen concentration will grow in expanding spheres and

the cells will arrange themselves in the same way. For the cylindrical
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Figure 3. 3D steady state patterns of cells. The derived model shows spherical spots(k = 0.2,c = 0.12), tubes(k = 0.2,c = 0.04), and sheet-like
structures(k = 0.8,c = 0.04) by varying k and c. The parameters used were D = 0.005, q = 0.003, K = 0.25, B = 1.1, c = 600 and the box length of the
simulation is equivalent to 1 cm. The lowest values were made transparent for clarity while red color indicates higher cell densitywhile blue indicates
low.
doi:10.1371/journal.pone.0020182.g003
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initial condition, we found that the cells will evolve in a hollow

cylinder from the initial condition forming a vessel-like shape.

Additionally, we investigated the effect of cell parameters on the

patterns observed. The random cell motility, q, and the

chemotactic coefficient, x, both play a role in the stability and

pattern selection of cells. We found that by varying the ratio of

x= q, it is possible to change the pattern type from one to another

and it is possible to end up in a regime where no patterns are

formed. This situation occurs for points near the stability border

with a change to the nominal value of x~1:10{5. Whenx is

changed to x~3:10{4 and then x~7:5:10{4 the patterns ob-

served are of the inverse spot and stripe pattern type, respec-

tively(Supplementary Info). For the higher ratio of x= q, we found

that the cells are more often found in the spot pattern type,

showing that these are most stable types(Supplementary Info).

The simulations we have done here show the importance of

three-dimensional modeling of cell organization. In three di-

mensions we found that the patterns and organization of cells is

much richer than in 2D and found that the same model system

with fixed parameters in two and three-dimensions can exhibit

different steady-state pattern types. Simulations to mimic devel-

opmental processes and engineering of three-dimensional tissue

structures will thus find these techniques to be useful for predicting

cell organization in three dimensions. In addition, we pre-

sented simulations that could easily be tested in two- or three-

dimensional experiments to validate our model.

Materials and Methods

We performed two- and three- dimensional simulations using

a pseudospectral technique as described in[34]. The method

handles the nonlinearities explicitly in real space and diffusion

in Fourier space. To simulate the cell equation we kept the zero

mode a constant since the total cell mass is conserved. We found

that the method shows agreement up to numerical accuracy

with solutions to known nonlinear equations (Supplementary

info). Furthermore, we saw convergence of our numerical results

for a range of timesteps and spatial discretizations. The

technique we used assumes periodic boundaries on the spatial

domain.

A B

C D

Figure 4. Initial and steady state patterns of cells produced by exogenous BMP-2. An initial condition of 26higher concentration of BMP-2
is placed along the center (a) sphere or (b) cylinder and the cells are allowed to reach steady state. The stripe regime parameters were used and set as
D = 0.005, q = 0.003, K = 0.25, B = 1.1, k = 0.7, c = 0.14, c = 600 with simulation box length set to 2 cm. The lowest values were made transparent for
clarity while red color indicates higher cell density while blue indicates low. A cut of the simulation box in (a) 1/8 of cube and (b) 1/4 of cube was
sliced out for easier visualization.
doi:10.1371/journal.pone.0020182.g004
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Three-dimensional simulations were parallelized using the

Message Passing Interface (MPI 2.0) in conjunction with the FFTW

library. We used a 2563 (a 1283 for the 969 scan in Figure 3) with

dx~0:5=256 which typically required about 105{106 steps to

reach steady state at a step size of dt = 2:10{4. For the 2563 grid, a

typical computation time of 120 hours on a single processor or

30 hours on eight processors was needed to perform most si-

mulations. IDL software (ITT Visual Information Solutions) was

used for visualizing three-dimensional graphics.

Supporting Information

Movie S1 Simulation showing formation of spot patterns in

three-dimensions.

(AVI)

Movie S2 Simulation showing formation of inverse spot patterns

in three-dimensions.

(AVI)

Movie S3 Simulation showing formation of tube patterns in

three-dimensions.

(AVI)
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