14 research outputs found
Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease
The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis of published GWA studies. We propose that dysregulation of monocyte adaptation to the environment of the gastrointestinal mucosa is the key process leading to inflammatory bowel disease
CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes (vol 4, 5228, 2014)
Genomics, epigenetics, population genetics and bioinformatic
Intra- and intertumoral heterogeneity of liver metastases in a patient with uveal melanoma revealed by single-cell RNA sequencing
Tumor heterogeneity is a major obstacle to the success of cancer treatment. An accurate understanding and recognition of tumor heterogeneity is critical in the clinical management of cancer patients. Here, we utilized single-cell RNA sequencing (scRNA-seq) to uncover the intra- and intertumoral heterogeneity of liver metastases from a patient with metastatic uveal melanoma. The two metastases analyzed were largely infiltrated by noncancerous cells with significant variability in the proportion of different cell types. Analysis of copy-number variations (CNVs) showed gain of 8q and loss of 6q in both tumors, but loss of Chromosome 3 was only detected in one of the tumors. Single-nucleotide polymorphism (SNP) array revealed a uniparental isodisomy 3 in the tumor with two copies of Chromosome 3, indicating a regain of Chromosome 3 during the development of the metastatic disease. In addition, both tumors harbored subclones with additional CNVs. Pathway enrichment analysis of differentially expressed genes revealed that cancer cells in the metastasis with isodisomy 3 showed up-regulation in epithelial–mesenchymal transition and myogenesis related genes. In contrast, up-regulation in interferon signaling was observed in the metastasis with monosomy 3 and increased T-cell infiltrate. This study highlights the complexity and heterogeneity of different metastases within an individual case of uveal melanoma
Correction to: Relatively frequent switching of transcription start sites during cerebellar development
Correction: The authors of the original article [1] would like to recognize the critical contribution of core members of the FANTOM5 Consortium, who played the critical role of HeliScopeCAGE sequencing experiments, quality control of tag reads and processing of the raw sequencing data.Other UBCNon UBCReviewedFacult
Transcriptional landscape of Mycobacterium tuberculosis infection in macrophages
Mycobacterium tuberculosis (Mtb) infection reveals complex and dynamic host-pathogen interactions, leading to host protection or pathogenesis. Using a unique transcriptome technology (CAGE), we investigated the promoter-based transcriptional landscape of IFNγ (M1) or IL-4/IL-13 (M2) stimulated macrophages during Mtb infection in a time-kinetic manner. Mtb infection widely and drastically altered macrophage-specific gene expression, which is far larger than that of M1 or M2 activations. Gene Ontology enrichment analysis for Mtb-induced differentially expressed genes revealed various terms, related to host-protection and inflammation, enriched in up-regulated genes. On the other hand, terms related to dis-regulation of cellular functions were enriched in down-regulated genes. Differential expression analysis revealed known as well as novel transcription factor genes in Mtb infection, many of them significantly down-regulated. IFNγ or IL-4/IL-13 pre-stimulation induce additional differentially expressed genes in Mtb-infected macrophages. Cluster analysis uncovered significant numbers, prolonging their expressional changes.
Furthermore, Mtb infection augmented cytokine-mediated M1 and M2 pre-activations. In addition, we identified unique transcriptional features of Mtb-mediated differentially expressed lncRNAs. In summary we provide a comprehensive in depth gene expression/regulation profile in Mtb-infected macrophages, an important step forward for a better understanding of host-pathogen interaction dynamics in Mtb infection.This work is supported by Research Grants for the Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government (MEXT), and Strategic International Research Cooperative Program (JST) to HS, grants from the South African National Research Foundation (NRF) and South Africa Medical Research Council (SAMRC) to FB, the JSPS NRF grant to HS and FB, grants from the Wellcome Trust CIDRI-Africa (203135Z/16/Z) for contributing investigator to FB and RG, grants from the South African National Research Foundation (NRF) Competitive Programme for Unrated Researchers (CSUR) and Department of Science and Technology (DST)/South African National Research Foundation (NRF) Collaborative Postgraduate Training Programme to RG, a grant from the King Abdullah University of Science and Technology (KAUST) to VBB, a grant for RIKEN Center for Life Science Technologies, and grants for RIKEN Preventive Medicine and Diagnosis Innovation Program, the Innovation Cell Biology by Innovative Technology (Cell Innovation Program) and RIKEN Omics Science Center to Y.H. We would like to thank the FANTOM5 consortium members and the RIKEN CLST/DGT members for contributing analysis of the data-set and thank GeNAS for data production
Multiple splicing variants of cdc25B regulate G2/M progression
Progression through G2 phase into mitosis is regulated by the activation of the mitotic cyclin/cdk complexes, which are in turn activated cdc25B and cdc25C phosphatases. Here we report that alternate splicing produces at least five variants of cdc25B, although only cdc25B2 and cdc25B3 are detectable as proteins. Analysis of these two variants shows that cdc25B2 is expressed at lower levels relative to cdc25B3 in all cell lines tested, and the expression of both increased markedly during G2 and mitosis. Overexpression of the catalytically inactive version of either cdc25B variant produced a G2 arrest implicating both in regulating G2/M progression. (C) 1999 Academic Press
Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution
Published: October 31, 2022Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.Charles A. Herring, Rebecca K. Simmons, Saskia Freytag, Daniel Poppe, Joel J.D. Moffet, Jahnvi Pflueger, Sam Buckberry, Dulce B. Vargas-Landin, Olivier Cle, ment, Enrique Gon, i Echeverrı, a, Gavin J. Sutton, Alba Alvarez-Franco, Rui Hou, Christian Pflueger, Kerrie McDonald, Jose M. Polo, Alistair R.R. Forrest, Anna K. Nowak, Irina Voineagu, Luciano Martelotto, and Ryan Liste
Myoglobinopathy is an adult-onset autosomal dominant myopathy with characteristic sarcoplasmic inclusions
Myoglobin, encoded by MB, is a small cytoplasmic globular hemoprotein highly expressed in cardiac myocytes and oxidative skeletal myofibers. Myoglobin binds O facilitates its intracellular transport and serves as a controller of nitric oxide and reactive oxygen species. Here, we identify a recurrent c.292C>T (p.His98Tyr) substitution in MB in fourteen members of six European families suffering from an autosomal dominant progressive myopathy with highly characteristic sarcoplasmic inclusions in skeletal and cardiac muscle. Myoglobinopathy manifests in adulthood with proximal and axial weakness that progresses to involve distal muscles and causes respiratory and cardiac failure. Biochemical characterization reveals that the mutant myoglobin has altered O binding, exhibits a faster heme dissociation rate and has a lower reduction potential compared to wild-type myoglobin. Preliminary studies show that mutant myoglobin may result in elevated superoxide levels at the cellular level. These data define a recognizable muscle disease associated with MB mutation
Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells
Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation
