48 research outputs found

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Measurement of the ttbar Production Cross Section in ppbar collisions at sqrt s = 1.96 TeV in the All Hadronic Decay Mode

    Get PDF
    We report a measurement of the ttbar production cross section using the CDF-II detector at the Fermilab Tevatron. The analysis is performed using 311 pb-1 of ppbar collisions at sqrt(s)=1.96 TeV. The data consist of events selected with six or more hadronic jets with additional kinematic requirements. At least one of these jets must be identified as a b-quark jet by the reconstruction of a secondary vertex. The cross section is measured to be sigma(tbart)=7.5+-2.1(stat.)+3.3-2.2(syst.)+0.5-0.4(lumi.) pb, which is consistent with the standard model prediction.Comment: By CDF collaboratio

    Search for chargino-neutralino production in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present the results of a search for associated production of the chargino and neutralino supersymmetric particles using up to 1.1 fb-1 of integrated luminosity collected by the CDF II experiment at the Tevatron ppbar collider at a center-of-mass energy of 1.96 TeV. The search is conducted by analyzing events with a large transverse momentum imbalance and either three charged leptons or two charged leptons of the same electric charge. The numbers of observed events are found to be consistent with standard model expectations. Upper limits on the production cross section are derived in different theoretical models. In one of these models a lower limit on the mass of the chargino is set at 129 GeV/c^2 at the 95% confidence level.Comment: To be submitted to Phys.Rev.Let

    Reconstituted plant uncoupling mitochondrial protein allows for proton translocation via fatty acid cycling mechanism

    No full text
    Potato and tomato plant uncoupling mitochondrial protein (PUMP) was reconstituted into liposomes, and K+ or H+ fluxes associated with fatty acid (FA)-induced ion movement were measured using fluorescent ion indicators potassium binding benzofuraneisophthalate and 6-methoxy-N-(3-sulfopropyl)-quinolinium. We suggest that PUMP, like its mammalian counterpart, the uncoupling protein of brown adipose tissue mitochondria (Garlid, K. D., Orosz, D. E., Modriansky, M., Vassanelli, S,, and Jezek, P, (1996), J, Biol, Chem, 271, 2615-2702), allows for H+ translocation via a FA cycling mechanism. Reconstituted PUMP translocated anionic linoleic: and heptylbenzoic acids, undecanesulfonate, and hexanesulfonate, but not phenylvaleric and abscisic acids or Cl-. Transport was inhibited by ATP and GDP. Internal acidification of protein-free liposomes by linoleic or heptylbenzoic acid indicated that H+ translocation occurs by FA flip-flopping across the lipid bilayer. However, addition of valinomycin after FA-initiated GDP-sensitive H+ efflux solely in proteoliposomes, indicating that influx of anionic: FA via PUMP precedes a return of protonated FA carrying, H+, Phenylvaleric acid, unable to flip-flop, was without effect, Kinetics of FA and undecanesulfonate uniport; suggested the existence of an internal anion binding site. Exponential flux-voltage characteristics were also studied, We suggest that regulated uncoupling in plant mitochondria may be important during-fruit ripening senescence, and seed dormancy.27239242722427

    Evidence for anion-translocating plant uncoupling mitochondrial protein in potato mitochondria

    No full text
    Transport properties of plant mitochondria from potato tubers were investigated using the swelling technique and membrane potential measurements. Proton-dependent swelling of fatty acid-depleted mitochondria in potassium acetate with valinomycin was possible only in the presence of fatty acids (linoleic acid and 12-(4-azido-2-nitrophenylamino) do decanoic acid) and was inhibited by various purine nucleotides including ATP, GDP, and GTP. Swelling representing uptake of hexanesulfonate was also inhibited by purine nucleotides. Also, the membrane potential of fatty acid-depleted potato mitochondria energized by succinate declined upon the addition of linoleic acid or 12-(4-azido-2-nitrophenylamino)dodecanoic acid, and this decrease was prevented by ATP and other purine nucleotides. These transport activities are identical to those reported for brown adipose tissue mitochondria and related to the uncoupling protein; therefore, we ascribed them to the plant mitochondrial uncoupling protein (PUMP). A major difference between plant and mammalian uncoupling protein is that PUMP transports small hydrophilic anions such as Cl- very slowly, if at all. We suggest that PUMP may play an important role in plant physiology, where a regulated uncoupling and thermogenesis can proceed during fruit and seed development.27151327433274

    Ca2+-independent permeabilization of the inner mitochondrial membrane by peroxynitrite is mediated by membrane protein thiol cross-linking and lipid peroxidation

    No full text
    Peroxynitrite anion, the reaction product of superoxide and nitric oxide, is a potent biological oxidant, which inactivates mammalian heart mitochondrial NADH-coenzyme Q reductase (complex I), succinate dehydrogenase (complex II), and ATPase, without affecting cytochrome c oxidase (complex IV), In this paper, we evaluated the effect of peroxynitrite on mitochondrial membrane integrity and permeability under low calcium concentration, Phosphate buffer was used in most of our experiments since Hepes, Tris, mannitol, and sucrose were found to inhibit the oxidative chemistry of peroxynitrite. Peroxynitrite (0.1-1.0 mM) caused a dose-dependent decrease in the ability of mitochondria to build up a membrane potential when N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate were used as substrate, Elimination of the membrane potential was accompanied by penetration of the osmotic support (KCl/NaCl) into the matrix as judged by the parallel occurrence of mitochondrial swelling, This swelling was partially inhibited by dithiothreitol (DTT) or butylated hydroxytoluene (BHT) and was insensitive to ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, ADP, and cyclosporin A, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized membrane proteins indicated that alterations in membrane permeability were associated with the production of protein aggregates due to membrane protein thiol cross-linking, The protective effect of DTT on both mitochondrial swelling and protein polymerization suggests the involvement of disulfide bonds in the membrane permeabilization process, In addition, the increase in thiobarbituric acid-reactive substances and the partial inhibitory effect of BHT indicate the occurrence of lipid peroxidation. These results support the idea that under our experimental conditions peroxynitrite causes mitochondrial structural and functional alterations by Ca2+-independent mechanisms through lipid peroxidation and protein sulfhydryl oxidation. (C) 1997 Academic Press.345224325

    Plant uncoupling mitochondrial protein activity in mitochondria isolated from tomatoes at different stages of ripening

    No full text
    In the present study we have observed a higher state of coupling in respiring mitochondria isolated from green as compared to red tomatoes (Lycopersicon esculentum, Mill.). Green tomato mitochondria produced a membrane potential (Delta Psi) high enough to phosphorylate ADP whereas in red tomato mitochondria, BSA and ATP were required to restore Delta Psi to the level of that obtained with green tomato mitochondria. This supports the notion that such uncoupling in red tomato mitochondria is mediated by a plant uncoupling mitochondrial protein (PUMP; cf, Vercesi et al., 1995). Nevertheless, mitochondria from both green and red tomatoes exhibited an ATP-sensitive linoleic acid (LA)-induced Delta Psi decrease providing evidence that PUMP is also present in green tomatoes. Indeed, proteoliposomes containing reconstituted green or red tomato PUMP showed LA uniport and LA-induced H+ transport. It is suggested that the higher concentration of free fatty acids (PUMP substrates) in red tomatoes could explain the lower coupling state in mitochondria isolated from these fruits.31552753

    The role of cGMP and PKG in cardioprotection

    No full text
    corecore