439 research outputs found

    Spatial Metrics of Tumour Vascular Organisation Predict Radiation Efficacy in a Computational Model

    Get PDF
    Intratumoural heterogeneity is known to contribute to poor therapeutic response. Variations in oxygen tension in particular have been correlated with changes in radiation response in vitro and at the clinical scale with overall survival. Heterogeneity at the microscopic scale in tumour blood vessel architecture has been described, and is one source of the underlying variations in oxygen tension. We seek to determine whether histologic scale measures of the erratic distribution of blood vessels within a tumour can be used to predict differing radiation response. Using a two-dimensional hybrid cellular automaton model of tumour growth, we evaluate the effect of vessel distribution on cell survival outcomes of simulated radiation therapy. Using the standard equations for the oxygen enhancement ratio for cell survival probability under differing oxygen tensions, we calculate average radiation effect over a range of different vessel densities and organisations. We go on to quantify the vessel distribution heterogeneity and measure spatial organization using Ripley's L function, a measure designed to detect deviations from complete spatial randomness. We find that under differing regimes of vessel density the correlation coefficient between the measure of spatial organization and radiation effect changes sign. This provides not only a useful way to understand the differences seen in radiation effect for tissues based on vessel architecture, but also an alternate explanation for the vessel normalization hypothesis

    Exceptional del Pezzo hypersurfaces

    Get PDF
    We compute global log canonical thresholds of a large class of quasismooth well-formed del Pezzo weighted hypersurfaces in P(a1,a2,a3,a4)\mathbb{P}(a_{1},a_{2},a_{3},a_{4}). As a corollary we obtain the existence of orbifold K\"ahler--Einstein metrics on many of them, and classify exceptional and weakly exceptional quasismooth well-formed del Pezzo weighted hypersurfaces in P(a1,a2,a3,a4)\mathbb{P}(a_{1},a_{2},a_{3},a_{4}).Comment: 149 pages, one reference adde

    The Volume of some Non-spherical Horizons and the AdS/CFT Correspondence

    Get PDF
    We calculate the volumes of a large class of Einstein manifolds, namely Sasaki-Einstein manifolds which are the bases of Ricci-flat affine cones described by polynomial embedding relations in C^n. These volumes are important because they allow us to extend and test the AdS/CFT correspondence. We use these volumes to extend the central charge calculation of Gubser (1998) to the generalized conifolds of Gubser, Shatashvili, and Nekrasov (1999). These volumes also allow one to quantize precisely the D-brane flux of the AdS supergravity solution. We end by demonstrating a relationship between the volumes of these Einstein spaces and the number of holomorphic polynomials (which correspond to chiral primary operators in the field theory dual) on the corresponding affine cone.Comment: 25 pp, LaTeX, 1 figure, v2: refs adde

    Dibaryon Spectroscopy

    Full text link
    The AdS/CFT correspondence relates dibaryons in superconformal gauge theories to holomorphic curves in Kaehler-Einstein surfaces. The degree of the holomorphic curves is proportional to the gauge theory conformal dimension of the dibaryons. Moreover, the number of holomorphic curves should match, in an appropriately defined sense, the number of dibaryons. Using AdS/CFT backgrounds built from the generalized conifolds of Gubser, Shatashvili, and Nekrasov (1999), we show that the gauge theory prediction for the dimension of dibaryonic operators does indeed match the degree of the corresponding holomorphic curves. For AdS/CFT backgrounds built from cones over del Pezzo surfaces, we are able to match the degree of the curves to the conformal dimension of dibaryons for the n'th del Pezzo surface, n=1,2,...,6. Also, for the del Pezzos and the A_k type generalized conifolds, for the dibaryons of smallest conformal dimension, we are able to match the number of holomorphic curves with the number of possible dibaryon operators from gauge theory.Comment: 30 pages, 6 figures, corrected refs; v3 typos correcte

    Magnetic Fields in the Milky Way

    Full text link
    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media", eds. E.M. de Gouveia Dal Pino and A. Lazaria

    Pseudoexon activation increases phenotype severity in a Becker muscular dystrophy patient

    Get PDF
    We report a dystrophinopathy patient with an in-frame deletion of DMD exons 45–47, and therefore a genetic diagnosis of Becker muscular dystrophy, who presented with a more severe than expected phenotype. Analysis of the patient DMD mRNA revealed an 82 bp pseudoexon, derived from intron 44, that disrupts the reading frame and is expected to yield a nonfunctional dystrophin. Since the sequence of the pseudoexon and canonical splice sites does not differ from the reference sequence, we concluded that the genomic rearrangement promoted recognition of the pseudoexon, causing a severe dystrophic phenotype. We characterized the deletion breakpoints and identified motifs that might influence selection of the pseudoexon. We concluded that the donor splice site was strengthened by juxtaposition of intron 47, and loss of intron 44 silencer elements, normally located downstream of the pseudoexon donor splice site, further enhanced pseudoexon selection and inclusion in the DMD transcript in this patient

    All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    Full text link
    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0{\deg} and 46{\deg}. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles {\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on composition assumption. Spectral indices above the knee range from -3.08 to -3.11 depending on primary mass composition assumption. Moreover, an indication of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure
    • 

    corecore