Progress in the fabrication of nanometer-scale electronic devices is opening
new opportunities to uncover the deepest aspects of the Kondo effect, one of
the paradigmatic phenomena in the physics of strongly correlated electrons.
Artificial single-impurity Kondo systems have been realized in various
nanostructures, including semiconductor quantum dots, carbon nanotubes and
individual molecules. The Kondo effect is usually regarded as a spin-related
phenomenon, namely the coherent exchange of the spin between a localized state
and a Fermi sea of electrons. In principle, however, the role of the spin could
be replaced by other degrees of freedom, such as an orbital quantum number.
Here we demonstrate that the unique electronic structure of carbon nanotubes
enables the observation of a purely orbital Kondo effect. We use a magnetic
field to tune spin-polarized states into orbital degeneracy and conclude that
the orbital quantum number is conserved during tunneling. When orbital and spin
degeneracies are simultaneously present, we observe a strongly enhanced Kondo
effect, with a multiple splitting of the Kondo resonance at finite field and
predicted to obey a so-called SU(4) symmetry.Comment: 26 pages, including 4+2 figure