196 research outputs found

    Purifying single photon emission from a CdSe/CdS colloidal quantum dot

    Get PDF
    Colloidal quantum dots are robust and flexible single photon emitters for room-temperature applications, but their purity is strongly reduced at high pump powers, due to multiexcitonic emission which cannot be easily filtered due to the photo-luminescence spectral broadening at room temperature. Giant-shell quantum dots feature a large blueshift of the biexciton spectrum due to electron-hole wave function engineering and piezoelectric charge separation, which can be exploited for spectral separation of the single exciton from the multiexciton emission. Here, by spectral filtering, we show that we can recover an excellent single-photon emission, with g2(0)<0.05g_2{(0)} < 0.05 (resolution limited), even at high pump powers above saturation of the exciton emission. The bright and pure single-photon generation shown here has important applications in quantum information technology and random-number generation

    Effects of Hypericum Perforatum, in a rodent model of periodontitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Hypericum perforatum </it>is a medicinal plant species containing many polyphenolic compounds, namely flavonoids and phenolic acids. In this study we evaluate the effect of <it>Hypericum perforatum </it>in animal model of periodontitis.</p> <p>Methods</p> <p>Periodontitis was induced in adult male Sprague-Dawley rats by placing a nylon thread ligature around the lower 1st molars. Hypericum perforatum was administered at the dose of 2 mg/kg os, daily for eight days. At day 8, the gingivomucosal tissue encircling the mandibular first molar was removed.</p> <p>Results</p> <p>Periodontitis in rats resulted in an inflammatory process characterized by edema, neutrophil infiltration and cytokine production that was followed by the recruitment of other inflammatory cells, production of a range of inflammatory mediators such as NF-κB and iNOS expression, the nitration of tyrosine residues and activation of the nuclear enzyme poly (ADP-ribose) polymerase; apoptosis and the degree of gingivomucosal tissues injury. We report here that Hypericum perforatum exerts potent anti-inflammatory effects significantly reducing all of the parameters of inflammation as described above.</p> <p>Conclusions</p> <p>Taken together, our results clearly demonstrate that treatment with Hypericum reduces the development of inflammation and tissue injury, events associated with periodontitis.</p

    The Dynamics of Democracy, Development and Cultural Values

    Get PDF
    Over the past decades many countries have experienced rapid changes in their economies, their democratic institutions and the values of their citizens. Comprehensive data measuring these changes across very different countries has recently become openly available. Between country similarities suggest common underlying dynamics in how countries develop in terms of economy, democracy and cultural values. We apply a novel Bayesian dynamical systems approach to identify the model which best captures the complex, mainly non-linear dynamics that underlie these changes. We show that the level of Human Development Index (HDI) in a country drives first democracy and then higher emancipation of citizens. This change occurs once the countries pass a certain threshold in HDI. The data also suggests that there is a limit to the growth of wealth, set by higher emancipation. Having reached a high level of democracy and emancipation, societies tend towards equilibrium that does not support further economic growth. Our findings give strong empirical evidence against a popular political science theory, known as the Human Development Sequence. Contrary to this theory, we find that implementation of human-rights and democratisation precede increases in emancipative values

    Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors

    Get PDF
    Tumor targeting by genetically modified mesenchymal stromal/stem cells (MSCs) carrying anti-cancer molecules represents a promising cell-based strategy. We previously showed that the pro-apoptotic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can be successfully delivered by MSCs to cancer sites. While the interaction between TRAIL and its receptors is clear, more obscure is the way in which MSCs can selectively target tumors and their antigens. Several neuroectoderm-derived neoplasms, including glioblastoma (GBM), sarcomas, and neuroblastoma, express high levels of the tumor-associated antigen GD2. We have already challenged this cell surface disialoganglioside by a chimeric antigen receptor (CAR)-T cell approach against neuroblastoma. With the intent to maximize the therapeutic profile of MSCs delivering TRAIL, we here originally developed a bi-functional strategy where TRAIL is delivered by MSCs that are also gene modified with the truncated form of the anti-GD2 CAR (GD2 tCAR) to mediate an immunoselective recognition of GD2-positive tumors. These bi-functional MSCs expressed high levels of TRAIL and GD2 tCAR associated with a robust anti-tumor activity against GD2-positive GBM cells. Most importantly, the anti-cancer action was reinforced by the enhanced targeting potential of such bi-functional cells. Collectively, our results suggest that a truncated anti-GD2 CAR might be a powerful new tool to redirect MSCs carrying TRAIL against GD2-expressing tumors. This affinity-based dual targeting holds the promise to combine site-specific and prolonged retention of MSCs in GD2-expressing tumors, thereby providing a more effective delivery of TRAIL for still incurable cancers

    NF-Y Recruits Ash2L to Impart H3K4 Trimethylation on CCAAT Promoters

    Get PDF
    BACKGROUND: Different histone post-translational modifications (PTMs) are crucial in the regulation of chromatin, including methylations of H3 at Lysine 4 by the MLL complex. A relevant issue is how this is causally correlated to the binding of specific transcription factors (TFs) in regulatory regions. NF-Y is a TF that regulates 30% of mammalian promoters containing the widespread CCAAT element. We and others established that the presence of H3K4me3 is dependent upon the binding of NF-Y. Here, we investigate the mechanisms of H3K4me3 deposition by NF-Y. METHODS: We employed Chromatin Immunoprecipitation in cells in which Ash2L and NF-Y subunits were knocked down by RNAi, to monitor the presence of histones PTMs and components of the MLL complex. We performed gene expression profiling of Ash2L-knocked down cells and analyzed the regulated genes. We performed ChIPs in leukemic cells in which MLL1 is devoid of the methyltransferase domain and fused to the AF4 gene. RESULTS: Knock down of the Ash2L subunit of MLL leads to a decrease in global H3K4me3 with a concomitant increase in H3K79me2. Knock down of NF-Y subunits prevents promoter association of Ash2L, but not MLL1, nor WDR5, and H3K4me3 drops dramatically. Endogenous NF-Y and Ash2L specifically interact in vivo. Analysis of the promoters of Ash2L regulated genes, identified by transcriptional profiling, suggests that a handful TF binding sites are moderately enriched, among which the CCAAT box. Finally, leukemic cells carrying the MLL-AF4 translocation show a decrease of H3K4me3, absence of Ash2L and increase in H3K79me2, while NF-Y binding was not significantly affected. CONCLUSIONS: Three types of conclusions are reached: (i) H3K4 methylation is not absolutely required for NF-Y promoter association. (ii) NF-Y acts upstream of H3K4me3 deposition by recruiting Ash2L. (iii) There is a general cross-talk between H3K4me3 and H3K79me2 which is independent from the presence of MLL oncogenic fusions

    Prion Protein Amino Acid Determinants of Differential Susceptibility and Molecular Feature of Prion Strains in Mice and Voles

    Get PDF
    The bank vole is a rodent susceptible to different prion strains from humans and various animal species. We analyzed the transmission features of different prions in a panel of seven rodent species which showed various degrees of phylogenetic affinity and specific prion protein (PrP) sequence divergences in order to investigate the basis of vole susceptibility in comparison to other rodent models. At first, we found a differential susceptibility of bank and field voles compared to C57Bl/6 and wood mice. Voles showed high susceptibility to sheep scrapie but were resistant to bovine spongiform encephalopathy, whereas C57Bl/6 and wood mice displayed opposite features. Infection with mouse-adapted scrapie 139A was faster in voles than in C57Bl/6 and wood mice. Moreover, a glycoprofile change was observed in voles, which was reverted upon back passage to mice. All strains replicated much faster in voles than in mice after adapting to the new species. PrP sequence comparison indicated a correlation between the transmission patterns and amino acids at positions 154 and 169 (Y and S in mice, N and N in voles). This correlation was confirmed when inoculating three additional rodent species: gerbils, spiny mice and oldfield mice with sheep scrapie and 139A. These rodents were chosen because oldfield mice do have the 154N and 169N substitutions, whereas gerbil and spiny mice do not have them. Our results suggest that PrP residues 154 and 169 drive the susceptibility, molecular phenotype and replication rate of prion strains in rodents. This might have implications for the assessment of host range and molecular traceability of prion strains, as well as for the development of improved animal models for prion diseases

    The Golden Beauty: Brain Response to Classical and Renaissance Sculptures

    Get PDF
    Is there an objective, biological basis for the experience of beauty in art? Or is aesthetic experience entirely subjective? Using fMRI technique, we addressed this question by presenting viewers, naïve to art criticism, with images of masterpieces of Classical and Renaissance sculpture. Employing proportion as the independent variable, we produced two sets of stimuli: one composed of images of original sculptures; the other of a modified version of the same images. The stimuli were presented in three conditions: observation, aesthetic judgment, and proportion judgment. In the observation condition, the viewers were required to observe the images with the same mind-set as if they were in a museum. In the other two conditions they were required to give an aesthetic or proportion judgment on the same images. Two types of analyses were carried out: one which contrasted brain response to the canonical and the modified sculptures, and one which contrasted beautiful vs. ugly sculptures as judged by each volunteer. The most striking result was that the observation of original sculptures, relative to the modified ones, produced activation of the right insula as well as of some lateral and medial cortical areas (lateral occipital gyrus, precuneus and prefrontal areas). The activation of the insula was particularly strong during the observation condition. Most interestingly, when volunteers were required to give an overt aesthetic judgment, the images judged as beautiful selectively activated the right amygdala, relative to those judged as ugly. We conclude that, in observers naïve to art criticism, the sense of beauty is mediated by two non-mutually exclusive processes: one based on a joint activation of sets of cortical neurons, triggered by parameters intrinsic to the stimuli, and the insula (objective beauty); the other based on the activation of the amygdala, driven by one's own emotional experiences (subjective beauty)

    Defective germline reprogramming rewires the spermatogonial transcriptome.

    Get PDF
    Defective germline reprogramming in Piwil4 (Miwi2)- and Dnmt3l-deficient mice results in the failure to reestablish transposon silencing, meiotic arrest and progressive loss of spermatogonia. Here we sought to understand the molecular basis for this spermatogonial dysfunction. Through a combination of imaging, conditional genetics and transcriptome analysis, we demonstrate that germ cell elimination in the respective mutants arises as a result of defective de novo genome methylation during reprogramming rather than because of a function for the respective factors within spermatogonia. In both Miwi2-/- and Dnmt3l-/- spermatogonia, the intracisternal-A particle (IAP) family of endogenous retroviruses is derepressed, but, in contrast to meiotic cells, DNA damage is not observed. Instead, we find that unmethylated IAP promoters rewire the spermatogonial transcriptome by driving expression of neighboring genes. Finally, spermatogonial numbers, proliferation and differentiation are altered in Miwi2-/- and Dnmt3l-/- mice. In summary, defective reprogramming deregulates the spermatogonial transcriptome and may underlie spermatogonial dysfunction
    • …
    corecore