40 research outputs found

    Orbital Kondo effect in carbon nanotubes

    Full text link
    Progress in the fabrication of nanometer-scale electronic devices is opening new opportunities to uncover the deepest aspects of the Kondo effect, one of the paradigmatic phenomena in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number. Here we demonstrate that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunneling. When orbital and spin degeneracies are simultaneously present, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU(4) symmetry.Comment: 26 pages, including 4+2 figure

    Monoculture of Leafcutter Ant Gardens

    Get PDF
    Background -- Leafcutter ants depend on the cultivation of symbiotic Attamyces fungi for food, which are thought to be grown by the ants in single-strain, clonal monoculture throughout the hundreds to thousands of gardens within a leafcutter nest. Monoculture eliminates cultivar-cultivar competition that would select for competitive fungal traits that are detrimental to the ants, whereas polyculture of several fungi could increase nutritional diversity and disease resistance of genetically variable gardens. Methodology/Principal Findings -- Using three experimental approaches, we assessed cultivar diversity within nests of Atta leafcutter ants, which are most likely among all fungus-growing ants to cultivate distinct cultivar genotypes per nest because of the nests' enormous sizes (up to 5000 gardens) and extended lifespans (10–20 years). In Atta texana and in A. cephalotes, we resampled nests over a 5-year period to test for persistence of resident cultivar genotypes within each nest, and we tested for genetic differences between fungi from different nest sectors accessed through excavation. In A. texana, we also determined the number of Attamyces cells carried as a starter inoculum by a dispersing queens (minimally several thousand Attamyces cells), and we tested for genetic differences between Attamyces carried by sister queens dispersing from the same nest. Except for mutational variation arising during clonal Attamyces propagation, DNA fingerprinting revealed no evidence for fungal polyculture and no genotype turnover during the 5-year surveys. Conclusions/Significance -- Atta leafcutter ants can achieve stable, fungal monoculture over many years. Mutational variation emerging within an Attamyces monoculture could provide genetic diversity for symbiont choice (gardening biases of the ants favoring specific mutational variants), an analog of artificial selection.The research was supported by National Science Foundation awards DEB-0920138, DEB-0639879, and DEB-0110073 to UGM; DEB-0949689 to T.R. Schultz, N. Mehdiabadi, and UGM; and a Fellowship (02/05) from the Conselho Nacional de Desenvolvimento Científico e Tecnológico to AR. The funding agencies had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    From Parent to Gamete: Vertical Transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the Reef Building Coral Montipora capitata

    Get PDF
    Parental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered. Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium. Many corals produce aposymbiotic larvae that are infected by Symbiodinium from the environment (horizontal transmission), which allows for the acquisition of new endosymbionts (different from their parents) each generation. In the remaining species, Symbiodinium are transmitted directly from parent to offspring via eggs (vertical transmission), a mechanism that perpetuates the relationship between some or all of the Symbiodinium diversity found in the parent through multiple generations. Here we examine vertical transmission in the Hawaiian coral Montipora capitata by comparing the Symbiodinium ITS2 sequence assemblages in parent colonies and the eggs they produce. Parental effects on sequence assemblages in eggs are explored in the context of the coral genotype, colony morphology, and the environment of parent colonies. Our results indicate that ITS2 sequence assemblages in eggs are generally similar to their parents, and patterns in parental assemblages are different, and reflect environmental conditions, but not colony morphology or coral genotype. We conclude that eggs released by parent colonies during mass spawning events are seeded with different ITS2 sequence assemblages, which encompass phylogenetic variability that may have profound implications for the development, settlement and survival of coral offspring

    Acquisition of uropygial gland microbiome by hoopoe nestlings

    Get PDF
    Mutualistic symbioses between animals and bacteria depend on acquisition of appropriate symbionts while avoiding exploitation by non-beneficial microbes. The mode of acquisition of symbionts would determine, not only the probability of encountering but also evolutionary outcomes of mutualistic counterparts. The microbiome inhabiting the uropygial gland of the European hoopoe (Upupa epops) includes a variety of bacterial strains, some of them providing antimicrobial benefits. Here, the mode of acquisition and stability of this microbiome is analyzed by means of Automated rRNA Intergenic Spacer Analysis and two different experiments. The first experiment impeded mothers’ access to their glands, thus avoiding direct transmission of microorganisms from female to offspring secretions. The second experiment explored the stability of the microbiomes by inoculating glands with secretions from alien nests. The first experiment provoked a reduction in similarity of microbiomes of mother and nestlings. Interestingly, some bacterial strains were more often detected when females had not access to their glands, suggesting antagonistic effects among bacteria from different sources. The second experiment caused an increase in richness of the microbiome of receivers in terms of prevalence of Operational Taxonomic Units (OTUs) that reduced differences in microbiomes of donors and receivers. That occurred because OTUs that were present in donors but not in receivers incorporated to the microbiome of the latter, which provoked that cross-inoculated nestlings got similar final microbiomes that included the most prevalent OTUs. The results are therefore consistent with a central role of vertical transmission in bacterial acquisition by nestling hoopoes and support the idea that the typical composition of the hoopoe gland microbiome is reached by the incorporation of some bacteria during the nestling period. This scenario suggests the existence of a coevolved core microbiome composed by a mix of specialized vertically transmitted strains and facultative symbionts able to coexist with them. The implications of this mixed mode of transmission for the evolution of the mutualism are discussedMinisterio de Ciencia e InnovaciĂłn (España)Junta de AndalucĂ­

    Outpatient Talc Administration by Indwelling Pleural Catheter for Malignant Effusion

    Get PDF
    Background Malignant pleural effusion affects more than 750,000 persons each year across Europe and the United States. Pleurodesis with the administration of talc in hospitalized patients is the most common treatment, but indwelling pleural catheters placed for drainage offer an ambulatory alternative. We examined whether talc administered through an indwelling pleural catheter was more effective at inducing pleurodesis than the use of an indwelling pleural catheter alone. Methods Over a period of 4 years, we recruited patients with malignant pleural effusion at 18 centers in the United Kingdom. After the insertion of an indwelling pleural catheter, patients underwent drainage regularly on an outpatient basis. If there was no evidence of substantial lung entrapment (nonexpandable lung, in which lung expansion and pleural apposition are not possible because of visceral fibrosis or bronchial obstruction) at 10 days, patients were randomly assigned to receive either 4 g of talc slurry or placebo through the indwelling pleural catheter on an outpatient basis. Talc or placebo was administered on a single-blind basis. Follow-up lasted for 70 days. The primary outcome was successful pleurodesis at day 35 after randomization. Results The target of 154 patients undergoing randomization was reached after 584 patients were approached. At day 35, a total of 30 of 69 patients (43%) in the talc group had successful pleurodesis, as compared with 16 of 70 (23%) in the placebo group (hazard ratio, 2.20; 95% confidence interval, 1.23 to 3.92; P = 0.008). No significant between- group differences in effusion size and complexity, number of inpatient days, mortality, or number of adverse events were identified. No significant excess of blockages of the indwelling pleural catheter was noted in the talc group. Conclusions Among patients without substantial lung entrapment, the outpatient administration of talc through an indwelling pleural catheter for the treatment of malignant pleural effusion resulted in a significantly higher chance of pleurodesis at 35 days than an indwelling catheter alone, with no deleterious effects.</p

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector
    corecore