79 research outputs found

    Linking mixing processes and climate variability to the heat content distribution of the Eastern Mediterranean abyss

    Get PDF
    The heat contained in the ocean (OHC) dominates the Earth’s energy budget and hence represents a fundamental parameter for understanding climate changes. However, paucity of observational data hampers our knowledge on OHC variability, particularly in abyssal areas. Here, we analyze water characteristics, observed during the last three decades in the abyssal Ionian Sea (Eastern Mediterranean), where two competing convective sources of bottom water exist. We find a heat storage of ~1.6 W/m2– twice that assessed globally in the same period – exceptionally well-spread throughout the local abyssal layers. Such an OHC accumulation stems from progressive warming and salinification of the Eastern Mediterranean, producing warmer near-bottom waters. We analyze a new process that involves convectively-generated waters reaching the abyss as well as the triggering of a diapycnal mixing due to rough bathymetry, which brings to a warming and thickening of the bottom layer, also influencing water-column potential vorticity. This may affect the prevailing circulation, altering the local cyclonic/anticyclonic long-term variability and hence precondition future water-masses formation and the redistribution of heat along the entire water-column

    Evidence of Simultaneous Circulation of West Nile and Usutu Viruses in Mosquitoes Sampled in Emilia-Romagna Region (Italy) in 2009

    Get PDF
    BACKGROUND: In recent years human diseases due to mosquito-borne viruses were increasingly reported in Emilia-Romagna region (Italy), from the chikungunya virus in 2007 to the West Nile virus (WNV) in 2008. An extensive entomological survey was performed in 2009 to establish the presence and distribution of mosquito arboviruses in this region, with particular reference to flaviviruses. METHODOLOGY/PRINCIPAL FINDINGS: From May 6 to October 31, a total of 190,516 mosquitoes were sampled in georeferenced stations, grouped in 1,789 pools according date of collection, location, and species, and analyzed by reverse transcription polymerase chain reaction (RT-PCR) to detect the presence of RNA belong to Flavivirus genus. WNV was detected in 27 mosquito pools, producing sequences similar to those of birds and human strains obtained in 2008 outbreak, pointed out the probable virus overwintering. Isolation of WNV was achieved from one of these pools. Moreover 56 pools of mosquitoes tested positive for Usutu virus (USUV). Most PCR positive pools consisted of Culex pipiens, which also was the most analyzed mosquito species (81.4% of specimens); interestingly, USUV RNA was also found in two Aedes albopictus mosquito pools. Simultaneous circulation of WNV and USUV in the survey area was highlighted by occurrence of 8 mosquito WNV- and USUV-positive pools and by the overlaying of the viruses "hot spots", obtained by kernel density estimation (KDE) analysis. Land use of sampled stations pointed out a higher proportion of WNV-positive Cx. pipiens pool in rural environments respect the provenience of total sampled pool, while the USUV-positive pools were uniformly captured in the different environments. CONCLUSIONS/SIGNIFICANCE: Obtained data highlighting the possible role of Cx. pipiens mosquito as the main vector for WNV and USUV in Northern Italy, and the possible involvement of Ae. albopictus mosquito in USUV cycle. The described mosquito-based surveillance could constitute the foundation for a public health alert system targeting mosquito borne arboviruses

    A Generic Bio-Economic Farm Model for Environmental and Economic Assessment of Agricultural Systems

    Get PDF
    Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models

    The Mediterranean Sea Regime Shift at the End of the 1980s, and Intriguing Parallelisms with Other European Basins

    Get PDF
    Background: Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. Principal Findings: In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Conclusions: Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers
    corecore