100 research outputs found

    Chaotic memristor

    Get PDF
    We suggest and experimentally demonstrate a chaotic memory resistor (memristor). The core of our approach is to use a resistive system whose equations of motion for its internal state variables are similar to those describing a particle in a multi-well potential. Using a memristor emulator, the chaotic memristor is realized and its chaotic properties are measured. A Poincar\'{e} plot showing chaos is presented for a simple nonautonomous circuit involving only a voltage source directly connected in series to a memristor and a standard resistor. We also explore theoretically some details of this system, plotting the attractor and calculating Lyapunov exponents. The multi-well potential used resembles that of many nanoscale memristive devices, suggesting the possibility of chaotic dynamics in other existing memristive systems.Comment: Applied Physics A (in press

    Polymorphism: an evaluation of the potential risk to the quality of drug products from the Farmácia Popular Rede Própria

    Get PDF
    Polymorphism in solids is a common phenomenon in drugs, which can lead to compromised quality due to changes in their physicochemical properties, particularly solubility, and, therefore, reduce bioavailability. Herein, a bibliographic survey was performed based on key issues and studies related to polymorphism in active pharmaceutical ingredient (APIs) present in medications from the Farmácia Popular Rede Própria. Polymorphism must be controlled to prevent possible ineffective therapy and/or improper dosage. Few mandatory tests for the identification and control of polymorphism in medications are currently available, which can result in serious public health concerns

    Precision measurement of the B0 meson lifetime using B0 → J/ψ K∗0 decays with the ATLAS detector

    Get PDF
    Abstract A measurement of the B0B^{0} B 0 meson lifetime using B0J/ψK0 B^{0} \rightarrow J/\psi K^{*0} B 0 → J / ψ K ∗ 0 decays in data from 13  TeV\text {TeV} TeV proton–proton collisions with an integrated luminosity of 140 fb1 140~\mathrm {fb^{-1}} 140 fb - 1 recorded by the ATLAS detector at the LHC is presented. The measured effective lifetime is τ=1.5053±0.0012 (stat.)±0.0035 (syst.) ps. \tau = 1.5053\pm 0.0012~\mathrm {(stat.)} \pm 0.0035~\mathrm {(syst.)~ps}. τ = 1.5053 ± 0.0012 ( stat . ) ± 0.0035 ( syst . ) ps . The average decay width extracted from the effective lifetime, using parameters from external sources, is Γd=0.6639±0.0005 (stat.)±0.0016 (syst.)±0.0038 (ext.) ps1,\begin{aligned} \Gamma _d = 0.6639\pm 0.0005~\mathrm {(stat.)} \pm 0.0016~\mathrm {(syst.)}\\ \pm 0.0038~\text {(ext.)} \text {~ps}^{-1}, \end{aligned} Γ d = 0.6639 ± 0.0005 ( stat . ) ± 0.0016 ( syst . ) ± 0.0038 (ext.) ps - 1 , where the uncertainties are statistical, systematic and from external sources. The earlier ATLAS measurement of Γs\Gamma _s Γ s in the Bs0J/ψϕB^{0}_{s} \rightarrow J/\psi \phi B s 0 → J / ψ ϕ decay was used to derive a value for the ratio of the average decay widths Γd\Gamma _d Γ d and Γs\Gamma _s Γ s for B0B^{0} B 0 and Bs0B^{0}_{s} B s 0 mesons respectively, of ΓdΓs=0.9905±0.0022 (stat.)±0.0036 (syst.)±0.0057 (ext.). \frac{\Gamma _d }{\Gamma _s } = 0.9905\pm 0.0022~\text {(stat.)} \pm 0.0036~\text {(syst.)} \pm 0.0057~\text {(ext.)}. Γ d Γ s = 0.9905 ± 0.0022 (stat.) ± 0.0036 (syst.) ± 0.0057 (ext.) . The measured lifetime, average decay width and decay width ratio are in agreement with theoretical predictions and with measurements by other experiments. This measurement provides the most precise result of the effective lifetime of the B0B^{0} B 0 meson to date. </jats:p

    Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with charged leptons and jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for heavy right-handed Majorana or Dirac neutrinos NR and heavy right-handed gauge bosons WR is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (“resolved” channel) and topologies with boosted final states with hadronic and/or leptonic products partially overlapping and reconstructed as a large-radius jet (“boosted” channel). The events are selected from pp collision data at the LHC with an integrated luminosity of 139 fb−1 collected by the ATLAS detector at √s = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy righthanded WR boson and NR plane. The excluded region extends to about m(WR) = 6.4 TeV for both Majorana and Dirac NR neutrinos at m(NR) < 1 TeV. NR with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at m(WR) = 4.8 TeV for the Majorana neutrinos, and limits of m(NR) up to 3.6 TeV for m(WR) = 5.2 (5.0) TeV in the electron (muon) channel are set for the Dirac neutrinos. These constitute the most stringent exclusion limits to date for the model considered

    Observation of quantum entanglement with top quarks at the ATLAS detector

    Get PDF
    Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far

    The performance of missing transverse momentum reconstruction and its significance with the ATLAS detector using 140 fb-1 of √s = 13 TeV TeV pp collisions

    Get PDF
    Abstract This paper presents the reconstruction of missing transverse momentum ( pTmissp_{\text {T}}^{\text {miss}} p T miss ) in proton–proton collisions, at a center-of-mass energy of 13 TeV. This is a challenging task involving many detector inputs, combining fully calibrated electrons, muons, photons, hadronically decaying τ\tau τ -leptons, hadronic jets, and soft activity from remaining tracks. Possible double counting of momentum is avoided by applying a signal ambiguity resolution procedure which rejects detector inputs that have already been used. Several pTmissp_{\text {T}}^{\text {miss}} p T miss ‘working points’ are defined with varying stringency of selections, the tightest improving the resolution at high pile-up by up to 39% compared to the loosest. The pTmissp_{\text {T}}^{\text {miss}} p T miss performance is evaluated using data and Monte Carlo simulation, with an emphasis on understanding the impact of pile-up, primarily using events consistent with leptonic Z decays. The studies use 140 fb1140~\text {fb}^{-1} 140 fb - 1 of data, collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. The results demonstrate that pTmissp_{\text {T}}^{\text {miss}} p T miss reconstruction, and its associated significance, are well understood and reliably modelled by simulation. Finally, the systematic uncertainties on the soft pTmissp_{\text {T}}^{\text {miss}} p T miss component are calculated. After various improvements the scale and resolution uncertainties are reduced by up to 76%76\% 76 % and 51%51\% 51 % , respectively, compared to the previous calculation at a lower luminosity

    Search for supersymmetry in final states with missing transverse momentum and charm-tagged jets using 139 fb−1 of proton-proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF

    Search for single production of vector-like T quarks decaying into Ht or Zt in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a search for the single production of an up-type vector-like quark (T) decaying as T → Ht or T → Zt. The search utilises a dataset of pp collisions at s√ = 13 TeV collected with the ATLAS detector during the 2015–2018 data-taking period of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Data are analysed in final states containing a single lepton with multiple jets and b-jets. The presence of boosted heavy resonances in the event is exploited to discriminate the signal from the Standard Model background. No significant excess above the Standard Model expectation is observed, and 95% CL upper limits are set on the production cross section of T quarks in different decay channels. The results are interpreted in several benchmark scenarios to set limits on the mass and universal coupling strength (κ) of the vector-like quark. For singlet T quarks, κ values above 0.53 are excluded for all masses below 2.3 TeV. At a mass of 1.6 TeV, κ values as low as 0.35 are excluded. For T quarks in the doublet scenario, where the production cross section is much lower, κ values above 0.72 are excluded for all masses below 1.7 TeV, and this exclusion is extended to κ above 0.55 for low masses around 1.0 TeV

    Search for excited τ-leptons and leptoquarks in the final state with τ-leptons and jets in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search is reported for excited τ-leptons and leptoquarks in events with two hadronically decaying τ-leptons and two or more jets. The search uses proton-proton (pp) collision data at s√ = 13 TeV recorded by the ATLAS experiment during the Run 2 of the Large Hadron Collider in 2015–2018. The total integrated luminosity is 139 fb−1. The excited τ-lepton is assumed to be produced and to decay via a four-fermion contact interaction into an ordinary τ-lepton and a quark-antiquark pair. The leptoquarks are assumed to be produced in pairs via the strong interaction, and each leptoquark is assumed to couple to a charm or lighter quark and a τ-lepton. No excess over the background prediction is observed. Excited τ-leptons with masses below 2.8 TeV are excluded at 95% CL in scenarios with the contact interaction scale Λ set to 10 TeV. At the extreme limit of model validity where Λ is set equal to the excited τ-lepton mass, excited τ-leptons with masses below 4.6 TeV are excluded. Leptoquarks with masses below 1.3 TeV are excluded at 95% CL if their branching ratio to a charm quark and a τ-lepton equals 1. The analysis does not exploit flavour-tagging in the signal region
    corecore