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EXCEPTIONAL DEL PEZZO HYPERSURFACES

IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

ABSTRACT. We compute global log canonical thresholds of a large class of quasismooth well-
formed del Pezzo weighted hypersurfaces in P(a1, a2, a3, a4). As a corollary we obtain the exis-
tence of orbifold Kédhler—Einstein metrics on many of them, and classify exceptional and weakly
exceptional quasismooth well-formed del Pezzo weighted hypersurfaces in P(a1, a2, as, a4).
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Part 1. Introduction

All varieties are always assumed to be complex, algebraic, projective and normal unless oth-
erwise stated.

1.1. BACKGROUND

The multiplicity of a nonzero polynomial f € Clzy,...,2,] at a point P € C" is the non-
negative integer m such that f € m’p \ mg“rl, where mp is the maximal ideal of polynomials
vanishing at the point P in C[zy,..., z,]. It can be also defined by derivatives: the multiplicity

of f at the point P is the number

o f

m
‘ O™ z10M229 ... 0™ 2,

multp(f) = min { (P) # 0} .

On the other hand, we have a similar invariant that is defined by integrations. This invariant,
which is called the complex singularity exponent of f at the point P, is given by

cp(f) =sup {c ‘ |f|7¢ is locally L? near the point P € (C”} .

In algebraic geometry this invariant is usually called a log canonical threshold. Let X be a
variety with at most log canonical singularities, let Z C X be a closed subvariety, and let D be
an effective Q-Cartier Q-divisor on the variety X. Then the number

Ictz (X, D) = sup {)\ 0) ‘ the log pair (X, )\D) is log canonical along Z}

is called a log canonical threshold of the divisor D along Z. It follows from [26] that for a
polynomial f in n variables over C and a point P € C"

lctp((C",D> = cp(f),

where the divisor D is defined by the equation f = 0 on C". We can define the log canonical
threshold of D on X by

letx (X, D) = inf {letp (X, D) | Pe X}

= sup {)\ eQ ‘ the log pair (X, )\D) is log canonical} .

For simplicity, the log canonical threshold lctx (X, D) will be denoted by lct(X, D).
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Example 1.1.1. Let D be a cubic curve on the projective plane P2. Then

(1 if D is a smooth curve,

—_

if D is a curve with ordinary double points,

if D is a curve with one cuspidal point,
5 if D consists of a conic and a line that are tangent,
lct (]P’ ,D) =

if D consists of three lines intersecting at one point,

if Supp (D) consists of two lines,

W =N =Wl wWwD| ot

if Supp (D) consists of one line.

Now we suppose that X is a Fano variety with at most log terminal singularities.

Definition 1.1.2. The global log canonical threshold of the Fano variety X is the number
let (X) = inf {lct (X, D) ‘ D is an effective Q-divisor on X with D ~q —KX} .

The number lct(X) is an algebraic counterpart of the a-invariant introduced in [44] and [48]
(see [14, Appendix A]). Because X is rationally connected (see [50]), we have

lct(X) = sup{)\ 0)

the log pair (X , )\D) is log canonical for every }

effective Q-divisor numerically equivalent to —Kx

It immediately follows from Definition [LT.2] that

the log pair <X , ED) is log canonical for every
lct(X) =supe€Q n

divisor D € | —nK X| and every positive integer n

Example 1.1.3 ([14]). Suppose that P(ag, a1, ... ,ay) is a well-formed weighted projective space
with ag < a3 < ... < ay (see [22]). Then

lct<]P’(a0,a1,...,an)> = _%

Dimo @i
Example 1.1.4. Let X be a smooth hypersurface in P" of degree m < n. The paper [6] shows
that
et (X) = —
n+1l-—m
if m < n. For the case m = n > 2 it also shows that

1
1——<let(X) <1
n
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and the left equality holds if X contains a cone of dimension n — 2. Meanwhile, the papers [13]
and [38] show that

1ifn>6,

%
25
1>let(X) =< 16
21
g if n =3,

if n=2>5,

if n =4,

(
if X is general.

Example 1.1.5. Let X be a smooth hypersurface in the weighted projective space P(1"+1, d)

of degree 2d > 4. Then
1

let(X) = ——

¢ ( ) n+1-d

in the case when d < n (see [8, Proposition 20]). Suppose that d = n. Then the inequalities
2n—1

<let(X) <1

hold (see [13]). But let(X) = 1 if X is general and n > 3. Furthermore for the case n = 3 the
papers [13] and [38] prove that
543 13 33 7 33 8 9 11 13 15 17 19 21 29
ICt(X) €Y T T2 95° 9’90 0’ T T T TR TG 5N 55 o
6°50°15°38°8°38°97107127 147 16" 18 20" 22" 30
and all these values are attained. For instance, if the hypersurface X is given by
w? = 2% +y® + 28 4+ ¢ + 2%y%2t C P(1,1,1,1,3) = Proj ((C (2,9, z,t,w}),
where wt(z) = wt(y) = wt(z) = wt(¢) = 1 and wt(w) = 3, then lct(X) =1 (see [13]).

Example 1.1.6 ([2I]). Let X be a rational homogeneous space such that the Picard group of
X is generated by an ample Cartier divisor D and —Kx ~ rD for some positive integer r. Then
let(X) = 1.

T
Example 1.1.7. Let X be a quasismooth well-formed (see [22]) hypersurface in
P(1,a1,as,as,a4) of degree Z?:l a; with at most terminal singularities, where a; < ... < ag.
Then there are exactly 95 possibilities for the quadruple (ai,as2,as,aq) (see [22], [24]). For a
general hypersurface X, it follows from [7], [9], [10] and [13] that

(16
ﬁ ifa1:a2:a3:a4:17
7
§ if (a17a27a37a4) = (1’1’1’2)7
4

1>let(X) > = if (a1,a2,a3,a4) = (1,1,2,2),

6
7 if (a1, az,a3,a4) = (1,1,2,3),

{ 1 otherwise.
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The global log canonical threshold of the hypersurface
w? =34+ 20+ 4218 ¢ ]P’(l, 1,2, 6,9)  Proj ((C [a:,y, z,t,w])

is equal to 15, where wt(z) = wt(y) = 1, wt(2) = 2, wt(t) = 6, wt(w) = 9 (see [7]).

Example 1.1.8 ([12]). Let X be a singular cubic surface in P? with at most canonical singu-
larities. The possible singularities of X are listed in [5]. The global log canonical threshold of
X is as follows:

S it Sing(X) = {A}.
5 i Sing(X) 2 {As}, Sing(X) = {Ds} or Sing(X) 2 {42, As}),
let(X) = ¢ & if Sing(X) 2 {As} or Sing(X) = {Ds},
1 ., ..
5 if Slng(X) = {EG},
x% otherwise.

So far we have not seen any single variety whose global log canonical threshold is irrational.
In general, it is unknown whether global log canonical thresholds are rational numbers or not(cf.
Question 1 in [46]). Even for del Pezzo surfaces with log terminal singularities the rationality of
their global log canonical thresholds is unknown. However, we expect more than this as follows:

Conjecture 1.1.9. There is an effective Q-divisor D on the variety X such that it is Q-linearly
equivalent to —K x and

lct(X) = lct(X,D).
The following definition is due to [42] (cf. [23], [29], [32], [37]).

Definition 1.1.10. The Fano variety X is exceptional (resp. weakly exceptional, strongly
exceptional) if for every effective Q-divisor D on the variety X such that D ~g —Kx and the
pair (X, D) is log terminal (resp. let(X) > 1, let(X) > 1).

It is easy to see the implications
strongly exceptional = exceptional = weakly exceptional.

However, if Conjecture holds for X, then we see that X is exceptional if and only if X is
strongly exceptional. Exceptional del Pezzo surfaces, which are called del Pezzo surfaces without
tigers in [27], lie in finitely many families (see [42], [37]). We expect that strongly exceptional
Fano varieties with quotient singularities enjoy very interesting geometrical properties (cf. [41]
Theorem 3.3], [35, Theorem 1]).

The main motivation for this article is that the global log canonical threshold turns out to play
important roles both in birational geometry and in complex geometry. We have two significant
applications of the global log canonical threshold of a Fano variety X. The first one is for the
case when lct(X) > 1. This inequality has serious applications to rationality problems for Fano
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varieties in birational geometry. The other is for the case when let(X) > %. This has

important applications to Kéhler-Einstein metrics on Fano varieties in complex geometry.
For a simple application of the first inequality, we can mention the following.

Theorem 1.1.11 ([7] and [38]). Let X; be birationally super-rigid Fano variety with lct(X;) > 1
for each ¢ = 1,...,r. Then the variety X; X ... x X, is non-rational and

Bir(Xl ... xXr> :Aut(Xl ... ><Xr>.

For every dominant map p: X3 x ... x X, --» Y whose general fiber is rationally connected,
there is a subset {i1,...,i} C {1,...,r} and a commutative diagram

XiX. . xX,——-"——>X; x...x X,

~
~ P
™ ~
~
~

Xig X oo X X == = = = = - - -~ Sy,

where £ and o are birational maps, and 7 is the natural projection.
This theorem may be more generalized so that we could obtain the following

Example 1.1.12 ([7]). Let X; be a threefold satisfying hypotheses of Example [[T.7 with
let(X;) =1 for each i = 1,...r. Suppose, in addition, that each X; is general in its deformation
family. Then the variety Xy x ... x X, is non-rational and

Bir(Xl X ... % XT> - <ﬁBir(Xi), Aut<X1 X ... % X>>
i=1

For every dominant map p: X x ... x X, --» Y whose general fiber is rationally connected,
there is a subset {i1,...,i} C {1,...,r} and a commutative diagram

XiX.o..xX,——-"—=>=X;x...x X,

~
~ P
™ ~
~
~

X X oo X Xjp == === == = — = = — = — — — =Y,

where £ and o are birational maps, and 7 is the natural projection.

The following result that gives strong connection between global log canonical thresholds and
Kéhler-Einstein metrics was proved in [16], [34],[44] (see [14, Appendix A]).

Theorem 1.1.13. Suppose that X is a Fano variety with at most quotient singularities. Then
it admits an orbifold Kéhler—Einstein metric if

dim (X )
dim(X) +1°
Examples [LT.4] and [LI.7 are good examples to which we may apply Theorem [LT.I3l

There are many known obstructions for the existence of orbifold Kahler—Einstein metrics on
Fano varieties with quotient singularities (see [17], [19], [31], [33], [40], [47]).

let (X) >
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Example 1.1.14 ([20]). Let X be a quasismooth hypersurface in P(ay,...,a,) of degree d <
Yoo ai, where ap < ... < ap. Suppose that X is well-formed and has a Kéhler-Einstein metric.

Then .
d<zai_d> <n"Hai7
i=0 i=0
and > g a; < d+ nag (see [2], [43]).

The problem of existence of Kéhler—Einstein metrics on smooth del Pezzo surfaces is com-
pletely solved by [45] as follows:

Theorem 1.1.15. If X is a smooth del Pezzo surface, then the following conditions are equiv-
alent:

e the automorphism group Aut(X) is reductive;
e the surface X admits a Kdhler—Einstein metric;
e the surface X is not a blow up of P? at one or two points.

Acknowledgments. The first author is grateful to the Max Plank Institute for Mathematics
at Bonn for the hospitality and excellent working conditions. The first author was supported by
the grants NSF DMS-0701465 and EPSRC EP/E048412/1, the third author was supported by
the grants RFFI No. 08-01-00395-a, N.Sh.-1987.1628.1 and EPSRC EP/E048412/1. The second
author has been supported by the Korea Research Foundation Grant funded by the Korean
Government (KRF-2008-313-C00024).

The authors thank I. Kim, B. Sea, and J. Won for their pointing out numerous mistakes in
the first version of this paper.

1.2. RESULTS

Let X, be a quasismooth and well-formed hypersurface in P(ag, a1, as, as) of degree d, where
agp < a1 < az < agq. Then the hypersurface Xy is given by a quasihomogeneous polynomial
equation f(x,y,z,t) =0 of degree d. The quasihomogeneous equation

f(a:,y,z,t) =0CC* Spec(@[w,y,z,t]),

defines an isolated quasihomogeneous singularity (V,O) with the Milnor number H?:o(a%- - 1),

where O is the origin of C*. It follows from the adjunction formula that
3
KXd ~Q O]P’(amal,az,%) <d - Z ai)’
i=0
and it follows from [I§], [26], Proposition 8.14], [39] that the following conditions are equivalent:
the inequality d < Z?:o a; — 1 holds;
the surface X, is a del Pezzo surface;
the singularity (V,O) is rational;
the singularity (V,O) is canonical.



8 IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

Blowing up C* at the origin O with weights (ag, a1, as,a3), we get a purely log terminal blow
up of the singularity (V,0) (see [28], [36]). The paper [36] shows that the following conditions
are equivalent:
e the surface X, is exceptional (weak}llﬁr exceptional, respectively);
(

e the singularity (V,O) is exceptionall (weakly exceptional, respectively).

From now on we suppose that d < ‘:’ 0@ — 1. Then Xy is a del Pezzo surface. Put

I = Z?:o a; — d. The list of possible values of (ag,a1,as,as,d) with 2I < 3ay can be found
in [4] and [I5]. For the case I = 1, we can obtain the complete list of del Pezzo surfaces
X4 C P(ag, a1, az,a3) from [25] as follows:
e smooth del Pezzo surfaces
X CcP(1,1,1,1), X4, CP(1,1,1,2), XgCPP(1,1,2,3),
e singular del Pezzo surfaces
Xsnt+a CP(2,2n +1,2n + 1,4n + 1), where n is a positive integer,

Xi0 C P(1,2,3,5), X135 C P(1,3,5,7), X1 C P(1,3,5,8), Xis C P(2,3,5,9),
X5 C ]P’(?), 3,5, ) Xos C ]P’(?), 5,7, 11), Xog C ]P’(3, 5,7, 14),

Xag C P(3.5,11,18), X6 C P(5,14,17,21), Xg C P(5,19,27,31),

X100 C ]P)( 19,27, 50), Xg1 C P(?, 11,27,37), Xgg C P(?, 11,27, 44),

Xgo C P(9,15,17, 20), Xg9 C P(9,15,23,23), Xj97 C P(11,29,39,49),
Xos6 C ]P)(ll, 49, 69, 128), Xqo7 C ]P)(13, 23,35, 57), Xose C P(13, 35,81, 128).

The global log canonical thresholds of such del Pezzo surfaces have been considered either
implicitly or explicitly in [I], [3], [II], [16], [25]. For example, the papers [1], [3], [16] and
[25] gives us lower bounds for global log canonical thresholds of singular del Pezzo surfaces
with I = 1. Meanwhile, the paper [I1] deals with the exact values of the global log canonical
thresholds of smooth del Pezzo surfaces with I = 1.

Theorem 1.2.1. Suppose that I =1 and X is smooth. Then

if (ao,al,ag,ag) = (1, 1,2,3) and | — Kx,| contains no cuspidal curves,

if (ao,al,ag,ag) = (1, 1,2,3) and | — Kx,| contains a cuspidal curve,
if (ao,al,ag,ag) = (1, 1, 1,2) and | — Kx,| contains no tacnodal curves,
lct(Xd) =

if ((10,&1,&2,&3) = (1, 1, 1,2) and | — Kx,| contains a tacnodal curve,

if X3 is a cubic in P with no Eckardt points,

WINER|Wk|wooto]| ot —

if X3 is a cubic in P with an Eckardt point.

However, for singular del Pezzo surfaces, the exact values of global log canonical thresholds
have not been considered seriously.

A singular del Pezzo hypersurface Xy C P(ag, a1, a9, a3) must satisfy exclusively one of the
following properties:

LFor notions of exceptional and weakly exceptional singularities see [36 Definition 4.1], [42], [23].
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(1) 2I > 3aop ;
(2) 21 < 3ag and

(ao,al,ag,ag,d) = (I—k,]+k,a,a+k,2a+k—|—])

for some non-negative integer k < I and some positive integer a > I + k.
(3) 21 < 3ag but

(ao,al,ag,ag,d) #+ (I—k,]+k,a,a+k,2a+k—|—])

for any non-negative integer k < I and any positive integer a > I + k.

For the first two cases one can check that let(Xy) < 2 (for instance, see [4] and [I5]). All
the quintuples (ag, a1, az, a3, d) such that the hypersurface X, is singular and satisfies the last
condition are listed in Section [l They are taken from [4] and [I5]. Note that we rearranged
a little the quintuples taken from [4] by putting some cases that were contained in the infinite
series of [4] into the sublist of sporadic cases; on the other hand, we removed two sporadic cases,
because they are contained in the additional infinite series found in [I5]. The completeness of
this list is proved in [I5] by using [49].

We already know the global log canonical thresholds of smooth del Pezzo surfaces. For del
Pezzo surfaces satisfying one of the first two conditions, their global log canonical thresholds
are relatively too small to enjoy the condition of Theorem [LT.I3l However, the global log
canonical thresholds of del Pezzo surfaces satisfying the last condition have not been investigated
sufficiently. In the present paper we compute all of them and then we obtain the following result.

Theorem 1.2.2. Let X, be a quasismooth well-formed singular del Pezzo surface in the weighted
projective space Proj(C[z,y, z,t]) with weights wt(z) = ap < wt(y) = a1 < wt(2) = a2 <
wt(t) = ag such that 21 < 3ag but (ag,a1,a2,as,d) # (I —k,I + k,a,a+ k,2a + k + I) for any
non-negative integer k < I and any positive integer a > I + k, where [ = Z?:o a; — d. Then if
ag # a1, then

. I I I
let(X4) = min {lct (Xd, a—ocx), et (Xd, a—lcy), et (Xd, a—2(Jz) } ,
where Cy (resp. Cy, C,) is the divisor on Xy defined by = 0 (resp. y =0, 2 =0). If ap = a1,
then
I
let(Xy) = let <Xd, a_00>’
where C' is a reducible divisor in |Ox,(ao)|.

In particular, we obtain the value of let(Xy) for every del Pezzo surface X listed in Section @l
As a result, we obtain the following corollaries.
Corollary 1.2.3. The following assertions are equivalent:

e the surface X, is exceptional;
° ICt(Xd) >1;
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e the quintuple (ag, a1, az,as,d) lies in the set

((2,3,5,9,18),(3,3,5,5,15),(3,5,7,11,25),(3,5,7,14, 28),

3,5,11,18,36), (5,14,17,21,56), (5,19, 27,31, 81), (5,19, 27,50, 100),
7,11,27,37,81),(7,11,27,44,88), (9,15, 17, 20, 60), (9, 15, 23, 23, 69),
11,29,39,49,127), (11,49, 69, 128, 256), (13, 23, 35, 57, 127),

13, 35,81, 128, 256), (3,4, 5, 10, 20), (3,4, 10, 15, 30), (5, 13,19, 22, 57),
5,13,19,35,70), (6,9, 10, 13, 36), (7,8, 19, 25,57), (7,8,19, 32,64),
9,12,13,16,48),(9,12,19,19,57), (9,19, 24, 31, 81), (10, 19, 35,43, 105),

11,21, 28,47,105), (11, 25,32,41,107), (11,25, 34,43, 111), (11,43, 61, 113, 226),
13,18,45,61,135), (13,20, 29,47,107), (13,20, 31,49, 111), (13,31, 71, 113, 226),
14,17,29,41,99), (5,7,11,13,33), (5,7, 11, 20,40), (11,21, 29, 37,95),
11,37,53,98,196), (13,17,27,41,95), (13,27,61,98,196), (15,19, 43, 74, 148),
9,11,12,17,45),(10,13,25,31,75), (11,17,20,27,71), (11,17,24,31,79),

11, 31,45, 83,166), (13,14, 19,29, 71), (13, 14, 23, 33,79), (13,23, 51, 83, 166),
11,13,19,25,63), (11, 25,37, 68, 136), (13,19, 41, 68, 136), (11, 19,29, 53, 106),
13,15,31,53,106), (11,13, 21, 38, 76)

o~ o~ o~ o~ o~ o~ o~~~ o~~~ o~

Corollary 1.2.4. The following assertions are equivalent:

e the surface X, is weakly exceptional and not exceptional;

° ICt(Xd) =1;

e one of the following holds
— the quintuple (ag, a1, ag, as,d) lies in the set
2,2n+1,2n+1,4n+1,8n + 4),
3,3n,3n+1,3n+ 1,97+ 3),(3,3n + 1,3n + 2,3n + 2,9n + 6),
3,3n+1,3n +2,6n+1,12n +5),(3,3n + 1,6n + 1,9n,18n + 3),
3,3n+1,6n+ 1,9n+3,18n +6),(4,2n + 1,4n + 2,6n + 1,12n + 6),
4,2n + 3,2n + 3,4n + 4,8n + 12),(6,6n + 3,6n + 5,6n + 5, 18n + 15), ’
6,6n + 5,12n + 8,18n + 9,36n + 24), (6,6n + 5,12n + 8, 18n + 15, 36n + 30),
8,4n +5,4n + 7,4n + 9,12n + 23),(9,3n + 8,3n + 11,6n + 13,12n + 35),

(
(
(
(
(
(
(
(1,3,5,8,16), (2,3,4,7,14), (5,6,8,9,24), (5,6, 8, 15, 30)

where n is a positive integer,
— (ag,a1,a2,a3,d) = (1,1,2,3,6
- (a07a17a27a3,d) = (1 2,3 5,1
- (ag,a1,az,a3,d) = (1,3,5,7,1
- (a07a17a27a3,d) = (2 3,4,5,1

) and the pencil | — K x| does not have cuspidal curves,
0) and C, = {x = 0} has an ordinary double point,

5) and the defining equation of X contains yzt,
2

,12) and the defining equation of X contains yzt.
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Corollary 1.2.5. In the notation and assumptions of Theorem [[.2.2] the surface X has an
orbifold Kéhler—Einstein metric with the following possible exceptions: X453 C P(7,10,15,19),
Xg1 C P(7,18,27,37), X¢s C P(7,15,19,32), Xgo C P(7,19,25,41), X117 C P(7,26,39,55),
X15 C P(1,3,5,7) whose defining equation does not contain yzt, and X2 C P(2,3,4,5) whose
defining equation does not contain yzt.

Corollary [[L.23] illustrates the fact that exceptional del Pezzo surfaces lie in finitely many
families (see [42], [37]). On the other hand, Corollary [L2.3] shows that weakly-exceptional del
Pezzo surfaces do not enjoy this property. Note also that Corollary [L2.3] follows from [29].

1.3. PRELIMINARIES

For the basic definitions and properties concerning singularities of pairs we refer the reader
to [26]. To prove Theorem we need to compute the log canonical thresholds of individ-
ual effective divisors. The following two lemmas are rather basic properties of log canonical
thresholds but will be useful to compute them. For the proofs the reader is referred to [26] and
[30].

Lemma 1.3.1. Let f € Clzy,...,z,] and D = (f = 0). Suppose that the polynomial f vanishes
at the origin O in C". Set d = multpo(f) and let f; denote the degree d homogeneous part of
f. Let ToD = (f4 = 0) C C™ be the tangent cone of D and P(TyD) = (f4 = 0) C P"~! be the
projectivised tangent cone of D. Then

(1) § <leto(C", D) < 5.

(2) The log pair (P"~*, 2P(TyD)) is log canonical if and only if lcto(C™, D) = 5.

(3) If P(ToD) is smooth (or even log canonical) then lcto(C", D) = min{1, & }.

Lemma 1.3.2. Let f be a polynomial in C[z1, 29]. Suppose that the polynomial defines an
irreducible curve C passing through the origin O in C2. We then have

1 1
lcto(C?,C) = min <1, —+ —> ,
m n
where (m, n) is the first pair of Puiseux exponents of f. We also have
1 1 mi + meo

lcto (C?, (2202 (2™ + 2") = 0)) = min | —, —, )
O( (1 2 (1 2 ) )) <n1 n9 m1m2+m1n2+m2n1>

where n1, no, m1, mo are non-negative integers.

Throughout the proof of Theorem [[.2.2] Inversion of Adjunction that enables us to compute
log canonical thresholds on lower dimensional varieties will be frequently utilized. Let X be a
normal (but not necessarily projective) variety. Let S be a smooth Cartier divisor on X and B
be an effective Q-Cartier Q-divisor on X such that Kx + S+ B is Q-Cartier and S € Supp(DB).

Theorem 1.3.3. The log pair (X,S + B) is log canonical along S if and only if the log pair
(S, Blg) is log canonical.

In the case when X is a surface, Theorem [[.3.3] can be stated in terms of local intersection
numbers.
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Lemma 1.3.4. Suppose that X is a surface. Let P be a smooth point of X such that it is also
a smooth point of S. Then the log pair (X, S + B) is log canonical at the point P if and only if
the local intersection number of B and S at the point P is at most 1. In particular, if the log
pair (X, mS + B) is not log canonical at the point P for m < 1, then B - S > 1.

Lemma 1.3.5. Let D be an effective Q-divisor such that Kx + D is Q-Cartier. For a smooth
point P of X, the log pair (X, D) is log canonical at the point P if multp(D) < 1.

Throughout the proof of Theorem [[L2.2] we interrelate Lemma with Lemma [[.3.4] to
get some contradictions. To do so, we need the following lemma that plays the role of a bridge
between them.

Lemma 1.3.6. Let D; and D; be effective Q-divisors on Y with D; ~g Da. Suppose that the
pair (X, Dy) is not log canonical at a point P € Y but the pair (X, Ds) is log canonical at the
point P. Then there is an effective Q-divisor D on Y such that

o D ~q Dy;

e at least one irreducible component of D is not contained in the support of D;

e the pair (X, D) is not log canonical at the point P.

Proof. Write Dy = Zzzl b;C; where b;’s are positive rational numbers and C;’s are distinct
irreducible and reduced divisors. Also, we write D1 = A + Zzzl e;C; where e;’s are non-
negative rational numbers and A is an effective Q-divisor whose support contains none of C;’s.
Suppose that e; > 0 for each . If not, then we put D = D;. Let

a:min{ﬁ i = 1,2,...,r}.
b;
Then the positive rational number « is less than 1 since Dy ~g Ds. Put
1
D=—D -2 D,
1l—«a 11—«

1 ! ei—ozbi
_1—ozA+;< 11—« >Ci'

It is easy to see that the divisor D satisfies the first two conditions. If the pair (X, D) is log
canonical at the point P, then the pair (X, D;) = (X, (1 — @)D + D) must be log canonical
at the point P. Therefore, the divisor D also satisfies the last condition. O

In the present paper, we deal with surfaces with at most quotient singularities. However, the
statements mentioned so far require smoothness of the ambient space for us to utilize them to
the fullest. Fortunately, the following proposition enables us to apply the statements with ease
since we have a natural finite morphism of a germ of the origin in C? to a germ of a quotient
singularity that is ramified only at a point.

Proposition 1.3.7 ([26]). Let f: Y — X be a finite morphism between normal varieties and
assume that f is unramified outside a set of codimension two. Let D be an effective Q-Cartier
Q-divisor. Then a log pair (X, D) is log canonical (resp. Kawamata log terminal) if and only if
the log pair (Y, f*D) is log canonical (resp. Kawamata log terminal).
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The following two lemmas will be useful for this paper. The first lemma is just a reformulation
of Lemma [[.3.4] mixed with Proposition [[.L3.7] that we can apply to our cases immediately.
Suppose that X is a quasismooth well-formed hypersurface in P = P(ag, a1, az, as) of degree d.

Lemma 1.3.8. Let C be a reduced and irreducible curve on X and D be an effective Q-
divisor on X. Suppose that for a given positive rational number A\ we have Amultc (D) < 1. If
A(C - D — (multe(D))C?) < 1, then the pair (X, AD) is log canonical at each smooth point P of
C not in Sing(X). Furthermore, if the point P of C' is a singular point of X of type %(a, b) and
rA(C - D — (multc(D))C?) < 1, then the pair (X, AD) is log canonical at P.

Proof. We may write D = mC + €0, where  is an effective divisor whose support does not
contain the curve C. Suppose that the pair (X, A\D) is not log canonical at a smooth point P
of C not in Sing(X). Since Am < 1, the pair (X,C + Q) is not log canonical at the point P.
Then by Lemma [[.3.4] we obtain an absurd inequality

1<A2-C=AC-(D-mC)< 1.

Also, if the point P is a singular point of X, then we obtain from Lemma [[.3.4] and Proposi-

tion [L3.7] 1
~<AQ-C=ACH (D -mC) <

This proves the second statement. O
Let D be an effective Q-divisor on X such that
D ~q OP(aoﬂl,az,CLS) ([) ‘X

The next lemma will be applied to show that the log pair (X, D) is log canonical at some smooth
points on X.

S|

Lemma 1.3.9. Let k be a positive integer. Suppose that H(P, Op(k)) contains

e at least two different monomials of the form z®yP?,

e at least two different monomials of the form z7z9.

For a smooth point P of X in the outside of C,,

Tkd

multp (D) < —4
apaiazas

if either HO(IP, Op(k)) contains at least two different monomials of the form z## or the point P
is not contained in a curve contracted by the projection ¢ : X --» P(ag,a1,az). Here, «, (3, 7,
d, 1 and v are non-negative integers.

Proof. The first case follows from [I, Lemma 3.3]. Arguing as in the proof of [I, Corollary 3.4],
we can also obtain the second case. O

Let us conclude this section by mentioning two results that are never used in this paper, but
nevertheless can be used to give shorter proofs of Corollaries [L.2.3] and .25 Suppose that X is
given by a quasihomogeneous equation

f($,y,Z,t) =0C P(a07a17a27a3) = PI‘Oj <C[$7y7zat]>7

where wt(z) = ag < wt(y) = a1 < wt(z) = az < wt(t) = as.



14 IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

Lemma 1.3.10. Suppose that [ = Z?:o a; —d > 0. Then
apal
dr’
apaz .
lct(X) > A if £(0,0,z2,t) # 0,
apas .
W lf f(O, 0,0,t) # 0

Proof. See [4, Corollary 5.3] (cf. |25, Proposition 11]). O
Lemma 1.3.11. Suppose that I = Z?:o a; —d > 0, the curve Cp = {z = 0} is irreducible and

reduced. Then
min <%, let <X, iCx>> ,
lot (X) > @0

apag

‘ I .
min <7, Ict <X, CL_OCSC>> if f(0,0,0,7) # 0.

Proof. Arguing as in the proof of [25] Proposition 11] and using Lemma [[.3.6] we obtain the
required assertion. O

1.4. NOTATION

We reserve the following notation that will be used throughout the paper:

e P(ap,ai,as,as) denotes the well-formed weighted projective space Proj(C [m, Y, 2, t]) with
weights wt(z) = ag, wt(y) = a1, wt(z) = ag, wt(t) = az, where we always assume the
inequalities ag < a1 < az < az. We may use simply P instead of P(ag, a1, a2, as) when
this does not lead to confusion.

e X denotes a quasismooth and well-formed hypersurface in P(ag, a1, az,a3) (see Defini-
tions 6.3 and 6.9 in [22], respectively).

e O, is the point in P(ag, a1, az,a3) defined by y = z = ¢t = 0. The points O,, O, and Oy
are defined in the similar way.

e C, is the curve on X cut out by the equation z = 0. The curves Cy, C, and C; are
defined in the similar way.

e L., is the curve in P(ag, a1, a2, ag) defined by =y = 0. The curves L., Ly, Ly, Ly
and L,; are defined in the similar way.

e Let D be a divisor on X and P € X. Choose an orbifold chart 7: U — U for some
neighborhood P € U C X. We put multp(D) = multg(7*D), where @ is a point on U
with 7(Q) = P, and refer to this quantity as the multiplicity of D at P.

1.5. THE SCHEME OF THE PROOF

We have 83 familied of del Pezzo hypersurfaces in The Big Table. In the present section we ex-
plain the methods to compute the global log canonical thresholds of the del Pezzo hypersurfaces
in The Big Table.

2By family we mean either one-parameter series (which actually gives rise to an infinite number of deformation
families) or a sporadic case. We hope that this would not lead to a confusion.
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Let X C P(ag, a1, az,as) be a del Pezzo surface of degree d in one of the 83 families (actually,
one infinite series has been treated in [15], so we will omit the computations in this case). Set
I = a9+ a1 +as + a3 — d. There are two exceptional cases where ag = a;. The method for
these two cases is a bit different from the other cases. Both cases will be individually dealt with
(Lemmas Z2.4] and B.1.H).

If ag # a1, then we will take steps as follows:

Step 1. Using Lemmas [[.L3.1] and with Proposition [[L3.7] we compute the log canonical
thresholds let(X, £C,), let(X, £C,), let(X, £C.) and let(X, £C;). Set

1 1 I 1
A = min {lct(X, —Cy),let(X, —Cy), let (X, —C), let (X, —Ct)} .
ap ao ap ap
Then the global log canonical threshold lct(X) is at most .

Step 2. We claim that the global log canonical threshold lct(X) is equal to A. To prove
this assertion, we suppose lct(X) < A. Then there is an effective Q-divisor D equivalent to the
anticanonical divisor —Kx of X such that the log pair (X, AD) is not log canonical at some
point P € X. In particular, we obtain

1 if the point P is a smooth point of X,

multp(A\D) > 1 . . . . . 1
— if the point P is a singular point of X of type —(a,b).
r r

from Lemma [[L3.5] and Proposition [L3.7)
Step 3. We show that the point P cannot be a singular point of X using the following
methods.

Method 3.1. (Multiplicity) We may assume that a suitable irreducible component C' of
Cy, Cy, C,, and C; is not contained in the support of the divisor D. We derive a possible
contradiction from the inequality

~multp(D) o multp(C)

C-D > multp(C) . Y

9

where r is the index of the quotient singular point P. The last inequality follows from the
assumption that (X, AD) is not log canonical at P. This method can be applied to exclude a
smooth point.

Method 3.2. (Inversion of Adjunction) We consider a suitable irreducible curve C
smooth at P. We then write D = puC + ), where Q is an effective Q-divisor whose support does
not contain C. We check A\ < 1. If so, then the log pair (X,C + AQ2) is not log canonical at
the point P either. By Lemma [[.3.8] we have

A(D—MC’)-C:AC’-Q>%.

We try to derive a contradiction from this inequality. The curve C is taken usually from an
irreducible component of C,, Cy, C., or C;. This method can be applied to exclude a smooth
point.
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Method 3.3. (Weighted Blow Up) Sometimes we cannot exclude a singular point P only
with the previous two methods. In such a case, we take a suitable weighted blow up 7 : Y — X
at the point P. We can write

Ky + DY ~Q W*(KX + AD),

where DY is the log pull-back of AD by 7. Using method 3.1 we obtain that DY is effective.
Then we apply the previous two methods to the pair (Y, DY), or repeat this method until we
get a contradictory inequality.

Step 4. We show that the point P cannot be a smooth point of X. To do so, we first apply
Lemma [[.3.91 However, this method does not work always. If the method fails, then we try to
find a suitable pencil £ on X. The pencil has a member £’ which passes through the point P.
We show that the pair (X, AF') is log canonical at the point P. Then, we may assume that the
support of D does not contain at least one irreducible component of F'. If the divisor D itself
is irreducible, then we use Method 3.1 to exclude the point P. If F' is reducible, then we use
Method 3.2.

Part 2. Infinite series
2.1. INFINITE SERIES WITH [ =1

Lemma 2.1.1. Let X be a quasismooth hypersurface of degree 8n+4 in P(2,2n+1, 2n+1, 4n+1)
for a natural number n. Then lct(X) = 1.

Proof. The surface X is singular at the point O, which is of type Flﬂ(l? 1). It has also four
singular points O1, Oz, O3, O4, which are cut out on X by L,;. Each O; is a singular point of
type Tlﬂ(l, n) on the surface X.

The curve C,, is reducible. We see
Cy=L1+ Lo+ L3+ Ly,
where L; is a smooth rational curves such that

1

-Kx - LZ = )
X (2n + 1)(4n + 1)

and L1 N LoNLy3NLy = {Ot} Then

for i # j. Also, we have

3 2 3 6n + 1
dn+1 (n+D(An+1) 4n+1 n+1)En+1)

It is easy to see lct(X, %Cx) = 1. Therefore, lct(X) < 1. Suppose that lct(X) < 1. Then
there is an effective Q-divisor D ~g —Kx such that the log pair (X, D) is not log canonical at
some point P € X.

L} =Cyp- L —




EXCEPTIONAL DEL PEZZO HYPERSURFACES 17

Since
(4n+2)8n+4) 4

22n+1)2(4n+1) 4n+1
and HO(P, Op(4n + 2)) contains z2" 1, y? and 22, Lemma [[3.9] implies that P € C,.
It follows from Lemma[[.3.6] that we may assume that L; ¢ Supp(D) for some i. Also, P € L;
for some j. Put D = mL; +Q, where  is an effective Q-divisor such that L; ¢ Supp(£2). Since
1
(2n+1)(4n +1)

_1
2n+1°

<1

m
4dn +1

=D-Li=(mLj+9Q)-Li >mL;- Lj =

9

we have 0 < m < Since

1+m(6n+1) . 2
(2n+1)(dn+1) = (2n+1)
Lemma [[.3.8 implies the point P must be O;. Note that the inequality

<1

1
Ito, (D) < (4 D -L;=—— <1,
malto, (D) < (4n +1)D - Li = 5=
shows that the point P cannot be the point O;. This is a contradiction. O

2.2. INFINITE SERIES WITH [ = 2

Lemma 2.2.1. Let X be a quasismooth hypersurface of degree 8n + 12 in P(4,2n + 3,2n +
3,4n + 4) for a natural number n. Then lct(X) = 1.

Proof. The only singularities of X are a singular point O; of index 4n + 4, two singular points
Py, P, of index 4 on Ly, and four singular points Q1, Q2, @3, Q4 of index 2n + 3 on L.

The curve C, is reduced and splits into four irreducible components Lq,...,Ls. Each L;
passes through @;. They intersect each other at O;. One can easily see that lct(X, %C’m) =1,
and hence lct(X) < 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.

By Lemma we may assume that L; ¢ Supp (D) for some i. Since

dn + 4

Un+Li-D =5 e <!

for all n > 1, the point P cannot belong to the curve L;.
For j # 4, put D = pL;+Q, where  is an effective Q-divisor such that L; ¢ Supp (€2). Since
o 1
—pLi Ly <D-L; = ,
dn+4 M 2(n+1)(2n + 3)

we have

2
2n+ 3

n<

Note that
2 3 6n +5
?=C,-L;—3L;-L;= — =— )
J J T2+ 1)(2n+3)  4(n+1) 4(n+1)(2n + 3)
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By Lemma [[.3.4] the inequality

24 (6n 45 _ 4

2 Q-L;=(2 D—ul;)-L;, = < 1
(2n + 3) i = (2n+ 3)( pnLj) - Lj 0t 2n—|—3<

for all n > 1 shows that P cannot be contained in L;. Consequently, the point P is located in
the outside of C..

By a suitable coordinate change we may assume that P, = O,. Then, the curve C} is reduced
and splits into four irreducible components L],..., L. Each L] passes through the point Q;.
They intersect each other at O,. We can easily see that the log pair (X, ﬁct) is log canonical.
By Lemma we may assume that L, ¢ Supp (D). Since

2
2n+ 3

for all n > 1, the point P cannot be O,. The point P, can be excluded in a similar way.
Therefore, P is a smooth point of X \ C,. Applying Lemma [[.3.9] we see that

2(8n + 12)2
1 < multp(D) < <
<multr(D) S o e 1 )

for n > 1 since H°(P, Op(8n + 12)) contains z>"™3, y* and z*. The obtained contradiction
completes the proof. O

multp, (D) < 4L, - D = <1

Lemma 2.2.2. Let X be a quasismooth hypersurface of degree 18n + 6 in P(3,3n + 1,6n +
1,9n + 3) for a natural number n > 1. Then lct(X) = 1.

Proof. The only singularities of X are a singular point O, of index 6n + 1, two singular points
Py, P, of index 3 on L., and two singular points 1, Q2 of index 3n + 1 on L.

The curve C,, is reduced and splits into two components L; and Lo that intersect at O,. It is
easy to see that lct(X, 2C,) = 1. Therefore, lct(X) < 1. Note that

In —3
(Bn+1)(6n+1)
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log

pair (X, D) is not log canonical at some point P € X.
We may assume that Lo is not contained the support of D. The inequality

2 1
<
Bn+1)6n+1) " 6n+1
shows that the point P cannot belong to the curve Ly. Put D = puL1 4+, where € is an effective
Q-divisor whose support does not contain the curve L. Since
3 2
=pul1 - Lo <DLy = )
61 2T Bnt+ D6+ 1)

Ly Ly and L] = L3 = —

:6n—|—1

D-Ly=

we have
2

(P —
FS36r+1)
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Lemma [I.3.8 and the inequality
2+ u(9n — 3) - 4
Bn+1)(6n+1)  (3n+1)(6n+1)
show that the point P is located in the outside of Ly. Therefore, P & C,.
The curve Cy is irreducible. It is easy to see that the log pair (X, ﬁCy) is log canonical.

Therefore, we may assume that the support of D does not contain the curve C,. Note that
P, P, € Cy. The inequality

Q'le(D—uLl)'le

4
<1
6n +1
shows that neither P, not P, can be the point P.

Hence P is a smooth point of X \ C,. Applying Lemma [[.3.9], we get an absurd inequality

2(18n + 6)(18n + 3)
3(3n+1)(6n + 1)(9n + 3)

since HY(P, Op(18n + 3)) contains x5! 23743 and 23. The obtained contradiction completes
the proof. O

3D - C, =

1 < multp(D) < <1

Lemma 2.2.3. Let X be a quasismooth hypersurface of degree 18n+3 in P(3,3n+1,6n+1,9n)
for a natural number n > 1. Then lct(X) = 1.

Proof. The singularities of X are a singular point O, of index 3n + 1, a singular point O; of
index 9n, and two singular points @)1, Q2 of index 3 on L.

The curve C, is reduced and irreducible and has the only singularity at O;. It is easy to see
that lct(X, 2C;) = 1, and hence lct(X) < 1. The curve G is quasismooth. Therefore, the log
pair (X, ﬁC’y) is log canonical.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X. By Lemma we may assume that
neither C nor Cy is contained in Supp (D).

The inequalities

2
C,-D<(3n+1)C, D =— <1,

3n
lto, (Cy)multo, (D) _ 9nC, - D 2
multo, (D) = kol ;m“ oD) 9n e e

show that the point P must be located in the outside of C,.
Also, the inequality

2
3C,-D=—<1
Y 3n<

implies that neither @1 not Q2 can be the point P. Hence P is a smooth point of X \ C,. We
see that HO(P, Op(9n + 3)) contains 23" %!, y3 and zt. Also, the projection of X from the point
O, has only finite fibers. Therefore, Lemma [1.3.9] implies a contradictory inequality
2(8n+3)(9n+3) 2
3B3n+1)(6n+1)-9n  3n

The obtained contradiction completes the proof. O

1 < multp(D) < <1
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Lemma 2.2.4. Let X be a quasismooth hypersurface of degree 12 in (3, 3,4, 4). Then lct(X) =
1.

Proof. The surface X can be defined by the quasihomogeneous equation

4

3
H(azl“Fﬁzy = H ’792"1'515

i=1

where [a; : 3;] define four distinct points and [v; : §;] define three distinct points in PL.

Let P; be the point in X given by z =t = ayx 4+ (;y = 0. These are singular point of X of
type l(1 1). Let Q; be the point in X that is given by @ = y = ;2 + §;t = 0. Then each of
them is a singular point of X of type (1, 1).

Let L;; be the curve in X defined by o + By = vz + 0;t = 0, where ¢ = 1,...,4 and
j=1,...,3.

The divisor C; cut out by the equation o;x + B;y = 0 consists of three smooth curves L;,
Lo, L;s. These divisors C;, i = 1,2,3,4, are the only reducible members in the linear system
|Ox (3)|. Meanwhile, the divisor B; cut out by ~;z + 0t = 0 consists of four smooth curves Ly,
ng, ng, L4j. Note that L;; N Lijs N Lz = {PZ} and Llj N ng N ng N L4j = {Q]} We have
Lij- Li = 3 and Ly; - Ly = § if k # j. But L, = — .

Since lct (X, %C’Z) = lct (X, %Bj) =1, we have let(X) < 1.

Suppose that let(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, D) is not log canonical at some point P. For every i = 1,...,4, we may assume that
the support of the divisor D does not contain at least one curve among L;q, L;o, L;3. Suppose
L;; ¢ Supp (D). Then the inequality

Hlultpi(D) <3D - Ly = %
implies that none of the points P; can be the point P. For every j = 1, 2,3, we may also assume
that the support of the divisor D does not contain at least one curve among L1, Laj, L3j, L.
Suppose Lj; ¢ Supp (D). Then the inequality

muthj (D) <4D - L = ;
implies that none of the points @); can be the point P. Therefore, the point must be a smooth
point of X.

Write D = pL;; + Q, where €2 is an effective Q-divisor whose support does not contain Lj;;.
If o > 0, then we have puL;j - Ly, < D - Ly, and hence p < % Since

245
12

Lemma [[-3:4] implies the point P cannot be on the curve L;;. Consequently,

QL”: <1,
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There is a unique curve C C X cut out by Az + uy = 0, where [\ : u] € P!, passing through
the point P. Then the curve C is irreducible and quasismooth. Thus, we may assume that C' is
not contained in the support of D. Then

1
This is a contradiction. O

Lemma 2.2.5. Let X be a quasismooth hypersurface of degree 9n+3 in P(3,3n,3n+1,3n+1)
for n > 2. Then lct(X) = 1.

Proof. We may assume that the surface X is defined by the equation
zy(y —ax")(y — ba") + zt(z — ct) =0,

where a, b, ¢ are non-zero constants and b # c. The point O, is a singular point of of index 3n
on X. The three points O, P, =[1:a:0:0], B, =[1:b:0:0] are singular points of index 3
on X. Also, X has three singular points O, O, P. =[0:0:c: 1] of index 3n + 1 on Ly,.

The curve C, consists of three irreducible components L,,, L,; and L. = {x = z — ¢t = 0}.
These three components intersect each other at O,. It is easy to check lct(X, %C’m) = 1. Thus,
let(X) < 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.

By Lemma we may assume that at least one of the components of C, is not contained
in Supp (D). Then, the inequality

2

3nLy, - D=3nLy-D=3nL.-D =
3n+1

<1

implies that the point P cannot be the point O,.

Put D = plL,, + Q, where € is an effective Q-divisor whose support does not contain the
curve L,,. We claim that

2
3n+1
Indeed, if the inequality fails, one of the curves L,; and L. is not contained in Supp (D). Then
either

<

S =il Lo S DLy = g oF o=l Lo < D Lo = g
holds. This is a contradiction. Note that
12 6n —1 .
v 3n(3n +1)
The inequality
Q-Lm:2+(6n_1)'u 1

<
3n(3n+1) 3n+1
holds for all n > 2. Therefore, Lemma [L.3.8] implies the point P cannot belong to L,,. By the
same way, we can show that P & L,; U L.
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Let C be the curve on X cut out by the equation z — at = 0, where « is non-zero constant
different from ¢. Then the curve C' is quasismooth and hence lct(X, W%AC’) > 1. Therefore, we
may assume that the support of D does not contain the curve C. Then

2
multo, (D), multp, (D), multp,(D) <3D-C=—-<1
n

for n > 2. Therefore, P cannot be a singular point of X. Hence P is a smooth point of X \ C,.
Applying Lemma [[.3.9] we get an absurd inequality

2(9n + 3)2
1 < multp(D) < <1
multe (D) S 5 s T D en T 1)

for n > 2 since H°(P, Op(9n + 3)) contains z*"*1 xy3 and z3. The obtained contradiction
completes the proof. O

Lemma 2.2.6. Let X be a quasismooth hypersurface of degree 9n+6 in P(3,3n+1, 3n+2, 3n+2)
for n > 1. Then lct(X) = 1.

Proof. The only singularities of X are a singular point O, of index 3n + 1, and three singular
points P;, 1 = 1,2,3, of index 3n + 2 on Ly,.

The divisor C,, consists of three distinct irreducible and reduced curves L1, Lo, L3, where each
L; contains the singular point P;. Then Ly NLaN L3 = {O,}. It is obvious that lct(X, %C’m) =1,
and hence lct(X) < 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X. By Lemma [[.3.6] we may assume that L;
is not contained in Supp (D).

Since

L1D<(3TL—|—1)L1D: <1

3n + 2
for all n > 1, we see that P ¢ Lq. In particular, we see that P # O,.
Put D = pLs 4+ Q, where  is an effective Q-divisor such that L ¢ Supp (2). Then the
inequality
B Ly Ly<D L= 2
Syl FTL2S YT Brr DB+ 2)

2

g3 The intersection number

implies that p <

12 _ 6n +1
Y7 Bn+1D)(Bn+2)

shows

B 24 p(6n+1) 6
Bn+2)Q- Ly = (8n +2)(D —pla) - Ly = —mim— S gy

for all n > 1. Therefore, Lemma [[L3.8] excludes all the smooth point on Lo in the case where
n > 1 and the singular point P, in the case where n > 2. For the case n = 1, let Cy be the unique
curve in the pencil |Ox(5)| that passes through the point P». Then the divisor Cy consists of
two distinct irreducible and reduced curve Lo and Rs. The curve R is singular at the point
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P5. Moreover, the log pair (X, 2C5) is log canonical at the point P». By Lemma [L3.6, we may
assume that Re ¢ Supp (D). Then the inequality

2multp, (D) < multp,(D)multp,(R2) < 5D - Ry = 2

excludes the point P; in the case where n = 1. By the same method, we can show P ¢ Ls.
Hence the point P must be a smooth point in X \ C,. For the case n > 2, we can use
Lemma [[.3.9] to get a contradiction

2(9n + 6)? 6 1
33n+1)3n+2)(3n+2) 3n+1 7

since HY(P, Op(9n + 6)) contains x3" "2, y3z and z3. For the case n = 1, let Rp be the unique
curve in the pencil |Ox(5)| that passes through the point P. The log pair (X, %Rp) is log
canonical at the point P. By Lemma [[.3.6] we may assume that Supp (D) does not contain at
least one irreducible component of Rp. Note that either Rp is irreducible or P, € Rp for some
k=1,2,3. If Rp is irreducible, then we can obtain a contradiction
1
1<multp(D)< D-Rp= 3
Thus, P, € Rp. Then Rp consists of two distinct irreducible curves Ly and Z. Since we already
showed that P is located in the outside of Ly, the point P must belong to the curve Z. We have
7 3 2
Li=——, Lpy-Z=2, Z°="Z.
T o0 R 5’ 5
Put D =mZ + A, where A is an effective Q-divisor such that Z ¢ Supp (A). If m > 0, then
3m 1
—=mZ - L, <D -L;,=—,
5Ok "= 10
and hence 1 < 3. Then Lemma [[L3.8] gives us a contradiction
2—-2m
5

1 <multp(D) <

1<A-Z= < 1.

O

Lemma 2.2.7. Let X be a quasismooth hypersurface of degree 12n + 6 in P(4,2n + 1,4n +
2,6n + 1) for n > 1. Then lct(X) = 1.

Proof. We may assume that the surface X is defined by the equation
ot? 4+ 222 4 a2 — (2 — a19?) (2 — agy?) (2 — asy?) = 0,

where a1, as, a3 are distinct constants and a is a constant.

The only singularities of X are a singular point O, of index 4, a singular point O; of index
6n+1, a singular point @ = [1:0: 1: 0] of index 2, and three singular points P, = [0:1: a; : 0],
P,=[0:1:a2:0], P5=1[0:1:as:0] of index 2n + 1.

The divisor C,, consists of three distinct irreducible curves L; = {z = z—a;y?> =0}, i =1,2,3.
Note that each L; passes through the point P; and L; N Ly N Ls = {O;}. We can easily check
let(X, $C;) = 1, and hence let(X) < 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.
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By Lemma [[.3.6] we may assume that L; is not contained in Supp (D). Since
2
2n+1

(6n+1)Ly - D = <1

the point P is located in the outside of L.
Put D = puLs + €2, where Q is an effective Q-divisor such that Ly ¢ Supp (2). Then

21 2
—uly Ly <DLy = ,
61 2T @n+)6n+ 1)

1

nrl” Slnce

and hence p <
8n

(2n+1)(6n+1)

Ly =-

we have

2+ 8nu < 2
6n+1 ~ 2n+1
for all n > 1. Then Lemma [[L3.8 excludes all the points on Ly. Furthermore, the same method
works for L.

The curve Cy is quasismooth. Thus the log pair (X, %HCy) is log canonical. By Lemma [[L3.0]
we may assume that Cy is not contained in Supp (D). Then the inequality

6
6n +1

implies that the point P is neither O, nor Q). Hence P is a smooth point of X \ C,. However,
Lemma [[.3.9] gives us

(27’L+1)QL2:(27”L—|—1)(D—#L2)LQZ <1

ACy - D = <1

144n(2n + 1)
8(2n + 1)2(6n + 1)

since HY(P, Op(12n)) contains 3", y*2"~! and 222"~!. This is a contradiction. O

multp(D) < <1

2.3. INFINITE SERIES WITH [ = 4

Lemma 2.3.1. Let X be a quasismooth hypersurface of degree 18n + 15 in P(6,6n + 3,6n +
5,6n +5) for n > 1. Then lct(X) = 1.

Proof. We may assume that the surface X is defined by the equation
(z — art)(z — ast)(z — ast) + zy(y? — 22" =0,

where a1, as, ag are distinct constants. The only singularities of X are a singular point O, of
index 6, a singular point O, of index 6n + 3, a singular point @ = [1:1:0: 0] of index 3, and
three singular points P, = [0:0: a; : 1], i = 1,2,3, of index 6n + 5.

The divisor C,, consists of three distinct irreducible curves L; = {x = z —a;t =0}, i =1,2,3.
Note that each L; passes through the point P; and Ly N Ly N Ly = {O,}. We can easily check
let(X, 2C;) = 1, and hence lct(X) < 1.

The divisor Cy consists of three distinct irreducible curves L, = {y = z —a;t = 0}, i = 1,2, 3.
Each L/ passes through the point P; and L} N L N L5 = {Og}. The log pair (X, ﬁCy) is log
canonical.
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Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.
For a general member C in |Ox (6n + 5)|, we have
6

<1
6n + 3

multg(D) < 3D -C =

Therefore the point P cannot be the point Q.

By Lemma we may assume that L; and L} are not contained in Supp (D). The two
inequalities (6n+5)D - Ly = 6n4ﬁ <land 6D L} = ﬁ < 1 show that the point P is located
in the outside of Ly U Lj.

Write D = pLy + Q, where  is an effective Q-divisor such that Ly ¢ Supp (2). Then

W 4
— Ly Lo <D-Ly = :
6ntg 12 L= 6n +3)(6n +5)

and hence pu < ﬁ' Note that

9 12n + 4

Ly= C(6n+3)(6n+5)

Therefore, we have

_4+(12n+4)u< 12
N 6n + 3 S 6n+5

Therefore, Lemma [[.3.8] excludes all the smooth point on Lo in the case where n > 1 and the
singular point P, in the case where n > 2. For the case n = 1, let (5 be the unique curve in the
pencil |Ox(11)] that passes through the point P». Then the divisor Co consists of three distinct
irreducible and reduced curve Lo, L}, and Ry. The log pair (X, %02) is log canonical at the
point P. If p = 0, then the inequality above immediately excludes the point P» for the case
n = 1. Therefore we may assume that either L) ¢ Supp (D) or Re ¢ Supp (D). In the former
case, the intersection number

(671 + 5)Q . L2 = (671 + 5)(D — ,uLg) . L2

2
D-Lh=—
33
shows that the point P cannot be P,. In the latter case, the intersection number
1
D-R, = —
T

excludes the point P;. By the same method, we can show P ¢ Lg.
Hence the point P must be a smooth point in X \ C,. For the case n > 2, we can use
Lemma .39 to get a contradiction

4(18n +15)-6(6n+5) _ 4 _
6(6n + 3)(6n +5)(6n+5) 2n+1
since HO(P, Op(6(6n+5)) contains 2°7+5 4922 and 2%. For the case n = 1, let Rp be the unique

curve in the pencil |Ox(11)| that passes through the point P. The log pair (X, fRp) is log
canonical at the point P. By Lemma [[.3.6] we may assume that Supp (D) does not contain at

1 <multp(D) < 1,
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least one irreducible component of Rp. Note that either Rp is irreducible or P, € Rp for some
k =1,2,3. However, if Rp is irreducible, then we can obtain a contradiction

2
1<multp(D)< D-Rp= 9
Thus, P, € Rp. Then Rp consists of three distinct irreducible curves Ly, L) and Z. We have
2 4 13 4
D Li==—, D-Z=—, LP=-——", 7?=——.
k33 337 Tk 66’ 33

Put D = miZ + moLj + A, where A is an effective Q-divisor whose support contains neither
Z mnor Lj. Since the pair (X, D) is log canonical at the point P, we have m;, mo < 1. Since we
already showed that P is located in the outside of Ly, the point P must belong to either L} or
Z. However, Lemma [[.3.8 shows that the pair (X, D) is log canonical at the point P since

4+ 4my 44 13my
33 66

This is a contradiction. O

(D—miZ)-Z = <1, (D—myL})- L}, <1.

Lemma 2.3.2. Let X be a quasismooth hypersurface of degree 36n + 24 in P(6,6n + 5,12n +
8,18n 4 9) for n > 1. Then lct(X) = 1.

Proof. We may assume that the surface X is defined by the equation
23 Bt 4 at? — 26T o aa? T2 = 0,

where a is a constant. The only singularities of X are a singular point O, of index 6n + 5, a
singular point O; of index 18n + 9, a singular point @ = [1:0:0: 1] of index 3, and a singular
point @ =[1:0:1:0] of index 2.

The curve C, is reduced and irreducible with multo,(C;) = 3. Clearly, let(X, 2C,) = 1,
and hence lct(X) < 1. The curve Cy, is quasismooth, and hence the log pair (X, ﬁCy) is log
canonical.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.

Since H(P, Op(36n + 30)) contains x577° 4% and 23z, Lemma [[3.9] implies

4(36n + 24)(36n + 30)

malt (D) S G5 ) (12n 1 8)(18n 1 9)

<1

Therefore, the point P cannot be a smooth point in the outside of C,.
By Lemma [[.3.6] we may assume that neither C, nor C, is contained in Supp (D). Then the
inequality
2
— <1
6n+3

implies that the point P is neither @ nor . One the other hand, the inequality

_4 L
6n + 3

3D - C, =

(bn+5)D-C, = 1
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shows that the point P can be neither a smooth point on C, nor the point O,. Therefore, it
must be O;. However, this is a contradiction since

multo, (D)multo, (Cy) < 18n + 9D Oy = 4
3 3 6n + 5

The obtained contradiction completes the proof. O

multo, (D) = < 1.

Lemma 2.3.3. Let X be a quasismooth hypersurface of degree 36n + 30 in P(6,6n + 5,12n +
8,18n + 15) for n > 1. Then lct(X) = 1.

Proof. We may assume that the surface X is defined by the equation
(t — a1y®)(t — agy®) + 223 — 2970 4 a2z = 0,

where a1 # ag and a are constants. The only singularities of X are a singular point O, of index
12n+ 8, a singular point @ = [1: 0: 1: 0] of index 2, a singular point @ = [1:0:0 : 1] of index
3, and two singular points Py =[0:1:0:a;], P, =1[0:1:0: ag] of index 6n + 5.

The curve C, consists of two distinct irreducible curves L; = {z =t — aiy’ = 0},i=1,2.
Each L; passes through the point P;. These two curves meet each other at the point O,. It is
easy to see lct(X, %Cx) =1

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.

By Lemma we may assume that Lp is not contained in Supp (D). Then the inequality

4
6n + 5
shows that the point P must be located in the outside of L.

Write D = puLy + €2, where Q is an effective Q-divisor such that Lo ¢ Supp (2). Then, the
inequality

(12n +8)D - L; = <1

3 1
Ly Iy <D-L = ,
12n+8 M2 L= Bn+2)(6n +5)
implies
P -
3(6n + 5)
Note that
12 18n +9
27 (12n+8)(6n+5)
Since 44 (1804 9) A
+ (13n +9)u
Q- Ly =
(6n +5)Q2- Ly 12018  6nt5

Lemma [[.3.8] excludes all the points of Ly \ {O,}. Consequently, the point P is in the outside
of C,.

Meanwhile, the curve Cy is quasismooth, and hence the log pair (X, %%Cy) is log canonical.
Lemma [[.3.6] enables us to assume that C,, is not contained in Supp (D). Then the inequality

L

.D= <
3Cy 3n+ 2

excludes the singular points @ and Q'.
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Hence P is a smooth point of X \ C,. Applying Lemma [.3.9], we see that
4(36n + 30)(3(12n + 8) + 6)
6(6n + 5)(12n + 8)(18n + 15)

because HO(P, Op(3(12n + 8) + 6)) contains 275 45 and 23z. The obtained contradiction
completes the proof. O

1 <multp(D) < <1,

2.4. INFINITE SERIES WITH [ = 6

Lemma 2.4.1. Let X be a quasismooth hypersurface of degree 12n + 23 in P(8,4n + 5,4n +
7,4n+9) for n > 3. Then lct(X) = 1.

Proof. The surface X can be given by the equation
2t yt? + 2y + 2" 22 = 0.

The surface X is singular only at O,, Oy, O, and O;.

The curve C;, (resp. Cy, C;, Cy) consists of the irreducible curve Ly (resp. Ly, Ly, L) and a
residual curve R, = {x = 224yt = 0} (resp. R, = {y = 2" 242t =0}, R, = {z = t*+ay? = 0},
Ry = {t =y>+ 2"z = 0}) . These two curves intersect each other at O, (resp. Oy, Oy, O,).

We can easily see that

3 6 (n + 3)(4n + 5)
let(X, 20,) =1,  let(X, - ,
(X, 7Cx) X sy 12(n + 2)
6 dn 47 6 (4n+9)(n +4)
let(X ) = o let(X, -
(X 7% 9 X o 6(3n + 6)

Therefore, let(X) < 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X.

We have the following intersection numbers:

6 6 12
Ly D= , L, D=——_ R,-D= :
K (4n+5)(4n+7)" Y 8(4n +9) (4n + 5)(4n + 9)
6(n +2) 12 18
v (4n +7)(4n + 9)’ 8(an+5) 8(4n +7)
2 3 n 4+ 2 1
Lx' T = T > Lx :77[/2" :77[/2' z =
vl =gy Lo Be= g e By = g L Re =g
2 8n + 6 12 4dn + 11 B2 _ 8n + 2
T An45)dn+7) TYVF T 8(An+9)) T (4n+5)(4n+9)’
2n + 4 1 12n + 3
2 2 2
Ry:— =

(An+7)(An+9) "% 2@n+5)" "t 8@n+7)

By Lemma [[.3.6] we may assume that either L,; ¢ Supp (D) or R, ¢ Supp (D). Then at least
one of the inequalities
12

1 D)< (4 L. D=
multo, (D) < (4n + 5) Lyt yr

multo, (D) < (4n+5)R; - D =

dn+ 7
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holds. Therefore, the point P cannot be the point O,. We also may assume that either L,, ¢
Supp (D) or R, ¢ Supp (D). Then at least one of the inequalities

6 6
4n+9’ dn+5
holds. Note that the curve R, is singular at the point O,. Therefore, the point P cannot be the

point O,. We also may assume that either L,; ¢ Supp (D) or R; ¢ Supp (D). Then at least
one of the inequalities

multo, (D) < 8L, - D = multp, (D) < ng -D =

6
multo, (D) < (4n+ 7))Ly - D = yrea
holds. Note that the curve R; has multiplicity 3 at the point O, if n
P cannot be the point O,.

Write D = mqLyt + maLy, + m3R, + muRy, + msR, + meR; + Q, where (2 is an effective
Q-divisor whose support contains none of Ly, L., R;, Ry, R., R;.
If mq > 0, then mg = 0. Therefore, the inequality

VAR

2. Therefore, the point

2my 12
=miLly - Ry < D-R, =
dn 15 thettfe *= (n 1 5)(4n + 9)
shows 0 < my < #19' By Lemma [[.3.8] the inequality
6 -+ m (8n + 6) 18
D —mqLy) Ly = < <1
(D =miLst) - Lat (An+5)4n+7)  (4n+7)(4n +9)
implies that the point P cannot be a smooth point on L.
If mg > 0, then R, ¢ Supp (D). Therefore, the inequality
mo 3
-2 —myL,, - R.<D-R,=—"
g e * = 2(dn +5)
shows 0 < ma < ﬁ. By Lemma [[.3.8] the inequality
6 + mo(4n + 11) 6(n+2)
D —moL,,) L,, = < <1
(D =mzLyz) - Ly 8(4n + 9) (4n +5)(4n + 9)
implies that the point P cannot be a smooth point on L,..
If m3 > 0, then mq = 0, and hence
QTTL3 6
— 3L Ry <D - Ly = .
An+5 eTet e "= (n 1 5)(dn + 7)
Therefore, 0 < m3 < %—k?‘ The inequality
12 4 m3(8n + 2) 18
D —m3gR,) R, = < <1
(D =msRe) - Re = 0o 0) S Wn s Ddn +9)

implies that the point P cannot be a smooth point on R,. Moreover, this inequality shows that
the point P cannot be the point O since n > 3.
If m4 > 0, then we may assume that mo = 0. We then obtain

mg(n + 2) 3
— . < . = —\
gyl Lys S D Lye = qrem
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Therefore, 0 < my < m. The inequality

6(n +2) + 2my(n +2) o 3
(An+T7)(4n+9)  ~ 24n+7)

implies that the point P cannot be a smooth point on R,.

Since the pair (X, D) is log canonical at the point O, and the curve R, contains the point
O, we have mz < 1. By Lemma [[.3.8] the inequality

(D—m4Ry)-Ry: <1

3
(D —msRe) - R, > T 2@+ h)
shows that the point P cannot be a smooth point on R,.
The pair (X, D) is log canonical at the point O, and the curve R; contains the point O,.

Thus mg < 1. By Lemma [[.38] the inequality

9
(D—mGRt)'Rth'Rt—m <1
implies that the point P cannot be a smooth point of R;.

Consider the pencil £ defined by the equations Axy? + ut? = 0, [A : u] € PL. Note that
the curve L,; is the only base component of the pencil £. There is a unique divisor C, in £
passing through the point P. This divisor must be defined an equation zy? + at?> = 0, where «
is a non-zero constant, since the point P is located in the outside of C;,; U Cy U C, U C;. Note
that the curve Cy does not contain any component of C,. Therefore, to see all the irreducible
components of C,, it is enough to see the affine curve

z+at’? =0 3
{ P2t+t?+ o +a"r = 0} ce= Spec<c[x’z’t]>'
This is isomorphic to the plane affine curve defined by the equation
{22+ (1 — a)t? + (—a)" 2212} = 0 € C? = Spec ((C [z,t]).
Thus, if « # 1, then the divisor C,, consists of two reduced and irreducible curves L,; and Z,.
If &« =1, then it consists of three reduced and irreducible curves L,¢, R,, R. Moreover, Z, and

R contain the point P and they are smooth at the point P.
Suppose that o £ 1. It is easy to check

3(12n + 19)
2(4n +5)(4n+7)

D -Z,=
We also see that
dn 45
Zgzca'Za_Lmt'Za>Ca'Za_(th+Rx)'Za: 3
since Z, is different from the curve R,. Put D = ¢Z, + Z, where Z is an effective Q-divisor
such that Z, ¢ Supp(=). Since the pair (X, D) is log canonical at the point O, and the curve
Zo passes through the point O,, we have € < 1. But

D-Z,>0

3(12n + 19)

2(4n+5)(4n+7) <1

(D —€Zy) Zoa <D Zy =
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and hence Lemma [[.3.8] implies that the point P cannot belong to the curve Z,.
Suppose that & = 1. Then we have

6(2n + 3)
D-R= )
R (An+5)(4n +7)
Since R is different from L, and R,,
2 4n+3
R°=Cy-R—Ly-R—R, - R>Cq - R—(Lpt+Ry)-R—(Ly:+R.)-R> D-R>0

Put D = e R+Z’, where =’ is an effective Q-divisor such that R ¢ Supp(Z’). Since the curve
R passes through the point O, at which the pair (X, D) is log canonical, we have €¢; < 1. Since

6(2n + 3)
D—-—eR)-R<D-R= < 1.
(D —ah) (4n+5)(dn £ 7)
Lemma [[.3.8 implies that the point P cannot belong to R. O

Lemma 2.4.2. Let X be a quasismooth hypersurface of degree 47 in P(8,13,15,17). Then
let(X) = 1.

Proof. If we exclude the point Oy, then the proof of Lemma 2.4.T] works for this case. Thus we
suppose that P = O;. Then L,, ¢ Supp(D); otherwise we would have a contradictory inequality
3
4-17
By Lemma [[.3.6] we may assume that R, ¢ Supp(D). Put

=D Ly, > multp(D) > 7

D =mL,, + cR; + (),
where m > 0 and ¢ > 0, and 2 is an effective Q-divisor whose support contains neither L,, nor
R.. Then
2 _p.R,= (mLy. 4+ cR, +Q) - Ry >
1517 v ve * v
and hence

4m n multo, (D) —m - 3m +1
17 17 17 7

Then it follows from Lemma [I.3.8] that

6 + 19m 1
— = (D - Lz Lz Py=_)
s1r ~ Pomlys) Ly > 47
and hence 0
1—9<m
On the other hand, if ¢ > 0, then
6 2c
——=D-Ly;>cR, Ly =—.
13- 15 L= T 13

Therefore, 0 < ¢ < %
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Let m: X — X be the weighted blovv up at the point Oy with weights (6,7). Let E be the
exceptional curve of w. Also we let Q, L,. and R, be the proper transforms of , L,. and R,,
respectively. Then

a

6 0 *
B Qg (@) -

7 D *
—FE, Ry ~q " (Ry) — 1

4 T *
—E, Ly, ~q 7" (Lyz) — 17

17
where a is a non-negative rational number.
The curve E contains two singular points Q7 and Qg of X. The point Q7 is a singular point of
type (1 3) and the point Qg is a singular point of type = (1 1). Then the point Q7 is contained
in R, but not in Lyz, on the other hand, Qg is contalned in Lyz but not in R,. We also see that
Ly, N R, = @. The log pull back of the log pair (X, D) is the log pair

4
+a+7m+6cE>.

Kg ~qm*(Kx) — E,

17

This pair must have non-log canonical singularity at some point () € E. Then

<X', Q+mLy. +cR; +

6a 12 —13m + 18c¢ a
<R, Q=R, QO+ —E*= -
+172 1317 717
- ~ Ta 6+ 19m — & a
<L, Q=0L,. Q E? = _ ,
0 Y Y +172 8. 17 6-17

and hence 0 < 84 — 13a + 126¢c — 91m and 0 < 18 — 4a — 24¢ + 57m. In particular, we see that
a < 24509 Then 4+ a + 7m + 6¢ < 17 since m% and ¢ < %
Suppose that the point @) is neither Qg nor (7. Then the point Q must be located in the
outside of L,, and R,. By Lemma [[3.8] we have
a

2 T2
D) 17E =Q-E>1,

and hence a > 42. This is a contradiction since a < %. Therefore, either Q@ = Qg or Q = Q7.
Suppose that @ = Q7. Then Q ¢ L,.. Hence, it follows from Lemma [[.3.8] that
4+a+7m+60E R, = 136+204c,
17 7-13-17
and hence ¢ > 15—2 But ¢ < % This is a contradiction.
Finally, we suppose that Q = Qg. Then Q € R,. It follows from Lemma [[[3.8 that

- < <Q+mLyx+

1 ~ _ 44 a4 Tm + 6¢ = 34 + 85m
- <[ Q+cR E) - L,=——"6+
6 ( el 17 ) v 730817
and hence m > % This contradiction completes the proof. O

Lemma 2.4.3. Let X be a quasismooth hypersurface of degree 35 in P(8,9,11,13). Then
let(X) = 1.

Proof. If we exclude the points O, and Oy, then the proof of Lemma 2Z.4.1] works also for this
case.
Suppose that P = O,. Then L,; C Supp(D), since otherwise we would have an absurd

inequality
6 1
9.11 EETE
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We may assume that My ¢ Supp(D) by Lemma [[L3.6] Put
D = mLy + cM, + €,

where m > 0 and ¢ > 0, and 2 is an effective Q-divisor whose support contains neither L,; nor
R,. Then

18 3m  2(multo, (D) —m) m+2
— —D-Ry= (mLy+cRy+Q)-R > " : :
8- 11 ¢ = (mLy + cRy +9Q) - Ry 7 11 ST
and hence m < 1. Note that multo, (R;) = 2. It follows from Lemma [3.8 that
6+ 14m 1
Therefore, 1—?21 <m< %. On the other hand, if ¢ > 0, then
6 3¢
m:D'Lyz>CRy‘LyZ:1—3,

and hence ¢ < %.

Let m: X — X be the weighted blow up at the point O, with weights (3,2). Let E be
the exceptional curve of 7 and let 2, L,; and R, be the proper transforms of Q, L,; and R,,
respectively. Then

6

* T * D 2
KX ~Q Y (KX) — HE, th ~Q s (L:Et) —

~ a
%E,&p@wﬂﬁﬂ—ﬁE,QNQﬁﬁn—ﬁE.
where a is a non-negative rational number.

The curve F contains two singular points Q2 and Q3 of X. The point Q5 is a singular point of
type %(1, 1). It is contained in L, but not in R,. On the other hand, the point Q3 is a singular
point of type %(2, 1). It is contained in Ry but not in Lg;. But Ly N Ry =o.

The log pull back of the log pair (X, D) is the log pair

6 3 2
+a—|—11m+ CE>,

(x, O mLy + cRy +

which must have non-log canonical singularity at some point ) € E. We have

<Q-R, = ,
0 Ry =7 13 11 33
~ - 6+ 14m c a
<Q.Ly—o2m_c_ 4
0 T 911 11 22
Then, a < % < % since m < 7. Also, we obtain 6 + a + 3m + 2¢ < 11 since ¢ < %.
Suppose that the point @ is neither Q2 nor Q3. Then Q ¢ L, U R,. By Lemma [[.3.4] we

have

ENT,

¢ Y2 _Q.E>1,
2-3 11
19

and hence a > 6. This contradicts to the inequality a < 5. Therefore, we see that either

Q=0Q2o0r Q=Qs.
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Suppose that Q@ = Q3. Then Q ¢ R,. Lemma [[.3.8 shows that

6+a+3m+2cE ‘Emt:66+55m
11 2-9-11

1 _ _
and hence m > % But m < %. This is a contradiction.
Thus, the point @ must be Q3. Then Q & L,;. It follows from Lemma [[3.8 that
6+a+3m+2cE S 132 +44e
11 Y 13-33

Therefore, ¢ > i. But we have seen ¢ < i. The obtained contradiction shows that P # O,. The
point P must be the point O;. Then L, ¢ Supp(D) since otherwise we would have

6
S _por.sL
8 13 vz = 13

By Lemma [[.3.6] we may assume that R, ¢ Supp(D). Put
D =mL,, + cR; + £,

1 _ _

where m > 0 and ¢ > 0, and 2 is an effective Q-divisor whose support contains neither L, . nor
R,. Then

18 3m  multp,(D)—m _ 2m+1
— DR, = (mL Q) R, > 22 :
11-13 By = (mLy: + o +Q) - By > 33 13 T
and hence m < % On the other hand, Lemma [[.3.8] implies
6+ 156m 1
W == (D — mLyZ) . Lyz > E,
and hence % <m< % If ¢ > 0, then
6 2c
ﬁZD‘thZCRx'thEE'

Therefore, ¢ < %

Let 7: X — X be the weighted blow up at the point O; with weights (5,2). Let E be
the exceptional curve of 7. Let €, Eyz and R, be the proper transforms of Q, L. and R,,
respectively. Then

Ky ~gn(Kx) = 158, Lys mq 7°(Lye) = 2B, Ry g 1°(Re) = 155, Qg () -
where a is a non-negative rational number.

The curve E contains two singular points Q5 and Q2 of X. The point Qs is a singular point
of type %(1, 1). It belongs to Ly, but not to R,. The point Q2 is a singular point of type %(1, 1).
It belongs to R, but not to Eyz. Note that Eyz NR,=0.

The log pull back of the log pair (X, D) is the log pair

6 2 5
+a+2m+ CE).

a

—F,
13

(x, Q4 my. + R, + 02
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It must have non-log canonical singularity at some point () € E. We have
_ 124+10c m a

Therefore, 30 + 75m > 40c + 8a and 24 + 20c > 18m + 9a. In particular, we see that a < %.
Then 6 + a + 2m + 5e¢ < 13 since ¢ < % andméi%. )
Suppose that Q # Q2 and Q # Q5. Then Q € Ly, U R,. By Lemma [[.3.8] we have
a a ~
—=—-—F*=0-E>1
10 13 -
and hence a > 10. This is a contradiction since a < %. Therefore, the point @ is either the
point 2 or the point Q5. -
Suppose that @ = Q2. Then Q ¢ L,.. It follows from Lemma [[.3.8] that

6 2 ) - 78 4 65
+a+2m+ CE 'Rng,
13 9-26

and hence ¢ > % However, ¢ < % Thus, the point Q must be Q5. Then Q ¢ R,. Again,
Lemma [I.3.8 shows that

1 _ _

L, ="
13 = 5.8.13"°

%< <Q+6Rx+6+a+2m+5cE> = 78+91m

[

_ — a m

Therefore, m > % and a + 2m > 2. In particular, % <m < %
Let 9: X — X be the weighted blow up at the point Q5 with weights (1,1). Let G be the

exceptional curve of ¢ and let €, ﬂyz, R, and E be the proper transforms of €, Ly., R; and F,
respectively. Then

* 3 T *( T 1 [ * 1 ) * () b
KX NQw (KX')_ gG, Lyz NQw (Lyz) - 3G7 ENQ¢ (E) —gG, QNQ#’ (Q)_ gG,

where b is a non-negative rational number.
The surface is smooth along G. The log pull back of (X, D) is the log pair

S~ ~ ~ 6 2 5c ~
<X, Oty + oty + CE+HG> ,
where
0_ 15m + 45 + a + 13b + 5¢
= o .
Then the log pair is not log canonical at some point O € G. We have
0o<i-a=2_b
10 5

6+ 15m c a b
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and hence 30 4+ 75m > 8(a + 13b + 5¢) and a > 2b. In particular, we obtain

15m + 45 +a + 13b + 5¢ 195m+390<195'7+390-22

9: < ~
8-65 8-22-65

<1
65

since m < 5.
Suppose that O ¢ E'U L,,. Then it follows from Lemma [[.3.8] that

However, this gives an absurd inequality 104 < 1040 < 30 + 75m — 8a — 40c < 30 + 75m < 104
since m < 7 . Therefore, O € E U Lyz Note that EN L yz = 3.

Suppose that O € Ly,. Then it follows from Lemma [3.8] that

3m+6
8 )

6+a+2m+ 5c
13

< (2 Ry + E+0G) Ly = (2+0G) - L. =

and hence m > 2. But m < % Thus, we see that O € E. Lemma [[.3.8 implies that

- 2 - 2
< Q+6+a+ m+5cE 'G:b+6+a+ m+5cy
13 13
(Q—I—HG) E———Q—I—H
10 5

Therefore, we obtain 13b + a + 2m + 5¢ > 7 and 3a + 2¢ 4+ 6m > 8.
_ Let ¢: X — X be the blow up at the point O. Let F' be the exceptional curve of ¢. Let Q
Ly, R., E and G be the proper transforms of ), L., R;, £ and G, respectively. Then

%~ ' (Kg) + P, G g ¢'(G) = F, E~g ¢7(E) = F, Qg ¢°(Q) — dF,
where d is a non-negative rational number. The log pull back of (X, D) is the log pair

6+a+2m+ 5c -~
13

(X, O+ mily. +clty + E+06+ VF>

where

_ 65d 4 25m + 6a + 13b + 30c + 10
B 65 '

It is not log canonical at some point A € F. We have
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and hence b > d and a > 2b 4 10d. In particular,
65d + 25m + 6a + 13b + 30c + 10
UV = =

65
B 13(5d + b) 4+ 25m + 6a + 30c + 10 <
N 65 =
< 5a + 10m + 12¢c + 4 <
26
< 6 + 8c <1

since we have 24 4+ 20c > 18m + 9a and ¢ < %

Suppose that A ¢ EUG. Then Lemma [[L3.8 shows that d = Q- F > 1. This is impossible
since

Thus, we see that A € FUG. Note that ENG = 2.
Suppose that A € E. Then it follows from Lemma [[.3.8] that

a b A .
which implies that 5a 4+ 10m + 12¢ > 22. However, this inequality with 24 + 20c > 18m + 9a
gives

9
(22 —12¢) < g(5a + 10m) < 24 + 20c,

] ©

and hence % < c¢. But ¢ < % Thus, the point A cannot belong to £. Then 4 € G. By
Lemma [I.3.8], we see that

b—d+v=(Q+vF) G>1,
and hence 6a 4+ 25m + 30c + 78b > 55. But

3 3
55 < 25m + 6a + T8 + 3¢ = 25m + (80 + 104b + 40¢) < 25m + (30 + T5m) < 55

since 8a + 104b + 40c¢ < 30 + 75m and m < % The obtained contradiction completes the
proof. O

Lemma 2.4.4. Let X be a quasismooth hypersurface of degree 12n + 35 in P(9,3n + 8,3n +
11,6n + 13) for n > 1. Then lct(X) = 1.

Proof. The surface X can be defined by the equation
2t4+y3z +at? + 2"y = 0.

It is singular only at the points O, Oy, O, and Oy.

The curve C, (resp. Cy, C;, Cy) consists of two irreducible and reduced curves L, (resp. Ly,
Ly, Ly) and Ry, = {x = 2t+y3 = 0} (resp. Ry = {y = 2>+t =0}, R, = {2 = t?+2""2y = 0},
Ry = {t =y?2 +2™"3 = 0}). These two curves intersect at the point O; (resp. Oy, Oy, O,).
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It is easy to see that let(X, %C’w) =1 is less than each of the numbers

6 6
let (X, ——— let(X, ———C.), let(X, ——C)).
(X g C)y 1eb(X iy Oa), et s )
We have the following intersection numbers.
6 2 18
Ly Kx = , Ly Kx=———", —R, Kx= ,
X7 Bn+8)(6n + 13) v X T 330 + 11) X7 Bn+11)(6n + 13)
4 4 6(n +3)
R, Kx==——— —R,-Kx=-———, —R,-Kx= :
vIRX T 360 + 13) X7 3(3n +8) X T (Bn+ 8)(3n + 11)
3 2 2 n+3
Lyo Ry=—"— Ly -Ry==>, Lg.-Ro=-——— Ly R=—""
6n+13" W9 3n+8 YT 3ny11
2 9ntl5 P L U In + 6
e (3n+8)(6n +13)" v 9(3n +11)" * (3n 4 11)(6n + 13)’
pro_ ont10 g Ondd g (n+3)(3n +5)

v 9(6n + 13)’ Z 9(3n+38)’ (3n+8)(3n +11)°
Now we suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that
the log pair (X, D) is not log canonical at some point P € X.
By Lemma we may assume that Supp (D) does not contain either the curve L,; or the
curve R,. Since these two curves intersect at the point O, the inequalities

2 1
Ly D=-——" <=
vt 3Bn+11) 9’
4 1

Ry D=—" <=
4 3(6n+13) 9

show that the point P cannot be the point O,.
By Lemma [[.3.6] we may assume that Supp (D) does not contain either the curve L, or the
curve R,. Therefore, one of the following inequalities must hold:

6
multo, (D) < 3n +8)L,. - D = on 13 <1,
3n+38 2
multo, (D) < 5 R, -D= 3

Therefore, the point P cannot be the point O,.
Suppose that P = O,. If L,; ¢ Supp (D), then we get an absurd inequality
6 1
- =L:-D> X
9(B3n+11) ¥ 3n 411
Therefore Supp (D) must contain the curve L,;. By Lemma we may assume that M; ¢
Supp (D). Put D = pLy; + €2, where § is an effective Q-divisor whose support does not contain
the curve Ly;. Then
6(n+3)
(3n +8)(3n + 11)

(multp(D) — p)mult p(Ry) S w(n+3) n 2(1 — )

—D-Ry > Ly, - :
R 2 plye - B+ 3n+ 11 3n+11 | 3n+11
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and hence

2
T Y b

On the other hand, Theorem [[.3.3] shows
6 + 1u(3n + 14)
9(3n + 11)

3n + 11 v vt = e
It implies ?m—im < u. Consequently, the point P cannot be the point O,.

Suppose that P = O;. Since L., - D < GTL—-li-l?)’ the curve L,, must be contained in Supp (D).
Then, we may assume that R, ¢ Supp (D). Put D = uL,,+ €, where 2 is an effective Q-divisor
whose support does not contain the curve L,,. Then

18 multp(D) —p 1+ 2p
=D- Rx 2 sz : Rx > ’
(3n + 11)(6n + 13) a T T e 13 6n + 13
and hence
< 7—3n
F=%6nto2

However, Theorem [[.3.3] implies

6+ (In+ 15)p
(3n +8)(6n + 13)’

6n+13<Q-Lm:D-Lm—uL§Z:

and hence 9?;:‘:125 < . This is a contradiction. Therefore, the point P cannot be the point Oy.

Write D = aL,, + bR, + A, where A is an effective Q-divisor whose support contains neither
L, nor R,. Since the log pair (X, D) is log canonical at the point Oy, we have 0 < a,b < 1.
Then by Theorem [[.3:3] the following two inequalities

6+ a(9n + 15)
(3n + 8)(6n + 13)

18 + b(9n + 6)
(3n + 11)(6n + 13)
show that the point P cannot belong to the curve C,. By the same way, we can show P &
CyuUC,UC.

Consider the pencil £ defined by the equations Azt 4+ puz? = 0, [A : p] € P'. Note that the
curve L, is the only base component of the pencil £. There is a unique divisor C, in £ passing
through the point P. This divisor must be defined an equation xt + az? = 0, where «a is a
non-zero constant, since the point P is located in the outside of C, U C, U C;. Note that the
curve C} does not contain any component of C,. Therefore, to see all the irreducible components
of C,, it is enough to see the affine curve

{a:+a2220

(bRy + A) - Ly, = (D —aLy.) - Ly, =

<1,

(aLys +A)- Ry = (D —bR,) - Ry = <1

22+y32+x+x”+3y20} cCdz Spec((C[x,y,zD.

This is isomorphic to the plane affine curve defined by the equation

(1 —a)z+y3 + (—a)" By} =0 c C? Spec((C [y,z}).
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Thus, if @ # 1, then the divisor Cy, consists of two reduced and irreducible curves L., and Z,.
If o = 1, then it consists of three reduced and irreducible curves L,., R,, R. Moreover, Z, and
R are smooth at the point P.

Suppose that « # 1. Then we have

2(24n + 61)
3(3n + 8)(6n + 13)°

D-Z, =

Since Z,, is different from R,
6n + 13

Z2=Cu4 Zp—Lyr 7o > Co Zoy— (Lyo + Ry) - Zp = D-Z, > 0.

Put D = €Z, + Z, where E is an effective Q-divisor such that Z, ¢ Supp(Z). Since the pair
(X, D) is log canonical at the point O; and the curve Z, passes through the point Oy, we have
e < 1. But

2(24n + 61)
3(3n + 8)(6n + 13)
and hence Lemma [[L3.8] implies that the point P cannot belong to the curve Z,.
Suppose that o = 1. We have

(D —€Zy) Zo <D Zo =

6(2n + 5)

DR = e en+ 13)°

Since R is different from R, and L.,

355 peo.

R2ZCa'R—sz'R_Ry’R>Ca'R_(sz+Rx)’R_(Lyt+Ry)'R:

Put D = e; R+ =/, where Z/ is an effective Q-divisor such that R ¢ Supp(Z’). Since the curve
R passes through the point O, at which the pair (X, D) is log canonical, ¢; < 1. Since

6(2n +5)
D—-—eR)-R<D-R= <1,
(D —ak) (3n + 8)(6n + 13)
Lemma [[.3.8 implies that the point P cannot belong to R. O

Part 3. Sporadic cases
3.1. SPORADIC CASES WITH [ =1

Lemma 3.1.1. Let X be a quasismooth hypersurface of degree 10 in P(1,2,3,5). Then

1 if C; has an ordinary double point,
Ict (X ) = 7

0 if C, has a non-ordinary double point.

Proof. The surface X is singular only at the point O,. The curve C, is reduced and irreducible.

Moreover, we have

1 if the curve C; has an ordinary double point at the point O,,

let(X,Cy) =
( ) % if the curve C; has a non-ordinary double point at the point O,.
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Suppose that lct (X ) < lct (X , C’x). Then there is an effective Q-divisor D ~g — K x such that
the log pair (X, D) is not log canonical at some point P € X. By Lemma [[.3.0] we may assume
that the support of D does not contain the curve C,. Also Lemma shows that P € C,.
However, we obtain absurd inequalities

multp(D) >1 if P#O,,

1
3 M > 1 if P=0.,.
3 3
Therefore, lct (X ) = lIct (X , Cx). O

Lemma 3.1.2. Let X be the quasismooth hypersurface defined by a quasihomogeneous poly-
nomial f(x,y, z,t) of degree 15 in P(1,3,5,7). Then
1 if f(z,y, 2,t) contains yzt,
let (X ) =

8
B if f(x,y,z,t) does not contain yzt.

Proof. The surface X is singular only at the point O;. The curve C, is reduced and irreducible.
It is easy to check
1 if f(x,y, 2,t) contains yzt,
let(X,C0) =4 8 | )
1 if f(z,y,z,t) does not contain yzt.
The proof is exactly the same as the proof of Lemma [B.1.1l The contradictory inequalities

multp(D) > 1 if P # Oy,

1
-=DC > ltp(D) 1
7 mittr(D) 1y p_ o,
7 7
complete the proof. O
Lemma 3.1.3. Let X be a quasismooth hypersurface of degree 16 in P(1, 3,5,8). Then lct(X) =

1.

Proof. The surface X is singular only at the points O, and O,. The former is a singular point
of type %(1, 1) and the latter is of type %(1, 1).

The curve C), consists of two distinct irreducible curves L and Lo. It is easy to see that
let(X,Cy) = 1.

Suppose that lct (X ) < 1. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, D) is not log canonical at some point P € X. By Lemma[[.3.6l we may assume that the
support of D does not contain the curve L; without loss of generality. Moreover, Lemma [I.3.9]
implies P € Cj.

We have )

D-Li=D Ly=—,

15
and Ly N Ly = {O0,,0.}. We also have

7 8
Ly Ly= —.

L3=L13=——
1= 15’ 15
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Since 5D - Ly = %, the point P cannot belong to L. Therefore, the point P is a smooth point
on Ly. Put
D = ng + Q,
where Q is an effective Q-divisor such that Ly ¢ Supp(Q2). Since the log pair (X, D) is log
canonical at O, we must have m < 1. Then it follows from Lemma [[13.8] that

14+Tm
1<Q-L2:(D—mL2)-L2: 5
This gives us m > 2. This is a contradiction. Consequently, let(X) = 1. d

Lemma 3.1.4. Let X be a quasismooth hypersurface of degree 18 in P(2,3,5,9). Then

2 if Cy has a tacnodal point,
let(X) =14 11 . .
5 if C,, has no tacnodal points.
Proof. The surface X is singular at the point O,. This is a singular point of type %(1, 2). The
surface X also has two singular points O and O that are cut out by the equations x = z = 0.
These are of type %(1, 1) on the surface X.
The curves C, and Cy are reduced and irreducible. The curve Cy is always singular at the
point O,. We can see lct(X,C;) = 1 and

3
1 if Cy has a tacnodal singularity at the point O,

11
18 it Cy has a non-tacnodal singularity at the point O..

Therefore, if Cy has a tacnodal singularity at the point O, then

1 1 9

If Cy has a non-tacnodal singularity at the point O, then

1 1 11

Let ¢ = min {lct (X, %Cx) ,let (X, %Cy)}. Then let(X) <e.

Suppose that lct(X) < e. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, eD) is not log canonical at some point P € X. By Lemma [[.3.0] we may assume that
the support of the divisor D contains neither the curve C, nor the curve Cj.

The inequalities

lct(X, Cy) =

multo, (eD) < %multoz (D)multp, (Cy) <5D-Cy =1

imply that the point P cannot be the point O,. If the point P is a smooth point on Cy, then
we have obtain a contradictory inequalities

1 1 1
Therefore, the point P is located in the outside of the curve C,.



EXCEPTIONAL DEL PEZZO HYPERSURFACES 43

Suppose that P € C,.. Then we obtain the following contradictory inequalities

multp (D) > % if P € X \ Sing(X),

15 =D Gz multp(D) >1

3 6

Therefore, P ¢ C, U Cy. Then P is a smooth point. There is a unique curve C' in the pencil
| — 5K x| passing through the point P. The curve C is a hypersurface in P(1,2,3) of degree 6
such that the natural projection

ifP:Ol OI‘P:OQ.

C — P(1,2) = P!

is a double cover. Thus, we have multp(C) < 2. In particular, the log pair (X, £C) is log
canonical. Thus, it follows from Lemma [[.3.6] that we may assume that the support of the
divisor D does not contain one of the irreducible components of the curve C'. Then

1 1

3 :D-C>multp(D) > 3
in the case when C' is irreducible (but possibly non-reduced). Therefore, the curve C' must be
reducible and reduced. Then

C =C)+ Oy,
where C7 and Cy are irreducible and reduced smooth rational curves such that
2 3
2 _ 2 4 o2
01—02— 3, Ol 02 2
Without loss of generality we may assume that P € Cy. Put
D =mCy{+9Q,
where Q is an effective Q-divisor such that Cy ¢ Supp(Q2). If m # 0, then Cy ¢ Supp(Q2) and
1 3
5 =D-Cy=(mC1+9)-Cy>mCr-Cy = -,
and hence m < %. Thus, it follows from Lemma [[.3.8] that
1+4 1 1
L (DmC) € =00 > 2 5

. But m < %. Consequently, lct(X) = e.

D=

Therefore, m >
d

Lemma 3.1.5. Let X be a quasismooth hypersurface of degree 15 in P(3,3,5,5). Then lct(X) =
2.

Proof. The surface X has five singular points O1,...,Os of type %(1, 1). They are cut out by
the equations z = t = 0. The surface also has three singular points @1, Q2, Q3 of type %(1, 1).
These three points are cut out by the equations z =y = 0.

Let C; be the curve in the pencil | — 3K x| passing through the point O;, where i = 1,...,5.
The curve C; consists of three reduced and irreducible smooth rational curves

Ci=Li+ L+ L.
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The curve L; contains the point @Q;. Furthermore, L N L4 N L, = {O;}. We see that

, 1 2 7 - - 1
~Kx-Lj=1z (L) =—35 Li-Li=3
where j # k.

Note that let(X,C;) = 2. Thus let(X) < 2.

Suppose that lct(X) < 2. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X,2D) is not log canonical at some point P € X. Then, multp(D) > %

Suppose that P ¢ C; UCyUC3UCyUCs. Then P is a smooth point of X. There is a unique
curve C' € | —3K x| passing through point P. Then C is different from the curves C1,...,C5 and
hence C' is irreducible. Furthermore, the log pair (X, C) is log canonical. Thus, it follows from
Lemma [[.3.6] that we may assume that C' ¢ Supp(D). Then we obtain an absurd inequality

é =D -C> multp(D) > %,
since the log pair (X, 2D) is not log canonical at the point P. Therefore, P € C1UC,UC3UCUCS.
However, we may assume that P € C7 without loss of generality. Furthermore, by Lemma [1.3.6]
we may assume that L} ¢ Supp(D) for some i = 1,2, 3.

Since 1
£ =3D- L; > multo, (D),

the point P cannot be the point O;.
Without loss of generality, we may assume that P € Li.
Let Z be the curve in the pencil | — 5K x| passing through the point Q1. Then

=01+ 2o+ Zs+ Zy+ Zs,

where Z; is a reduced and irreducible smooth rational curve. The curve Z; contains the point
O;. Moreover, Z1NZyNZ3sNZyNZs = {Q1}. 1t is easy to check let(X, Z) = % By Lemma [[.3.6]
we may assume that Z; ¢ Supp(D) for some k =1,...,5. Then

1
3= 5D - Zj, > multg, (D),
and hence the point P cannot be the point Q1.

Thus, the point P is a smooth point on Li. Put

D =mL} +Q,
where ) is an effective Q-divisor such that L} ¢ Supp(Q). If m # 0, then
1
S=D L= (Ll 0) Ll >mid 1) =2
and hence m < % Then it follows from Lemma [[.3.8] that
1+ 7Tm 1
5= (D—mLy)-Li=Q-Li > 3
This implies that m > %. But m < % The obtained contradiction completes the proof. O

Lemma 3.1.6. Let X be a quasismooth hypersurface of degree 25 in P(3,5,7,11). Then
let(X) = 2L
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Proof. The curve C,, is irreducible and reduced. It is easy to see that let(X, %C’m) = %. There-
fore, let(X) < 3.

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, %D) is not log canonical at some point P € X. We may assume that the support of D
does not contain the curve C'; by Lemma

Since HO(P, Op(21)) contains x7, zy3, 23, by Lemma we have

21-25 10
- @ @ < R
3-5.-7-11 21
if P is a smooth point in the outside of the curve C,. Thus, either P = O, or P € C,.

If P € C,, then we obtain a contradictory inequalities

multp(D) <

1
mult p(D)multp(Cy) = multp(D) > 2—(1) if P e X\ Sing(X),

5 multp(D)multp(C,;) multp(D) 10

2 _D.C,> _ 10 — 0.,

77 7 7 Ty 1P=0
multp(D)multp(Cy)  2multp(D) 20 ..

Therefore, we see that P = O,,.
Since the curve Cy is irreducible and the log pair (X, %C’y) is log canonical at the point O,
we may assume that the support of D does not contain the curve Cy. Then

10 multp, (D) 25 10
B~ 3 PO m<wm
This is a contradiction. O
Lemma 3.1.7. Let X be a quasismooth hypersurface of degree 28 in P(3,5,7,14). Then
let(X) = 3.
Proof. The surface X is singular at the point O, and the point O,. The former is a singular
point of type %(1, 1) and the latter is of type %(1, 2). Let O1 and O3 be the two points cut out
on X by the equations x = y = 0. The points Oy and O, are singular points of type %(3, 5) on
the surface X.

The curve C,, consists of two reduced and irreducible smooth rational curves L; and Lo. These
two curves intersect each other only at the point O,. Each curve L; contains the singular point

O;. We have
11

—KX-LZ-:3—15, Ll-L2:§, L%:ng—%.
Since let(X, Cy) = 2, let(X) < 5.
Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, %D) is not log canonical at some point P € X.

If P is a smooth point in the outside of C,, then
088
< —
multp(D) < 070
by Lemma [[3.9 since H°(P, Op(21)) contains z7, 23, x2y3. Therefore, either P belongs to the
curve C, or P = O,.

o2
9
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By Lemma [[.3.6] we may assume that L; ¢ Supp(D) for some ¢ = 1,2. Similarly, we may
assume that C, ¢ Supp(D) since (X, Cy) is log canonical and the curve Cy is irreducible.

The inequalities

2 4

show that the point P cannot be the point O,. Therefore, the point P belongs to the curve C,.
The inequalities

multp, (D) <5D - L; = - <

~| =
NYINN

show that the point P cannot be the point O,.
Without loss of generality, we may assume that P € Li. Put D = mL; 4+ Q, where  is an
effective Q-divisor such that Ly ¢ Supp(Q2). If m # 0, then

1 2
-—zlegzQm4+QyL2>mLyL2:%?

35
and hence m < ﬁ. Then Lemma [[.3.8 implies an absurd inequality
4
—if P#£0
1411 ! 1
igﬁ:(D—le)'leQ-L1> 9
TR Lipo,
63 '
The obtained contradiction completes the proof. O

Lemma 3.1.8. Let X be a quasismooth hypersurface of degree 36 in P(3,5,11,18). Then
let(X) = 2L

Proof. The surface X is singular at the points O, and O,. It is also singular at two points P;
and P on the curve Ly.. These two points P; and P, are contained in Cy.
The curve C, is irreducible and reduced. It is easy to see that let(X ,% v) = %. Also, the
curve Cy is always irreducible and the pair (X, %C’y) is log canonical. We see that lct(X) < %.
Suppose that lct(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, 2L D) is not log canonical at some point P € X. By Lemma [[3.6] we may assume that
the support of D contains neither the curve C nor C,.

» 10
Then the following inequalities

5-3.36 10
1 D)<5D -Cp = g—7F——5 < 7,
multp, (D) < 5D - C 3,5.11.18<21
11-3-36 10

< . - 91
multp, (D) < 11D - C, 3,5.11.18<217
3.5-36 10

show that the point P is a smooth point P on X. Furthermore, the first two inequalities also
show that the point P cannot belong to the curve C.. Therefore, the point P is a smooth point
in the outside of the curve C.

However, since HY(P, Op(39)) contains x'3, 23¢y% 2223, by Lemma [[.3.9 we have

10 36- 39 10
- tp(D) < — 2 2
o1 <multr(D) S 555 < 5
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The obtained contradiction completes the proof. O

Lemma 3.1.9. Let X be a quasismooth hypersurface of degree 56 in P(5,14,17,21). Then
let(X) = 2.

Proof. The surface X is singular at the points O,, O, and O;. The first point is a singular point
of type %(2, 1), the second of type 1—17(7, 2), the last of type %(5, 17). There is one more singular
point O of type %(5, 3) on L,, that is different from the singular point O;.

The curve C, (resp. C)) consists of two reduced and irreducible curves L, and R, (resp.
R,). The curve L,, intersects the curve R, at the point O,. The curve R, is singular at the
point O,. On the other hand, it intersects the curve R, at the point O;. The curve R, is singular
at O;. We have

9 37 2 9 9 1 s 9
= g Lmy-Rm—ﬁ, Rx——m, ny-Ry—?, Ry—g.
It is easy to check lct(X,C,) = £ and lct(X, Cy) = 2, and hence let(X) < 2.
Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, %D) is not log canonical at some point P € X. By Lemma we may assume that
either the support of the divisor D does not contain the curve L, or it contains neither R, nor
R,.
ySuppose that P & C,; U Cy. Then P is a smooth point and
4 8
multp(D) < o1 < %
by Lemma [[L3.9] since the natural projection X --» P(5,14,17) is a finite morphism outside
of the curve Cy, and H°(P, Op(85)) contains monomials 217,25, z3y®. This is a contradiction.
Thus, the point P must belong to C, U C,,.
The curve C, is irreducible and the log pair (X, %Cz) is log canonical. By Lemma we
may assume that C, ¢ Supp(D). Then
8 4

% > ﬁ = 5DCZ = multoz(D),

and hence the point P cannot be O,.
Suppose that P € Lg,. Put D = mLg, + Q, where Q is an effective Q-divisor such that
Ly ¢ Supp(Q?). If m # 0, then

1 2m
- D.R. — RS> po 2
5 = D Ra= (mLay+ Q) Re > mlay - Re =
and hence m < ﬁ. Then it follows from Lemma [[L3.8] that
8
ILENTY
525 | O
143™m 8
SO (D mLey) Ley = Q- Ly >4 —if P =0,
357~ (D= mlay) - Lay v\ g TP =05
%ifP#OzandP#Ot.

This implies m > % But m < 1—14. The obtained contradiction implies that P ¢ L.
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Suppose that P € R,. Put D = aR, + T, where T is an effective Q-divisor such that
R, ¢ Supp(Y). If a # 0, then

1 2a
357 =D Ly = (aRm + T) Ly 2 alyy - Ry = 17’
and hence a < +5. Then it follows from Lemma [[.3.8] that
— if P=0,
1+9 !
;9“ =(D—aR,) Re=T-R, > 1875
— if P# 0.

25

This is impossible because a < 4 . Thus, we see that P ¢ C,.
We see that P € R, and P € X \ Slng( ). Put D = bR, + A, where A is an effective
Q-divisor such that R, gZ Supp(A). If b # 0, then

1 b
=D -L;, = bR A > be ‘R, = =
357 Y ( + ) Yy Yy 7
and hence b < 5% Then it follows from Lemma [[.3.8] that
1496 8
This is impossible because b < 5—11 The obtained contradiction completes the proof. O

Lemma 3.1.10. Let X be a quasismooth hypersurface of degree 81 in P(5,19,27,31). Then
let(X) = 2.

Proof. The curve C, is irreducible and reduced. Moreover, the curve C, is smooth outside of
the singular locus of the surface X. It is easy to see that lct(X, £ ic,) = 265. Hence, we have
let(X) < %5. The curve Cy, is irreducible and reduced. The log pair (X, 190 ) is log canonical.

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P € X. We may assume that the support of D
contains neither C; nor Cy by Lemma

The inequality

3 6
1D-Cp = — < —
31D - Ca 19 = 25
shows that the point P cannot be on the curve C,. On the other hand, the inequality
3 6
D-Cy=—<—
5D - Cy 31 25

shows that the point P cannot be on the curve Cy. In particular, the point P cannot be the
point O,.

Therefore, the point P must be a smooth point in the outside of C,. However, Lemma [[.3.9]
implies

190 - 81 6
5.19-27-31 ~ 25
since HY(P, Op(190)) contains 3%, 21z, y'0. This is a contradiction. O

multp(D) <
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Lemma 3.1.11. Let X be a quasismooth hypersurface of degree 100 in P(5,19,27,50). Then
let(X) = 2.

Proof. The surface X is singular at the points O, and O.. Also, it is singular at two points P;
and P, on L. The point O, is a singular point of type %(2, 3) on X. The point O, is of type
2—17(5, 23). The last two points are of type %(2, 1).

The curve C, is irreducible and reduced. It is easy to see that lct(X, %C’w) = %. Therefore,
let(X) < %5. The curve C, is irreducible and reduced. The log pair (X, %Cz) is log canonical.

Suppose that lct(X) < %5. Then it follows from Lemma that there is an effective Q-
divisor D ~g —Kx such that Cy,C, ¢ Supp(D) and the pair (X, %D) is not log canonical at
some point P € X.

The inequality

2 6
27D - Cp = — < —
DG 19 = 25
shows that the point P cannot be on the curve C,. On the other hand, the inequality
2 6
5D - C, = T < %

shows that the point P cannot be on the curve C,. In particular, the point P can be neither
the point P; nor the point Ps.

Consequently, the point P must be a smooth point in the outside of C,. However,
HO(P, Op(270)) contains 2%, 26419 210, Then, Lemma [[3.9] implies a contradictory inequality

6< tp(D) < 270 - 100 <6
— <m <—— < —.
g5 P 5.19-27-50 = 25
O

Lemma 3.1.12. Let X be a quasismooth hypersurface of degree 81 in P(7,11,27,37). Then
let(X) = 3.
Proof. The surface X is singular only at the points O, O, and Oy.

The curve C, is irreducible and reduced. It is easy to see that lct(X, %Cx) = %, and hence

let(X) < 3. The curve Cy is irreducible and reduced. Moreover, the log pair (X, -i35C,) is log
canonical.

Suppose that let(X) < %. By Lemma [I.3.6] there is an effective Q-divisor D ~g —Kx such
that the support of D contains neither the curve C, nor the curve Cy, and the log pair (X, %D)
is not log canonical at some point P € X.

The three inequalities

3 12
11D -Cp = —= < —,
37 49
3 12
D-C, = <« ==
0 =53 <y
Ito, (D lto, (Cy 37 1 12

show that the point P is a smooth point in the outside of C,.
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However, since HO(P, Op(189)) contains 227, 2'6y7, 27, Lemma [[3.9] implies an absurd in-
equalities
12 189 - 81 12
— tp(D) L ———— = < —.
o <MD S T < g

Therefore, let(X) = 13. O

Lemma 3.1.13. Let X be a quasismooth hypersurface of degree 88 in P(7,11,27,44). Then
let(X) = 32,

Proof. The surface X is singular at the points O, and O,. The former is a singular point of
type %(3, 1) and the latter is of type 2—17(11, 17). The surface is also singular at the points Oy
and Oy on L,.. They are of type %(7, 5).

The curve C, consists of two smooth rational curves L and Ly. Each curve L; contains the
singular point O;. The curves L1 and Ly intersects each other only at the point O,. We have

37 4
I3=13=——— L - Ly=—.
1 2 597 12T o0
It is easy to check lct(X, %C’m) = %. Meanwhile, the curve Cj is irreducible and reduced. Also,
the log pair (X, %C’y) is log canonical.

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, %D) is not log canonical at some point P € X. By Lemma we may assume that
the support of D contains neither Cy, nor Ly without loss of generality.

The inequality

1 8
27D - Ly = I < 35
shows that the point P is located in the outside of Ly. The inequality
2 8
TD-Cy=— < —
¥7 97 S 35
implies that the point P cannot be O,. Write
D=mL{+Q,
where (2 is an effective Q-divisor such that L; ¢ Supp(Q2). If m # 0, then
1 4m
— =D -Lo=(mL1+Q) Lo >mLy Lo = —,
297 2= (ML +Q) Ly >mly - Ly = 5
and hence m < ﬁ. Then
1+37Tm 3 8
D—ml) - L1=——— < — < ——,
D=mby)-bi === < g <%0

and hence Lemma [[L3.8 implies that the point P cannot be on the curve L;. Therefore, the

point P is a smooth point in the outside of C,. However, Lemma [[.3.9] shows
2 8
Itp(D) € — < —
multp (D) < 37 < 55
7

since HO(P, Op(189)) contains monomials %7, 27, z16y". This is a contradiction. O
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Lemma 3.1.14. Let X be a quasismooth hypersurface of degree 60 in P(9,15,17,20). Then
let(X) = 2L
Proof. We may assume that the surface X is defined by the quasihomogeneous equation
x23+$5y—y4+t3 =0.
Note that the surface X is singular at O, and O,. It is also singular at the point P =[1:1:0: 0]
and the point Po =1[0:1:0:1].
The curves C,, Cy, and C; are irreducible and reduced. We have

%, let(X, 1—150y) ~ 10, 1et(X, 1—1702) — 17,
The curve C; is singular at the point O, with multiplicity 3.

Suppose that let(X) < 2741. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of D contains none of the curves C,, Cy, C..

The three inequalities

1
ICt(X, §Cx) =

17 17-9 - 60 1
3P =30 S

15 4
oD 91560

YT 9 15-17-20 " 21
3-17-60 4

3D-Ca =595 1790 ~ 21
imply that the point P is located in the outside of C;, U Cy, U C..

Let £ be the pencil on X that is cut out by the equations

22 4 paty =0,
where [A : u] € PL. Then the base locus of the pencil £ consists of the points P, and O,. Let
C be the unique curve in £ that passes through the point P. Then C is cut out on X by an
equation
zly = azd,

where o is a non-zero constant, since the point P is located in the outside of C, U C, U C..
The curve C is smooth outside of the points P, and O, by the Bertini theorem because C' is
isomorphic to a general curve in the pencil £ unless a = —1. In the case when a = —1, the
curve C is smooth outside the points P, and O, as well.

We claim that the curve C' is irreducible. If so, then we may assume that the support of D
does not contain the curve C' and hence we obtain a contradiction
4 51 - 60 4

For the irreducibility of the curve C, we may consider the curve C as a surface in C* defined
by the equations ¢* + y* + (1 + a)z2® = 0 and z'y = az®. This surface is isomorphic to the
surface in C* defined by the equations t3 +y* + Bx22 = 0 and %y = 23, where 3 = 1 or 0. Then,
we consider the surface in P* defined by the equations t3w + y* + fzz3 = 0 and 2ty = 23w?.
We take the affine piece defined by ¢ # 1. This affine piece is isomorphic to the surface defined
by the equation 2ty + 23(y* + Bz23)? = 0 in C3. If B = 1, the surface is irreducible. If 3 = 0,
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then it has an extra component defined by y = 0. However, this component originates from the
hyperplane w = 0 in P*. Therefore, the surface in C* defined by the equations t3 + y* = 0 and
xty = 23 is also irreducible. O

Lemma 3.1.15. Let X be a quasismooth hypersurface of degree 69 in P(9,15,23,23). Then
let(X) = 6.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation
2t(z — t) + zy(y® — 2°) = 0.

The surface X is singular at three distinct points O, Oy, P =[1:1:0:0]. Also, it is singular
at three distinct points O,, Oy, Q1 =[0:0:1:1].

The curve C, consists of three distinct curves L., L, and R, = {x = z —t = 0} that
intersect altogether at the point O,. Similarly, the curve Cy consists of three curves L., L
and R, = {y = z —t = 0} that intersect altogether at the point O,. The curve C, consists of
Ly, Ly, and R, = {z = y? — 2% = 0}. The curve R, is singular at the point Oy with multiplicity
3. The curve C; consists of Ly, Ly and Ry = {t = Y3 — b = 0}. The curve R; is singular at
the point O, with multiplicity 3.

Note that lct(X, $C,) = 6. Thelog pairs (X, 2C,), (X, £C.) and (X, £ C;) are log canonical.

Suppose that let(X) < 6. Then there is an effective Q-divisor D ~g —Kx such that the pair
(X,6D) is not log canonical at some point P € X. Lemma implies that we may assume
that the support of D contains neither R, nor R, by a linear coordinate change. Furthermore,
we may assume that the support of D does not contain at least one component of C,. Also, it
may be assumed not to contain at least one component of Cy.

The inequalities

15-23-9 1 1
1D = T = =,
DR 9-15-23-23 23<6
23-23-15 1 1
23D - = = — < =
3D By = 559523~ 0 6
show that the point P is located in the outside of R, U R,.
Then the inequalities
1 1 1 1 23 1 1
23D - Ly, =—<-=, 22D-L,,==-<-=, —=D-R,==-<=
s 5 g BPle=g<g P R=5<3

show that multp, (D) < %, and hence the point P cannot be the point O;. By the same way, we
can show that P # O,.

Write D = mR, + 2, where ) is an effective Q-divisor such that R, ¢ Supp(2). Then m < %
since (X, 6D) is log canonical at O;. We have

1
Rz'(Lmz‘i'Lyz):%y RZ'D:@7
and hence R? = —%. Then
1+m 7 1
Q@ R.=D-R.—mR:= 30 < gam < 37p

Lemma [[.3.8] implies that the point P cannot belong to R,. In particular, the point P cannot
be the point P;.
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Write D = aL,, + A, where A is an effective Q-divisor whose support does not contain the
curve L,,. Then a < %. Then

6-(1+37a) _ 6437 _ 43

Q- Ly, =6(D- Ly, — L2 = X YT L,
6( alz:) 345 345 345
because L2, = —%. Thus, we see that P ¢ L,.. Similarly, we can show that P ¢ L,.. Thus,

we see that P ¢ C,. In the same way, we can see that P is not contained in the curves C; and
{z =t =0}.

Therefore, the point P is a smooth point in the outside of C, U Cy U{z —t = 0}. Let E be
the unique curve on X such that E is given by the equation z = At and P € F, where \ is a
non-zero constant different from 1. Then FE is quasismooth and hence irreducible. Therefore,
we may assume that the support of D does not contain the curve E. Then

23-69 1
— <.
9-15-23-23 6
This is a contradiction. ([l

Lemma 3.1.16. Let X be a quasismooth hypersurface of degree 127 in P(11,29,39,49). Then

let(X) = 2.

multp(D) < D-FE =

Proof. We may assume that the hypersurface X is defined by the equation

22t + yt2 + :17y4 + 282 =0.
The singularities of X consist of a singular point of type 1—11(7, 5) at Oy, a singular point of type
2—19%, 2) at Oy, a singular point of type %(11, 29) at O,, and a singular point of type 4—19(11, 39)
at Oy.

The curve C;, (resp. Cy, C, C}) consists of two irreducible curves Ly (resp. Ly, Ly, Lyt)
and R, = {z = 22+ yt = 0} (resp. Ry = {y = 2%+ 2t =0}, R, = {z = £ + 2y® = 0},
Ry = {t =y*+ 272 = 0}). We can see that

Ly NRy={0y}, LyNRy={0}, Ly.NR,={0.}, Ly R, ={0.}.

It is easy to check lct(X, 1—11090) = %. The log pairs (X, %C’y), (X, %C’z) and (X, %C’t)
are log canonical.

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, %D) is not log canonical at some point P € X.

By Lemma [[.3.6] we may assume that the support of D does not contain Lg; or R,. Then
one of the following two inequalities must hold:

4 1
ﬁ > E = 29th -D = multoy (D),
4 2
337 19" 29R, - D > multo, (D).
Therefore, the point P cannot be the point O,. For the same reason, one of two inequalities
4 1
g > 4—9 = 11Lyz -D = multox(D),
4 2
— > — =11R, - D > multp, (D)
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must hold, and hence the point P cannot be the point O,. Since R; is singular at the point O,
with multiplicity 4, we can apply the same method to C, i.e., one of the following inequalities
must be satisfied:

4 1
=39L,: - D > mul D),
33 > 59 = 39Let - D > multo, (D)
4 1 39 1
ﬁ > ﬁ = —Rt > 4multoz(D)multoz (Rt) = multOZ(D).

Thus, the point P cannot be Oz.
Write D = pR, + Q, where  is an effective Q-divisor such that R, ¢ Supp (Q2). If u > 0,
then L, is not contained in the support of D. Thus,

2 1
— R, Ly <D-L
29/‘ M LA ot = 29 . 39,

and hence p < 7—18. We have
24 T6p 4
29 33
Then Lemma [[.3.8 shows that the point P cannot belong to R,. In particular, the point P

cannot be Oy.
Put D = eL,;+A, where A is an effective Q-divisor such that L,; ¢ Supp (A). Since (X, %D)

is log canonical at the point Oy, € < % and hence

490 - R, = 49(D - R, — nR2) =

14 67e 4

A-Ly=D-Ly—el? = —.
ot ot Tt T 59739 T 33

Then Lemma [[.3.8 implies that the point P cannot belong to L.

Consequently, the point P must be a smooth point in the outside of C,. Then an absurd
inequality

33 11-29-39-49 33
follows from Lemma [[3.9] since H(P, Op(539)) contains 220y, 249, 210211 and #'*. The ob-
tained contradiction completes the proof. O

Lemma 3.1.17. Let X be a quasismooth hypersurface of degree 256 in P(11, 49, 69, 128). Then

let(X) = %.

Proof. The curve C;, is irreducible and reduced. Moreover, it is easy to see lct(X, 11C ) =

The curve Cj, is also irreducible and reduced and the log pair (X, 490 ) is log canonical.
Suppose that let(X) < %5. By Lemma [I.3.6] there is an effective Q-divisor D ~g —Kx such

that Cy,Cy ¢ Supp(D) and the log pair (X, %5D) is not log canonical at some point P € X.

The inequalities
69 - 11 - 256 6

D —
69D - C, - 11-49-69 - 128 55
11-49 - 256 6

11D -C, =
Cy = 11-49-69 - 128 <55 55’
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imply that the point P is a smooth point in the outside of C,. However, since H°(P, Op(759))

contains 2%, 220y 211 we obtain
759 - 256 6
Itp(D) < —
maltp (D) S 3374969 128 < 55
from Lemma [[.3.9] This is a contradiction. O
Lemma 3.1.18. Let X be a quasismooth hypersurface of degree 127 in P(13,23,35,57). Then
let(X) = &,

Proof. We may assume that the hypersurface X is given by the equation
22t + y4z + zt? + xSy =0.

The only singularities of X are a singular point of type 5 L(9,5) at O,, a singular point of type

(13 11) at Oy, a singular point of type 5= (13 23) at O, and a singular point of type == (23 35)
at Ot

The curve C, (resp. Cy, C, Cy) consists of two irreducible curves Ly, (resp. Ly, Lyz, Lyt)
and R, = {z = y*+ 2t = 0} (resp. Ry = {y =22 +at =0}, R, = {z = 2 + 27y = 0},
Ry = {t =y32 + 2% = 0}). We can see that

Lyt N Ry ={0}, Ly.N R, ={0;}, L,.NR,={0,}, Ley N R, ={0,}.

It is easy to check let(X, 75C;) = 2. The log pairs (X, £2:C,), (X, 22=C.) and (X, 22-C})
are log canonical.

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, %D) is not log canonical at some point P € X.

By Lemma [[.3.6] we may assume that the support of D does not contain L., or R,. Then
one of the following two inequalities must hold:

% > 2—13 =57Ly, - D > multo, (D),
il > 4 =57R, - D > multp, (D)
65~ 35 i
Therefore, the point P cannot be the point O;. For the same reason, one of two inequalities
% > 3—15 = 13Ly - D > multo, (D)
il > 2 =13R, - D > multp, (D)
65 = 57 ‘

must hold, and hence the point P cannot be the point O,.

To apply the same method to C, and Cy, we note that R, is singular at O, with multiplicity
2 and Ry is singular at O, with multiplicity 3. Then we can see that one inequality from each
of the pairs

8 1
% > E 35Lyt -D = multoz (D),
8 8 35

1
— > ——=—R-D=> gmultoz (D)multo, (R;) = multo, (D);
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8 1
S D>
65 > = =23L;, - D > multo, (D),
8 1
B 33 R -D > multo (D)multp, (R.) = multp, (D)

must be satisfied. Therefore, the point P can be neither Oy nor O,.
To apply Lemma [L3.8 to L,, and R,, we compute

) 79 ) 88

T2 93.57" "7 35.57
Put D = aL,,+ bR, + €, where Q is an effective Q-divisor such that L., R, ¢ Supp (). Then
a,b < % since the log pair (X, 6—85D) is log canonical at the point O;. Therefore,

1+ 79a 8

D-L,, —al? = —
e I AT
4+88 8

D-R, —bR? = —
Ry — bR, 3557 65

Then, Lemma [[.3.8 implies that the point P is a smooth point in the outside of C,.
Applying Lemma [[.3.9] we see that

741 - 127 < 8
13-23-35-57 65’
since HO(P, Op(455)) contains 23, 2'2y!3, 213 and the point P is in the outside of L,,. The
obtained contradiction completes the proof. O

8
o5 < multp(D) <

Lemma 3.1.19. Let X be a quasismooth hypersurface of degree 256 in P(13,35,81,128). Then
let(X) = 9.
Proof. We may assume that the surface X is given by the equation

2 +yz4 a2+ 2y=0.
It has a singular point of type %3(3, 11) at O, a singular point of type %(13, 23) at Oy, and a
singular point of type 8%(35,47) at O,.

The curve C} is reduced and irreducible. The curve is singular at the point O,. It is easy
to check that let(X,Cy) = 1—70. Therefore, let(X) < 51)—(1] The curve Cy is also reduced and
irreducible. The curve C is singular only at O,. Moreover, the log pair (X, %Cy) is log
canonical.

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
log pair (X, %D) is not log canonical at some point P € X. By Lemma [[.3.6] we may assume
neither C nor Cy is contained in Supp (D).

The following two inequalities show that the point P is located in the outside of C;, U Cy:

81 1 10
C’ D=—

35 <91 91

13 1 10

—~C, - D=— < —.
2090 81<91
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However, applying Lemma [[.3.9] we can obtain
1053 - 256 < 10
13-35-81-128 ~ 91’
since HY(P, Op(1053)) contains 28!, 2'1y26 and 2!3. This is a contradiction. O

multp(D) <

3.2. SPORADIC CASES WITH [ =2

Lemma 3.2.1. Let X be the quasismooth hypersurface defined by a quasihomogeneous poly-
nomial f(x,y, z,t) of degree 12 in P(2,3,4,5). Then

1 if f(x,y, z,t) contains the term yzt,

let(X) = 7
( ) 3 if f(z,y,z,t) does not contain the term yzt.

Proof. We may assume
fx,y,2,t) = 2(z — 22 (2 — ex?) + y* + ot + ayzt + bry®z + cx’yt + dady?,

where € (# 0,1), a, b, ¢, d are constants. Note that X is singular at the point O; and three
points @1 =[1:0:0:0], Q2 =[1:0:1:0], Qs =[1:0:¢€:0]. The curve C, always is
irreducible and reduced. We can easily check that
1 ifa#0,
let (X , Cx) =< 7

Suppose that lct(X) < A := let(X, Cy). Then there is an effective Q-divisor D ~g —Kx such
that the log pair (X, AD) is not log canonical at some point P € X. We may assume that the
curve C, is not contained in the support of D.

First, we consider the case where a = 0. Since H°(P,Op(6)) contains z3, %, and xz,
Lemma [[.3.9] implies that for a smooth point O € X \ C,,

2-12-6 12
S2.3.45 7
Therefore, the point P cannot be a smooth point in X \ C,. Since the curve C, is not contained
in the support of D and it is singular at O; with multiplicity 3, the inequality

5 5-2-2-12 12
-D.-C = —— < —
3 ¥ 3.2.3-4-5 7
implies that the point P is located in the outside of C,. Thus, the point P must be one of the
point @1, @2, @3. The curve Cy is quasismooth. Therefore, we may assume that the support of

D does not contain the curve Cyy. Then the inequality

multo (D)

12 12

2-2-3-
multg, (D) < 2D -Cy = 5 545 <7
gives us a contradiction.
From now we consider the case where a # 0. Note that the curve C, is not contained in the
support of D and it is singular at O; with multiplicity 2. Since
5 5.-2-2-12

-D. e ——— |
2 Co 2.2.3.4-5
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the point P is located in the outside of C,.

The curve C, is irreducible and the log pair (X, %C’z) is log canonical. Therefore, we may
assume that the support of D does not contain the curve C,. The curve C, is singular at the
point Q1. The inequality

2-4-12
implies that P cannot be the point ;. We consider the curves C,_,» defined by z = 22 and
C,_.,2 defined by z = ex?. Then by coordinate changes we can see that they have the same
properties as that of C,. Moreover, we can see that the point P can be neither Q2 nor Q3.
Therefore, the point P must be located in the outside of C;, UC, UC,_,2 UC,_ 2.

Let £ be the pencil on X defined by Az + puz = 0, where [X : u] € P'. Let C the curve in £
that passes through the point P. Then it is cut out by z = ax?, where o # 0,1, €. The curve C
is isomorphic to the curve in P(2,3,5) defined by

28 4yt 4 xt? + BaPyt + yaty? =0,
where 8 and v are constants. We can easily see that the curve C is irreducible. Moreover, we

can check multp(C) < 2 and hence the log pair (X, %C’) is log canonical. Therefore, we may
assume that the support of D does not contain the curve C'. Then, the inequality

2412
tp(D)SD - C=——"-—"x<1
maltp (D) C=33a5"
gives us a contradiction. ]
Lemma 3.2.2. Let X be a quasismooth hypersurface of degree 14 in P(2, 3,4, 7). Then lct(X) =

1.

Proof. We may assume that X is defined by the quasihomogeneous equation

t2 — 222 4 x(z — f12?) (2 — ox?) (2 — P32?) + exy(y? — vad)
where € # 0, 31, (32, 33, v are constants. Note that X is singular at the points O, O, and three
points Q1 =[1:0:51:0],Q2=[1:0:02:0], Qs =1[1:0:F3:0]. The constants 31, 52 and 3
are distinct since X is quasismooth. The curve C,, consists of two irreducible reduced curves C_
and Cy. However, the curves Cy and C; are irreducible. We can easily see that lct(X,C;) =1,
let(X, 2C,) = 3 and let(X, 3C.) > 1.

Suppose that let(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the
log pair (X, D) is not log canonical at some point P € X. Since H’(P, Op(6)) contains x3, y?
and zz, Lemma implies that the point P is either a singular point of X or a point of C,.
Furthermore, Cy, is irreducible and hence we may assume that the support of D does not contain
the curve C,. Hence the equality
2:3-2-14 1
2-3-4-5
implies that P # Q; for each ¢ = 1,2, 3. In particular, the point P must belong to C,.

We have the following intersection numbers:

1 7

o C=C, Cr=g, CCi=ro CP=Cl=—r

2C, - D =
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We may assume that the support of D cannot contain either C_ or C;. If D does not contain
the curve C, then we obtain
multo, (D) <4D-Cy = - <1,

multo, (D) <4D-Cy = = < 1.

WD Wl N

On the other hand, if D does not contain the curve C_, then we obtain

2
multo, (D) < 4D -C_ = 3 <1,

2
multp_ (D) < 4D -C_ = 3 < 1.

Therefore, the point P must be in Cy \ Sing(X).
We write D = mC + 2, where the support of Q does not contain the curve C.. Then m > %
since D-C_ > mCy -C_. Then we see Cy - D — mC’_2|r < 1. By the same method, we also obtain

C_-D —mC? < 1. Then Lemma [[.3.8 completes the proof. O

Lemma 3.2.3. Let X be a quasismooth hypersurface of degree 20 in P(3,4,5,10). Then
let(X) = 3.

Proof. The surface X can be defined by the quasihomogeneous equation
t2 =90 4+ 21 + 252 + erxydz + e0ny2? + ezaty?,
where ¢; € C. Note that the surface X is singular only at the point O,, O = [0 : 1 :0 : 1],

Pr=[0:0:1:1]and P,=[0:0:1:—1].
The curves C,, Cy and C; are irreducible. Moreover, we have

3 2 2
2 let(X, 20,) < let(X, 2C,) = 2,
5 ct( ,30 ) < let( 4C’y)

and hence let(X) < 3. We also see that lct(X, 2C.) > 3.

Suppose that let(X) < % Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D does not contain the curves C;, C, and C..

Suppose that P ¢ C,UC, UC,. Then we consider the pencil £ on X cut out by the equations
Ay? + pxz = 0, [A : p] € PL. There is a unique member Z in the pencil £ with P € Z. The
curve Z is cut out by an equation of the form ay? + 2z, where « is a non-zero constant. There
is a natural double cover w: Z — C, where C is the curve in P(3,4,5) given by the equation
ay? + xz. The curve C is quasismooth and w(P) is a smooth point of P(3,4,5). Thus, we see
that multp(Z) < 2, the curve Z consists of at most 2 components, each component of Z is a
smooth rational curve. In particular, (X, %Z ) is log canonical. Therefore, we may assume that
Supp (D) does not contain at least one irreducible component of Z. Thus, if Z is irreducible,
then we obtain an absurd inequality

8
R =D-Z >multp(D) >

[SSRIN )
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So, we see that Z = Z1 + Z5, where Z1 and Z5 are smooth irreducible rational curves. Then

4 4

—, Z1-Zy=—.

15 ) 1 2 3

Without loss of generality we may assume that P € Z;. Put D = mZ; 4 €0, where {2 is an
effective Q-divisor such that Z; ¢ Supp(Q2). If m # 0, then

Zt=75=-

4 4m
=D -Z VAR
15 22 MA 2 =g
and hence m < 1. On the other hand, Lemma [[L3.8 shows that
44 4m 2
—(D—mZ) 21 =Q-Z > =
15 ( m 1) 1 1> 3

and hence m > % This is a contradiction. Therefore, P € C, UC, U C..
The inequalities

1 2 4 2 1 2
D-Co=—-<-, D-Cy=—=<-, D-C,==-< <
5 3 Y15 T3 3 3
imply that the point P must be a singular point of X.
The curve C, is singular at the point O,. Thus, we have
1 1 D)mul .
5= gD ¢, » ulto.( )]2“"‘“ 0.0 _ ko, (D).

Therefore, the point P cannot be O,.

Also, we have

%— 2D - Cy > multo(D).

This inequality shows that the point P cannot be the point O. Consequently, the point P must
be either P, or Ps.

Without loss of generality we may assume that P = P;. Note that C, N C,, = {Py, P»}.

Let m: X — X be the weighted blow up at the point P; with weights (3,4). Let E be
the exceptional curve of 7 and let D, C, and Cy be the proper transforms of D, C, and C,,
respectively. Then

2 ~ 3 - 4 _
=B, Cp~gm(Co) = S B, Cy ~g*(Cy) = B, D ~g (D) — %E
Where a is a non-negative rational number. The curve E contains one singular point Q)3 of type
(1 1) and one singular point of Q4 of type (1 1) on the surface X. The point Q3 is contained
in C but not in C,. On the other hand, the point Q4 is contained in C, but not in C The
intersection Cj N C consists of a single point that dominates the point Ps.
The log pull back of the log pair (X, 3D) is the log pair
= 3= 3a—-4
X, -D E|.
< 2 + 10 >
This is not log canonical at some point () € E. We see that
3a

_ _ 1 a
0<C,-D=0C,-D E?>=- - —
v v +25 5 20’

Kx ~q W*(Kx) +
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and hence a < 4. In particular,
3a —4
10

This implies that the log pull back of the log pair (X, %D) is log canonical in a punctured
neighborhood of the point Q.
If a < %, then the log pair (X, %D) is not log canonical at ) as well. We then obtain

< 1.

2,

S Q#Qsand Q£ Qu,
a _ 2 1.
E—D E> g‘glf@—@g,

2 1.

g‘ZlfQ—Q4-

In particular, we have a > 2. This contradicts the assumption a < %. Therefore, a > % and the
log pull back of the log pair (X, %D) is effective. Then

_ 2 —14 14 —
multg(D) > - (1 _ e > = 3(1.

3 10 15
Since D-E = 15 < %, Lemma[I.3.8limplies that the point () cannot be a smooth point. Therefore,
the point @ is either QY3 or Q4. However, two inequalities
14 — 3a
15 7

. 14—
—3D - C, > multg, (D) > 153“

give us a contradiction. ]

=4D - C, > multg, (D) >

o] s Ot
sl oUe

Lemma 3.2.4. Let X be a quasismooth hypersurface of degree 30 in P(3,4,10,15). Then

let(X) = 3.

Proof. The surface X can be defined by the quasihomogeneous equation
2 =23 — ysz — 210+ 61x2y22 + 62x2y6 + 63x4y22 + 64x6y3,
where ¢; € C. The surface X is singular at the points Oy, O =[0:1:1:0], O5 =[0:0:1:1],
Pr=[1:0:0:1]and P,=[1:0:0:—1].
The curves C, and Cy are irreducible. Moreover, we have

3 2 2

Suppose that let(X) < % Then there is an effective Q-divisor D ~g —Kx such that the

pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D contains neither C; nor C,.

Since H°(P, Op(20)) contains the monomials y°, y%z*, 22, it follows from Lemma that
the point P is either a singular point of X or a smooth point in Cy. However, the point P

cannot belong to Cy since % = 5D - Cy. Therefore, the point P must be either the point O, or
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O3. On the other hand, we have 4D -C,, = % This means that the pair (X, %D) is log canonical
at the points O, and O,. Consequently, lct(X) = % d

Lemma 3.2.5. Let X be a quasismooth hypersurface of degree 57 in P(5,13,19,22). Then
let(X) = 2.

Proof. The surface X can be defined by the quasihomogeneous equation
23+ yt2 + a:y4 + a7t + ex’yz = 0,

where € € C. The surface X is singular only at the points O, O, and O;.
The curves C, and C are irreducible. Moreover, we have

25 2 2 65
— =lct <X, ng> < lct <X, 1—30y> = —.

12 21
Suppose that lct(X) < % Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, ?—SD) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the

support of the divisor D contains neither C; nor C,.

Since H°(PP, Op(110)) contains the monomials 2%9°, 22 and %, it follows from Lemma [3.9]
that the point P is either a singular point of X or a smooth point on C,. However, this is
impossible since 22D - C, = 1% < % and 5D - Cy = % < % O

Lemma 3.2.6. Let X be a quasismooth hypersurface of degree 70 in P(5,13,19,35). Then
let(X) = 2.
Proof. The surface X can be defined by the quasihomogeneous equation

2 + yz3 + xy5 — M 6:135y2z =0,

where € € C. The surface X is singular at the points O, and O,. It is also singular at two points
P=[1:0:0:1]and P,=[1:0:0:—1].

The curves C;, is irreducible. On the other hand, the curve Cy consists of two smooth curves
Ci={y=2"—-t=0}and Cy = {y = 27 +t = 0}. Moreover, we have

25 2 2 26
= —lct <X, ng> < lct <X, 1—30y> bl

12 7
Suppose that lct(X) < % Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the

support of the divisor D dose not contains C,. Also, we may assume that the support of D does
not contain either Cy or C5.
Since 19D - C,, = % < %, the point P cannot belong to C,.
We put m1C1 + maCs + 2, where € is an effective Q-divisor whose support contains neither
C1 nor Cs. Since the pair (X, %D) is log canonical at the point O,, we see that m; < % Since
2—m; 12
5D —m;Cy) - C; = <=
(D=miC)-Ci= =5~ <5
for each i, Lemma [[.3.8 implies that the point P can be neither P; nor P,. Therefore, the
point P is a smooth point of X in the outside of C,.. However, since H°(P, Op(95)) contains the
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monomials z%¢°, 22 and 2%, it follows from Lemma [[.3.9] that the point P is either a singular
point of X or a smooth point on C,. This is a contradiction. O

Lemma 3.2.7. Let X be a quasismooth hypersurface of degree 36 in P(6,9,10,13). Then
let(X) = 2.

Proof. The surface X can be defined by the quasihomogeneous equation
22+ oyt a2+ a2l rerdy? =0,

where € is a constant different from £2. The surface X is singular at the points O, and O;. It
is also singular at two points P; and P on L,;. The surface X is also singular at one point @
on Lyt-

The curves C, and C, are irreducible and reduced. However, the curve C, consists of two
irreducible and reduced curves C7 and Cy. The curve C contains the point P; but not P. On
the other hand, Cs contains the point P, but not ;. We also see

8 6
= OOy = —
390 1702

C2=Ci=- =,

It is easy to check

25 2 9 2 9 2

Suppose that let(X) < % Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[L3.6] we may assume that the
support of the divisor D contains neither C, nor C,. In addition, we may assume that it cannot
contain either Cy or Cs.

Since H(P, Op(30)) contains the monomials 2%y, % and 23, it follows from Lemma [3.9]
that P € Sing(X) U C, U C,. However, 2D - Cy = % < % and hence the point P cannot be
the point ). Note that the curve C, passes through the point O, with multiplicity 2. Then the
inequality 5D - C, = 15 < 32 shows that the point P cannot be a point on C, \ {O;}.

Put D = mC; + €, where Q is an effective Q-divisor such that C1 ¢ Supp(€2). If m # 0, then

2 6m
2 _D.CH= Q)-Cy > Oy = —
39 Cy (mC1 + ) Cy = mCq-Cy 3
and hence m < %. Then
2+8m 12
D — . = < —.
3( mC’l) 01 13 o5

Therefore, it follows from Lemma [[38 that the point P cannot be a point on C; \ {O:}. By
the same method, we can show that the point P cannot be a point on Cy\ {O;}. Therefore, the
point P must be the point O;.

Let m: X — X be the weighted blow up at the point O; with weights (2,3). Let E be
the exceptional curve of 7 and let D, C, and Cy be the proper transforms of D, C, and C,,
respectively. Then

8 - - 3

* * 2 * N *
KX ~Q T (KX)_1_3E7 OE ~QT (CZB)_EE7 Cy ~QT (Cy)_EE7 DNQW (D)_

a

—F,
13
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Where a is a non-negative rational number. The curve E contains one singular point Q)3 of type
(1 1) and one singular point of Q2 of type (1 1) on the surface X. The point Qs is contained
in C’ but not in C,. On the other hand, the point Q3 is contained in C, but not in C’

The log pull back of the log pair (X, %gD) is the log pair

<X,§D+ME>.

12 1213
This is not log canonical at some point () € E. We see that
_ 3a 6 a
0<Cy C T 169 5-13  2-13

and hence a < % In particular,
25a + 96
12-13
This implies that the log pull back of the log pair (X, %D) is log canonical in a punctured
neighborhood of the point Q. Then

<L

12<1 25a+96>_ 12 a

l ar — T .
multo(D) > 2 1213 5-13 13

Since D - E = § < 25, Lemma [[.3.8] implies that the point @ cannot be a smooth point.
Therefore, the point () is either Q2 or (J3. However, two inequalities

12 a _ _ 12 a
2 2 _3D.C, > multp, (D) > ——— — L
513 13 0P Gz multey(D) > w0 = 3
12 a o _ 12 a
2 % _9p. ¢y > multp, (D) > —— — L
5-13 13 y 2 multoy(D) > == — 33
give us a contradiction. ]

Lemma 3.2.8. Let X be a quasismooth hypersurface of degree 57 in P(7,8,19,25). Then
let(X) = 33.

Proof. The surface X can be defined by the quasihomogeneous equation
22+ y4t +at? + x7y + 63:2y3z =0,

where € € C. The surface X is singular at the points O, Oy and O;. The curves C;, C, and
C, are irreducible. We have

49 2 2 10 2 19
=1 X, =C, | X, - =— <1 X —-C,) =—.
o1 ct( ,7C’><ct< 80y> 3<ct< 19C'> 5

Thus, let(X) < ;12

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, gZD) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D contains none of the curves C’m, Cy and C,. The curve C is singular
at the point O;. Since 22—5D -Cp =2 < 49, 7D-Cy = 25 < Zg and D-C, = 700 < 49, the point
P cannot belong to the set C, U C uc,.
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Consider the pencil £ on X defined by the equations A\y?z + ux® = 0, [, A\] € P'. Then there
is a unique curve Z in the pencil £ passing through the point P. Then the curve Z is defined
by an equation of the form 32z — az® = 0, where « is a non-zero constant.

We see that Cyy ¢ Supp(Z). But the open subset Z \ C, of the curve Z is a Zg-quotient of
the affine curve

z—axd =B ft4 ot +2’ +ex?z=0cC C3 Spec(@[m,z,t])
that is isomorphic to the plane affine curve defined by the equation
B+ttt + 2" +eax” =0c C? Spec(@[m,t}).

This curve is irreducible and hence the curve Z is also irreducible. Thus multp(Z) < 14. We
may assume that Supp(D) does not contain the curve Z by Lemma Then we obtain an
absurd inequality

24

— :D'ZQmultp(D) > 1
O

Lemma 3.2.9. Let X be a quasismooth hypersurface of degree 64 in P(7,8,19,32). Then
let(X) = 2.
Proof. The surface X can be defined by the quasihomogeneous equation
2 — y8 + 22 + :138y + E:E3y3z,

where ¢ € C. Note that X is singular at the points O, and O,. The surface X also has two
singular points P, =[0:1:0: 1) and P, =[0:1:0: —1] of type %(7, 3).

The curve C, is reducible. We have C, = C7 4+ (s, where C and Cs are irreducible and
reduced curves. The curve C contains the point P; but not the point P,. On the other hand,

the curve Cy contains the point P» but not the point P;. However, these two curves meet each

other only at the point O,. We also have
25 4
g T

The curve C) is irreducible. It is easy to check

lct (X, %C’w> _ < lct <X, gC'y> = E

Ci =03 =

16 8 3

3
Therefore, lct(X) < 22.

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[L3.06] we may assume that the
support of D does not contain the curve C,. Moreover, we may assume that the support of D
does not contain either the curve C7 or the curve Cs.

Since C; ¢ Supp(D) for either ¢ = 1 or 2, we have

1 16

lto. (D) < 19D - Cj = ~ < —.
multo, (D) < 19D - C; 153
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and hence P # O.. Meanwhile, the inequality 7D - Cy = ig < 2—6 implies that the point P
cannot belong to Cj.

Suppose that P € C7. Then we write D = mCy + €0, where 2 is an effective Q-divisor such
that C; ¢ Supp(€2). If m # 0, then

1 4dm
119 Cy (m01 + ) Cy > mCq-Cy M
and hence m < % Then it follows from Lemma [[.3.8] that

16 if P# P,

2+ 25 BT L
z—;19m:(D_mcl)'clzg’c1> ?(53 1

’ — . _ifP="P.

35 8

This is impossible since m < 1 . Thus, P ¢ (1. Similarly, we can show that P ¢ (.
Consequently, the point P is located in the outside of C; U Cy. In particular, it is a smooth

point of X. But H°(P, Op(64)) contains monomials 8, 2%y, y4t and t2. This is impossible by

Lemma [[.3.9] The obtained contradiction completes the proof. O

Lemma 3.2.10. Let X be a quasismooth hypersurface of degree 48 in P(9,12,13,16). Then
let(X) = 8.

Proof. The surface X can be defined by the quasihomogeneous equation
t3—y4—|—x23+x4y:0.

The surface X is singular at the points O, O,, Q4 =[0:1:0:1] and Q3 =[1:1:0:0].
The curves C,, Cy, C, and C; are irreducible and reduced. We have

63 2 2 2 13 2 16
=lct | X, -Cy let | X, — =4<let | X, =C, )| == <let | X, — =—_.
21 ct( ,90>< ct( 12C'y> < ct( 130) 5 < ct< 160t> 5

Therefore, let(X) < .

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, giD) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D contains none of the curves C,, Cy, C, and C;.

Note that the curve C is singular at O, with multiplicity 3 and the curve Cj is singular at

O, with multiplicity 3. Then the inequalities

13 1 24 9 2 24 1 24 8 24
D Cp=-<=—, 2D-Cy==-<=—, 3D Co=-<=—, D-Cy=—— < —
3 6 63 3 YT 13763 6 63 "7 9.13 " 63

show that the point P must be located in the outside of C, UCy U C, U C.

Consider the pencil £ on X defined by the equations Azt + pyz = 0, [, A] € PL. Then there is
a unique curve Z in the pencil £ passing through the point P. Then the curve Z is defined by an
equation of the form xt — ayz = 0, where « is a non-zero constant. We see that C, ¢ Supp(Z).
But the open subset Z \ C, of the curve Z is a Zg-quotient of the affine curve

t—ayz:t3+y4+23+y:0cC3§Spec<(C[y,z,t]),
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which is isomorphic to the plane affine curve given by the equation
AP+t 4y=0cC?x Spec(@[y,z]).

Then, it is easy to see that the curve Z is irreducible and multp(Z) < 4. Thus, we may assume
that Supp(D) does not contain the curve Z by Lemma [[.3.6l However,

25 94
2 D.Z>multp(D) > 2.
1813 multp(D) >

_ 63

Consequently, lct(X) = 37. O

Lemma 3.2.11. Let X be a quasismooth hypersurface of degree 57 in P(9,12,19,19). Then
let(X) = 3.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation
2t(z —t) — ay + 2%y = 0.

The surface X is singular at three distinct points O, Oy, Q3 =[1:1:0:0] . Also, it is singular
at three distinct points O,, Oy, Q19 =[0:0:1: 1].

The curve C, consists of three distinct curves L,,, L and R, = {x = z —t = 0} that
intersect altogether at the point O,. Similarly, the curve Cy consists of three curves L., L
and Ry, = {y = z —t = 0} that intersect altogether at the point O,. The curve C, consists
of three distinct curves Ly, Ly, and R, = {z = 2* — y® = 0} that intersect altogether at the
point O;. The curve C; consists of three distinct curves Ly, Ly and Ry = {t = zt — P = 0}
that intersect altogether at the point O,. Let C,_; be the curve cut out on X by the equation
z =t. Then C,_; consists of three distinct curves R, Ry and R,_; = {z —t = zt — 2 =0}
that intersect altogether at the point Q1g.

We have the following intersection numbers:

29 26 2
L2 :L2: 2:_ L2 :L2: 2:_— 2: 2: 2 - __ =
1 2
Ky Ly = —Kx Lyt = —Kx Ry = ——, —Kx Ly, = —Kx-Ly = —Kx Ry = ——.
X X+ Lyt xR 196 x - Ly X - Lyt x - Ry 9.9
2
—-Kx R, =-Kx Ri=—-Kx R,_1=—.
X X t X t 19-3

Since lct(X, %Cx) = 3, we have lct(X) < 3. Suppose that lct(X) < 3. Then there is an
effective Q-divisor D ~g —Kx such that the pair (X,3D) is not log canonical at some point

PeX.
The pairs (X, ng) and (X, 5C,) are log canonical. By Lemma [[3.6] we may assume that

the support of D does not con’tzlﬁn Z;t least one component of C,. Then one of the inequalities
multo, (D) < 12D - L, = % < %,
multo, (D) < 12D - Ly = o < 1,
57 3
multp, (D) < 12D - R, = L) < !
Y 57 3
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must hold, and hence the point P cannot be the point O,. Also, we may assume that the
support of D does not contain at least one component of Cy. By the same reason, the point P
cannot be the point O,.

We have .
2 2 2
lct <X, ECZ> =lct <X, 1—9Ct> =lct <X, 1—901> = 5

By Lemma [[.3.6], we may assume that the support of D does not contain at least one component
of each curve C,, C; and C,_;. Since the curve R, is singular at the point O; with multiplicity
3, Then one of the inequalities

1 1

multo, (D) < 19D - L,, = 6 < 3
2 1

multo, (D) < 19D - L, = g <73
19 2 1

Ito,(D) =D - R, = - < -
mulio (D) < 3 9°3

must hold, and hence the point P cannot be the point O;. By applying the same method to C
and C,_;, we see that the point P can neither O, not Qq9.
The three curves R,, R;, and R,_; intersects only at the point Q5. The log pair

(X, 1% (Rz YR+ Rz_t)>

is log canonical at @3, and R, + Ry + R._; ~ —18Kx. By Lemma [[.3.6] we may assume that
the support of D does not contain at least one curve among R,, R; and R,_;. Without loss of
generality, we may assume that the support of D does not contain the curve R,. Then

2 1

and hence the point P cannot be Q3.
Write D = miLg. + maL,, + maR, + A, where A is an effective Q-divisor whose support
contains none of the curves L., L., R,. Since the pair (X,3D) is log canonical at the point

Oy, we have m; < % for each i = 1, 2, 3. By Lemma [[.3.8] the inequalities

21 29m; 1
(D - mlez) Ly, = Tlf)l ga
24 26my 1
(D =malyz) - Lys = =545~ < 3
2+2m3 1
D— Lp o frems 2
(D —mslt.)- R = =5~ < 3

show that the point P cannot belong to C,. By the same way, we can show that the point P is
not contained in Cy U C,_;. Therefore, the point P is a smooth point of X in the outside of the
set C,UC;UC,_;. Then there is a unique quasismooth irreducible curve E C X passing through
the point P and defined by the equation z = At, where A is a non-zero constant different from 1.
By Lemma [I[.3.6] we may assume that the support of D does not contain the curve E. Then

1 1
- tp(D)<D-E=—.
3<mutp( ) 18
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This is a contradiction. O

Lemma 3.2.12. Let X be a quasismooth hypersurface of degree 81 in P(9,19,24,31). Then
let(X) = 3.
Proof. The surface X can be defined by the quasihomogeneous equation

yt? + 3z +azd — 2% =0.
It is singular at the point Oy, O, and O;. The surface X is also singular at the point Q3 = [1 :
" .%h'eO]c'urve Cy (resp. C,) consists of two irreducible curves Ly, and R, = {z = t* + y*2 = 0}

(resp. R, = {y = 2® — 2% = 0}). The curve L,, intersects R, (resp. R,) only at the point O,
(resp. Oy). We have the following intersection numbers:

1 1 2 1
~Kx Lyy=-——, —Kx Ry=——, —Ky Ry=-—- Ly Ry=-——
A DR T S A A D TR A DA
3 53 5 10
Ly R,=—, L% =— RP=-_"_ R=_—_.
Wy W 24-317 °F 6-19° Y  3.31

Meanwhile, the curve C, is irreducible. We see that let(X) < 3 since

2 2 209 2 22
=lct | X,=C, let [ X, — =—<laa|X,=—C, | =—.

3 c<,9C><c< 190y> 54<c< 24C> 3
Suppose that let(X) < 3. Then there is an effective Q-divisor D ~g —Kx such that the pair
(X,3D) is not log canonical at some point P. We may assume that the support of D does not
contain at least one component of each of C, and C, by Lemma One of the inequalities

2 1 4 1
Ito,D <24D - L,y = — < =, Ito,D <24D - R, = — < =
multo, - 31<3 multo, R, 19<3
must hold, and hence the point P cannot be the point O,. Since the curve R, is singular at the

point O; with multiplicity 3, one of the inequalities

1 1 1
multo,D < 31D - L,y = — < -, multp,D < %D "R, =-<

12 3
must hold, and hence the point P cannot be the point O;.
By Lemma [[.3.6] we may also assume that the curve C, is not contained in the support of
D. The curve C, is singular at the point O,. Then the inequality

19 9 1
- D. = <=
2 Cs 31<3

O N
W =

shows that the point P cannot be the point O,.
Write D = mgoLgzy + miR; + maRy + Q, where Q is an effective Q-divisor whose support
contains none of L, R;, R,. If mg # 0, then we obtain

1 mo
WZDRJ/‘}mOnyRx:Ea

and hence mgy < 1%. Similarly, we see that m; < 3% and mo < %. Since we have
2+ 53myg 1

D —moLyy) - Lyy = —2o0 < =
(D =moLay) - Loy = 1737~ < 35
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1+ 5my 1
D — x) e = 5 o)
( mi1R ) R 6-19 < 3
2 —10mgy 1
3(D —maoRy) - Ry = 1 < 3

it follows from Lemma [[L3.8] that the point P is located in the outside of C, and Cy. Therefore,
the point P is a smooth point in the outside of C, and C,. However, since H’(P, Op(171))
contains the monomials y”, 219, 2325 and 2123, it follows from Lemma [[33.9] that the point P
must be either a singular point of X or a point in C, U Cy. This is a contradiction. O

Lemma 3.2.13. Let X be a quasismooth hypersurface of degree 105 in P(10, 19, 35,43). Then
let(X) = 21

Proof. The surface X can be defined by the quasihomogeneous equation
23+ yt2 + xy® — 'z =0.

The surface X is singular at the points O, Oy, Op and Q5 =[1:0:1:0].
The curve C,, is irreducible. However, the curve C, consists of two irreducible curves L,, and
R, ={y = 2% — 2" =0}. The curve L, intersects R, at the point O;. We have

) 51 ) 16 7

= =——, L,,-R, = —.
v 10-437 7Y 5.437 Y7 7Y 43
We also have let(X) < 27 since

f—z = lct (X, %C’y> < lct <X, %C’x> = %
Suppose that lct(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, ?—ZD) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D does not contain the curve C,. Similarly, we may assume that the
support of the divisor D does not contain either L,. or R,.
Since the support of the divisor D does not contain either L,. or R, and the curve R, is
singular at the point Oy, one of the inequalities

1 14 43 1 14
lto,(D) <43D - L,, = - < —, Ito,(D) < —D - =—-< =
multp, (D) < 43 v =7 < £y mu 0,(D) 5 R, E < =
must hold, and hence the point P cannot be Oy.
We write D = moL,, + mi R, + ), where Q) is an effective Q-divisor whose support contains

neither Ly, nor R,. If mg # 0, then m; = 0 and hence

2 7
= DRy >moLy. R, = —2

5-43 43
Therefore, mg < 32—5 Similarly, we have my < % Since

2+5lmg 14
10(D — moLy,) - Ly, = —— < —,

O(D = moLy:) - Ly 13 57

24 16my 14

D— - S M

5( mlRy) Ry 13 < 57

it follows from Lemma [[.3.8] that the point P is located in the outside of C.
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Since the divisor D does not contain the curve C,, multp, (D) < 19D - C, = 4% < %, and
hence the point P cannot belong to the curve C,. Therefore, the point P is a smooth point
in the outside of C, U Cy. However, since H°(P, Op(190)) contains z'9, y'9 2521 and 2'22? it
follows from Lemma [[L3.9] that the point P must be either a singular point of X or a point in
C, U Cy. This is a contradiction. O

Lemma 3.2.14. Let X be a quasismooth hypersurface of degree 105 in P(11,21,28,47). Then
let(X) = ;—(7].
Proof. The surface X can be defined by the quasihomogeneous equation
yz3 —yd + at? + 7z =0.

The surface X is singular at the point O, O,, Oy and Q7 =[0:1:1:0].

The curve C, (resp. Cy) consists of two irreducible curves Ly, and R, = {z = 2% — y* = 0}
(resp. Ry = {y = t* + 2% = 0}. The curve L, intersects R, (resp. R,) only at the point Oy
(resp. O,). We have the following intersection numbers:

1 2 1 3
—Kx - R,=——, -Kx-Ry=——, Ly, -R,=—,
14-47 X 747 XM T T v A7
1 73 10 5
Lyy Ry =—, L[ =——"_ 2 __ 7 2_ _ Y
v By 147 28 - 47’ LE 747’ Ry 7-11

We see that lct(X) < ZF since

3

77 2 2

—=lat (X, —=C, ) <let | X,—=C, | =6.

30 C< 11 m> C( 21 y>

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the

pair (X, g—gD) is not log canonical at some point P. By Lemma [[L3.6] we may assume that the
support of D does not contain at least one component of each of C, and C,,. Note that the curve
R, is singular at the point O; with multiplicity 3 and the curve R, is singular at the point O.,.

Then one of two inequalities

—Kx Ly =

1 30 47 2 30
multo, (D) < 47D - Ly = < = multp, (D) < ?D "Ry = o1 < -
must hold, and hence the point P cannot be O;. Applying the same method to C,, we show
that the point P cannot be the point O,.
Write D = mgLzy + miR; + maRy 4 Q, where Q is an effective Q-divisor whose support
contains none of L,,, R;, R,. If mg # 0, then we obtain

2
—:D-Rx>m0ny-Rx:3m0

747 47’
and hence mg < % Similarly, we see that m1 < é and my < 4—17. Since we have

24 73m0 30

D—-moL.) - L., =" 2=

(D =moLay) - Lay = g7 < 77

2+10m; 30

"(D—-miR;) Ry = ——m— < —

(D —miRy)- Ry 7w ST

1—-5mg 30

11(D — TTLQRy) Ry, = - < o
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it follows from Lemma [[.3.8] that the point P is located in the outside of C, and Cy. Therefore,
the point P is a smooth point in the outside of C,. However, since H°(P, Op(517)) contains
xoy?2, a2yt 247 1910 24T 11 it follows from Lemma [[3.9] that the point P must be either
a singular point of X or a point in C,. This is a contradiction. O

Lemma 3.2.15. Let X be a quasismooth hypersurface of degree 107 in P(11,25,32,41). Then
let(X) = 1—31

Proof. The surface X can be defined by the quasihomogeneous equation
yt? + 18z + 223 + 2% = 0.

The surface X is singular at the points O, Oy, O., O;. Each of the divisors C;, Cy, C., and C;
consists of two irreducible and reduced components. The divisor C; (resp. Cy, C, C}) consists
of Lyy (vesp. Lyy, Lu, Ly) and Ry = {z = t2 + y?2 = 0} (resp. R, = {y = 23 + 25t = 0},
R,={z=25%+yt =0}, Ry = {t = > + 222 = 0}). Also, we see that

LyyNRy ={0.}, LyyN Ry ={0:}, LyNR, ={0,}, L+ N Ry = {0}

We have the following intersection numbers:

1 2 1 6
~Kx Lyy=-——, —Kx-Lyy=——-—", —Kx Ry=——, —Kx-Ry=——
Xobay =gy TR ke = gy R e =g SR =gy
12 3 1 3 6
Ky R=——  _ Ky Rh=—— L -R =— L. -R =— L., R ——
XM= oggp TR =g Ly B =g Ley By = g L B = o
71 34 7 42
w= T T s BT T

We see let(X) < % since

11 2 50 2 28 2 205 2
3 ct <X, 11090) < 9 ct <X, 25C'y> < 3 ct (X, 32C'z> < 13 ct (X,41C't>

Suppose that let(X) < 1—31 Then there is an effective Q-divisor D ~g —Kx such that the pair
(X, 1—31D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that either
Supp(D) does not contain at least one irreducible component of each of C,, Cy, C, and C;.
Since the curve R, is singular at the point O; with multiplicity 3, one of the inequalities

1 3 41 2 3
multp, (D) < 41D - Ly, = 6 <10 multp, (D) < ?D Ry = ITIRETI
must hold, and hence the point P cannot be the point O;. Applying the same method to each
of C, and Cy, we can show that the point P can be neither O, nor O,.
Since H°(P, Op(352)) contains the monomials x7y't, x3% and 2!, it follows from Lemma [3.9]
that the point P is either the point O; or a smooth point on C.
Write D = moLgy + mi Ry + maL,; + Q, where €2 is an effective Q-divisor whose support
contains none of L, R;, R,. If mg # 0, then m; = 0 and hence we obtain
1 mo
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Therefore, mg < 22—5 Similarly, we get m; < 4—11. Since we have

2+ 7lmg 3
D —mgLyy) - Ly = —— 210 2
(D =moley) - Loy = =577~ <43
14+7my 3

D—mR,) Ry = — % <« 2
( miR;) - R 5 9E <11

it follows from Lemma [[.3.8] that the point P must be the point O,.
Suppose that mo = 0. Then the inequality

2 3
< . - — -
multoy(D) < 25D L, 11 < 11

gives us a contradiction. Therefore, mo # 0 and hence the curve R, is not contained in the
support of D. Then

12 multo, (D) —ma  5meg 3
=D-R,>msL, - . )
25 - 41 Re 2 maba- R+ 2% ” 95 "1
and hence moy < 5.1’%. Since
2+ 34msy 3
25(D —moL) Ly = ——= < —
5( ma zt) zt 11 < 11

the pair (X, %D) is log canonical at the point O, by Lemma [[L3.8] This is a contradiction. [

Lemma 3.2.16. Let X be a quasismooth hypersurface of degree 111 in P(11,25,34,43). Then
let(X) = 3.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation
t2y +t22 + :17y4 + 272 =0.

The surface X is singular at the points O, Oy, O., O;. Each of the divisors C;, Cy, C., and C;
consists of two irreducible and reduced components. The divisor C; (resp. Cy, C, C}) consists
of Lyt (vesp. Lyz, Lys, Lyt) and Ry = {x = yt + 2% = 0} (resp. R, = {y = 2t + 27 = 0},
R,={z=a2y+1t> =0}, Ry = {t = y* + 252 = 0}). Also, we see that

Lyt N Ry ={0y}, Ly "Ry ={0}, Ly.N R, ={0,}, Lyt N Ry = {0 }.

The intersection numbers among the divisors D, Ly, Ly., R, Ry, R., R; are as follows:

1 4 7
By Lo = e TEx e = opmes S By = o
Ky L. — > Ky R, — 2 Ky Ry — 2
X ME Ty X T oy XM nar
2 7 9 9
th'Rx:%y Lyz'Ry:Ey Lyz‘Rz:ﬁy Lmt'Rt:ﬁv
2 _ _ 5T _ 2 G4 R2:_i
at 34.25" % 25.43" Y 34 - 43’
) 52 ) 18 ) 64

— " R R? = .
yz 11-43° "% 11-25° ¢ 1117
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We can easily see that let(X, 2C,) = 22 is less than each of the numbers let(X, 2C,),
let(X, £C.) and let(X, 5Cy). Therefore, let(X) < 22

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the log
pair (X, %D) is not log canonical at some point P € X.

By Lemma[l.3.6l we may assume that the support of D does not contain at least one component
of each divisor C, Cy, C;, C;. The inequalities

1 8 4 8
0D Ly = — < —, 25D Ry = — < —
D Lo =17 <33 PP H=g<g
imply that P # O,. The inequalities
2 8 4 8
11D Ly, =—<—, 11D R, = — < —
v T3 S 33 R:=55 <33
imply that P # O,. Since the curve R; is singular at the point O,, the inequalities
34 8 34 2 8
AD Lyp=-— <« DR =" <
s =T <3y P T T

imply that P # O,.

We write D = a1Ly + aoLy, + a3Ry + asRyy + asR. + agRRy + Q, where Q is an effective
divisor whose support contains none of the curves L., L., R;, Ry, R., R;. Since the pair
(X, %D) is log canonical at the points O, O, O, the numbers a; are at most ??—3. Then by

Lemma [[.3.8] the following inequalities enable us to conclude that either the point P is in the
outside of C, UC, UC, UC} or P = Oy:

33 261 33 241

DLy, —I12=—""_ 1. 2pD.L,—I1%2=—""__ 1

8 o Me S gy g5 S0 g ve " Mat = g3 S0

33 161 33 483

D R,—R2=——"" <1, ZD.R,—R2=—""__ 1

gP -l =gz <l gD Ry—Ry==—s <l
33 , 33 3 33 , 33 3
DR, -R2<ZD R =-—"_<1, D R-R<ZD R =" <1.
gP - s gD R=575< gP - Ri<s gD -Ri=o7<

Suppose that P # Oy;. Then we consider the pencil £ defined by Ayt + uz? = 0, [\ : u] € P
The base locus of the pencil consists of the curve L,. and the point O,. Let E be the unique
divisor in £ that passes through the point P. Since P ¢ C, U C, U C, U (4, the divisor FE is
defined by the equation 22 = ayt, where o # 0.

Suppose that o # —1. Then the curve E is isomorphic to the curve defined by the equations
yt = 22 and t?y + zy* + 272 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by ¢t # 0 is the curve given by
2(23 4+ 22" + 27) = 0. Therefore, the divisor £ consists of two irreducible and reduced curves
L,. and C. We have

394

D-C=D-E-D-L,,=——— .
¢ ¥ 11-25-43

Also, we see
4
(?=F-C-C Lp>E-C (L +R)-C="0D-C>0

By Lemma [[.3.8] the inequality D - C' < ??—3 gives us a contradiction.
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Suppose that & = —1. Then divisor E consists of three irreducible and reduced curves L.,
R,, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have

14
11-43°
M*=E-M—-Ly, M-~R, M>E-M~-Cy-M—C,-M>0.
By Lemma [[.3.8] the inequality D - M < % gives us a contradiction. Therefore, P = O;.

Put D = bR, + A, where A is an effective divisor whose support does not contain R,. By
Lemma [[.3.6] we may assume that R, Z Supp(A) if b > 0. Thus, if b > 0, then

D-M=D-E—D-Ly,.—D-R, =

2 2b
_° _Dn. > . _ =
25 ) 34 D th = bRx th 257
and hence b < 3—14. On the other hand, it follows from Lemma [I.3.8] that
44 64b 8
=A-R,>——.
25 - 43 B> o3
Therefore, b > %. Since % > 3—14, this is a contradiction. O

Lemma 3.2.17. Let X be a quasismooth hypersurface of degree 226 in P(11,43,61,113). Then
let(X) = 25.

Proof. The surface X can be defined by the quasihomogeneous equation
2 + yz3 + :Ey5 + 2%z =0.
The surface X is singular at the points O, O, and O,. The curves C, and Cy are irreducible.
We have
% = lct <X, %Cx> < lct <X, 42—30y> = %
Therefore, let(X) < 23.

Suppose that lct(X) < % Then there is an effective Q-divisor D ~g —Kx such that the

pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the

support of the divisor D contains neither C, nor Cy. Then the inequalities

4 12 4 12
1D-Cp,=— <=, 11D-C) = — < —
6 Co 43 < 55’ Cy 61 < 55

show that the point P must be a smooth point of X in the outside of C.. However, since
HO(P,Op(671)) contains the monomials '8y 261 and 2z!!, it follows from Lemma [[3.9] that
the point P is either a singular point of X or a point on . This is a contradiction. O

Lemma 3.2.18. Let X be a quasismooth hypersurface of degree 135 in P(13,18,45,61). Then
let(X) = 2.
Proof. The surface X can be defined by the quasihomogeneous equation
23— y5z + t? + xgy = 0.
The surface X is singular at the points O, Oy, O, Q9 =1[0:1:1:0].
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The curve C,, consists of two irreducible and reduced curves L., and R, = {z = 22— b = 0}.
The curve L, intersects R, at the point Oy. It is easy to check

7 32 5
2 2 _ ) -2
Loz = 18- 61’ e 9.61’ Loz - Re 61°

Meanwhile, the curve Cj, is irreducible. We have

91 2 2 15

Z (X, 20, ) <1t (X, 20, ) = =2

30 C<’13C><C< 18Cy> >
Therefore, let(X) < 3.

Suppose that lct(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
Ly ¢ Supp(D) or Ry ¢ Supp(D).

Since the support of D cannot contain either L., or R, one of the inequalities

1 30 2 30
Ito, (D) < 61D - L, = - < —, Ito,(D) < 61D -R, == < —
multp, (D) < 6 5 < o1 multp, (D) < 6 R 5 < o1
must hold, and hence the point P cannot be O;. Also, the inequality
6 30
13D -C, = ol <o1

implies that the point P cannot be O,.
We write D = mgL,, +mi1 R, + 0, where (Q is an effective Q-divisor whose support contains
neither L., nor R;. If mg # 0, then we obtain

2 om
and hence mg < 42—5. By the same way, we get m; < 4%. Since

24 7Tm 30 2+ 32m 30
it follows from Lemma [[.3.8] that the point P is a smooth point in the outside of C,. However,
since HO(P, Op(585)) contains z*°, 227y'3, 213, this is impossible by Lemma 3.9 O

Lemma 3.2.19. Let X be a quasismooth hypersurface of degree 107 in P(13,20,29,47). Then
let(X) = .

Proof. The surface X can be defined by the quasihomogeneous equation
yz3 + y?’t + 2t + 252 = 0.

The surface X is singular at the points O, Oy, O, and O;. Each of the divisors C,, Cy, C.,
and C} consists of two irreducible and reduced components. The divisor C;, (resp. Cy, C, C)
consists of Lyy (resp. Lyy, Lat, Lyt) and R, = {z = 23+y*t = 0} (resp. R, = {y = t*+2°2 = 0},
R, ={z=y>+at =0}, Ry = {t = 25 + y2? = 0}). The curve L, intersects R, (resp. R,)
only at the point O, (resp. O.). Also, the curve L,; intersects R, (resp. R;) only at the point
Oy (resp. Oy). It is easy to check
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9 1 3
“Kx Lyy=so—y ~Kx-Ly=-———, —Ky Ry=-—"—,
S T XTHE T 130 x B =157
4 6 3
Ky - ~Kx-R,=——, —Kx R =——,
x By =359 xR =T xRe= g9
74 21 3
2 2
Yy 29 - 47’ R 20 - 47’ y R 47

We see let(X) < 82 since

65 2 70 29 94 2

18 = lct <X 130 > < 1 = lct (X 2OC> 3 = lct (X 290) 9 = lct <X, 47C’t>.

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, ?gD) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of D does not contain at least one irreducible component of each of the curves Cy, Cy,
C, and C;. The curve R, (resp. Ry, R;) is singular at the point O; (resp. O, O,). Then in
each of the following pairs of inequalities, at least one of two must hold:

2 18 47 3 18

< . = — _ _ —.

multo, (D) < 47D - Ly, 59 < 60 multp, (D) < D R, =3 < o
2 18 29 2 18
lto (D) < 29D - Lyy = — < —, multo. (D) < 2D - Ry = — < —:
multo, (D) 9 W = < o5 multo, (D) 5 R, 13 < o5
1 18 6 18

2 18 20 6 18

multo, (D) < 20D - L, = ' < 65 multo, (D) < ?D Ry = 20 < T

Therefore, the point P must be a smooth point of X.
We write D = mgLyy +m1 R, + €1, where €1 is an effective Q-divisor whose support contains
none of Ly, R;. If my # 0, then m; = 0 and hence we obtain

S DRy >moLyy Ry = 200

10 - 47 47
Therefore, mg < % Similarly, we get m1 < % Since
2+ 74dmg 18
D —moLy,) Ly = ———
(D =moLay) - Lay = 55757~ < 5
6 + 21my 18
D— R, — 2T 20
( miR;) - Ry 50 . 47 < o0

it follows from Lemma [[.3.8] that the point P is a smooth point in the outside of C,. How-
ever, since HO(IP, Op(377)) contains the monomials z%y'3, 229 and z!3, this is impossible by
Lemma [[.3.0] [

Lemma 3.2.20. Let X be a quasismooth hypersurface of degree 111 in P(13,20,31,49). Then
let(X) = 8.



78 IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

Proof. The surface X can be defined by the quasihomogeneous equation
22t + y4z + zt? + x7y = 0.

It is singular at the point O, O, O and O;. Each of the divisors C, Cy, C;, and C; consists
of two irreducible and reduced components. The divisor C; (resp. C,, C., C;) consists of
Ly, (vesp. Ly, Ly, Ly) and R, = {o = y* + 2t = 0} (resp. R, = {y = 2% + at = 0},
R, ={z=1t2+2% =0}, Ry = {t = 2" +3°2 = 0}). The curve L, intersects R, (resp. R.)
only at the point O; (resp. O,). Also, the curve L,; intersects R, (resp. R;) only at the point
Oy (resp. O). It is easy to check

1 2 8

TR bee = gy TR e = g TR e =g
4 1 7
Ky -Ryj=— “Ky-R,=——, Ky -Rj=——
XT3 X 5.13 XM T 1031
67 72
2 _ 2 _ ) _ =
e 20.49’R~"f 31-49’ Loz Re 49°

We have let(X) < 92 since

(15—2 = lct <X, %Cx> < % = lct <X, %Cy> < % = lct <X, 3@) < g = lct (X, 3—21CZ> .

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[L3.6] we may assume that the
support of D does not contain at least one irreducible component of each of the curves C;, C,,
C, and C;. The curve R, is singular at the point O,. The curve R; is singular at O, with
multiplicity 3. Then in each of the following pairs of inequalities, at least one of two must hold:

2 16 4 16
2 16 20 2 16
2 16 31 7 16
multoz(D) < 31D - Lyt == 1—3 < %, multoz(D) g gD Iy = % < @

Therefore, the point P can be none of O, Oy, O..

Since HY(P, Op(403)) contains the monomials z''y!3, 3! and 23, it follows from Lemma [3.9]
that the point P is either the point O; or a smooth point of X in C,.

Write D = mgL,, +mi R, + 2, where € is an effective Q-divisor whose support contains none
of L., R;. If mg # 0, then m; = 0 and hence we obtain

8 4TTLO
31-49 Ba 2 mola: o = =5

Therefore, mg < 32—1 Similarly, we get m; < 4—10. Since we have

2+67m0 < E
20-49 65’

8+72my 16
D— Rt 27
(D =miRy) Re = === < &=

(D - mOsz) : sz =
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it follows from Lemma [[.3.8] that the point P must be the point Oy.
Suppose that my = 0. Then the inequality

1 16

10 = 65

gives us a contradiction. Therefore, my # 0 and hence the curve R, is not contained in the
support of D. Then

multp, (D) < 49D - L,, =

8 multp, (D) —mg _ 3myg 16
31 49 v 2 Mobaz - Ha 49 19 76549
and hence mg < 315%. Since
246Tm 16

the pair (X, %D) is log canonical at the point O; by Lemma [[L3.8] This is a contradiction. [J

Lemma 3.2.21. Let X be a quasismooth hypersurface of degree 226 in P(13,31,71,113). Then
let(X) = 3.
Proof. The surface X can be defined by the quasihomogeneous equation
2+ Pz 4222+ 2By =0.
It is singular at the points O, Oy and O,. The curves C, and Cy are irreducible. We have

91 2 2 155
— =let [ X, —= let { X, — =—.
20 Ct( ’ 13Cm> < Ct( ’310y> 12
91
Therefore, lct(X) < 55.

Suppose that lct(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the

support of the divisor D contains neither C, nor Cy. Then the inequalities
4 20 4 20
— <2 13D .C, = — < ==
51 o0 B Oy

show that the point P is a smooth point in the outside of C,. However, since H°(PP, Op(923))
contains ™, y?2?, 43240 and 2'3, it follows from Lemma [[.3.9] that the point P is either a

71D -C, =

singular point of X or a point on C,. This is a contradiction. O
Lemma 3.2.22. Let X be a quasismooth hypersurface of degree 99 in P(14,17,29,41). Then
let(X) = 2L

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

2y +t22 + 2y® + 2°2 = 0.
The surface X is singular at the points O, Oy, O;, O;. Each of the divisors C;, Cy, C., and C;
consists of two irreducible and reduced components. The divisor C, (resp. Cy, C., Cy) consists
of Lyt (vesp. Lys, Ly, Lyt) and Ry = {z = yt + 22 = 0} (resp. Ry, = {y = 2t + 25 = 0} ,
R,={z=ay*+t> =0}, Ry = {t =3y° + 2*2 =0} ). Also, we see that

Lyt N Ry ={0y}, Ly NRy ={0:}, Ly.N R, ={0;}, Laue N Ry = {0 }.
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We can easily check that let(X, 2C,) = 3% is less than each of the numbers lct(X, ZC,),
let(X, £C.) and let(X, ZC;). Therefore, let(X) < 2% Suppose let(X) < 21, Then, there is

’ 29 z
an effective Q-divisor D ~g —Kx such that the log pair (X, %D) is not log canonical at some
point P € X.
The intersection numbers among the divisors D, Ly, Ly., R, Ry, R., R; are as follows:
2 4 10
7297 AR TIPTE Y 29417
1 2 5}
=g PR DroRe= g0
2 5 1 5
th‘szl_?y Lyz'Ry:Hy Lyz‘Rz:?a th‘Rt:Ey
2 44 2 54 o 60
17290 TP 17417 Y 29441
53 12 135
L2 v R2 = 2 0
vz 14-41° "7* 717 7t 14-29

By Lemma [[.3.6] we may assume that the support of D does not contain at least one component
of each divisor C;, Cy, C;, C;. The inequalities

2 10 4 10
imply that P # O,. The inequalities
2 10 2 10
14D'Lyz—ﬁ<ﬁ, 7DRZ—1—7<5—1
imply that P # O,. The curve R, is singular at the point O,. The inequalities
2 10 29 5 10
29D Lyy=—<—, —D Ri=—<—
Wolo =g <gp TP =55

imply that P # O,. The curve R; is singular at the point O,.
We write D = moLyt +mi Ly, +maR, + m3Ry +myR, + msR; + €2, where ) is an effective

divisor whose support contains none of the curves L., L., R;, Ry, R., R;. Since the pair
(X, %D) is log canonical at the points O, O,, O, the numbers m; are at most %. Then by
Lemma [[L3.8] the following inequalities enable us to conclude that either the point P is in the

outside of C, UC, UC, UC} or P = Oy:

24 44my 10 24 53my 10
D — L:c 'L:cz:i\_7 D — Lz L =—— < —,
(D = moLa) 1729 Sz Pomibys) Ly === <o
A4 54my 10 10+ 60ms _ 10

(D—ngy)Ry:—2941 \ﬁv
10 — 135ms < 10

2—12my 10
D—muR,) R, =2 2 (p- Ry= My
( myR,) - R 17 £ ( msRy) - Ry 14,29 £

Suppose that P # O;. Then we consider the pencil £ on X defined by Ayt 4+ pz? = 0,
[A: p] € PL. The base locus of the pencil £ consists of the curve L, and the point O,. Let E
be the unique divisor in £ that passes through the point P. Since P ¢ C, U C, U C, U C}, the

divisor E is defined by the equation 2% = ayt, where a # 0.

D_ x) ;pzi\_7
(D —maRy) - R 17-41 S 51
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Suppose that a # —1. Then the curve E is isomorphic to the curve defined by the equations
yt = 2% and t?y + xy® + 2°2 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by t # 0 is the curve given by
z(z +22% + 2%) = 0. Therefore, the divisor E consists of two irreducible and reduced curves L,

and C. We have the intersection number
181
D . C -_— D . E - .D * Lyz -_— m.

Also, we see
C?=E-C-C-L,,>FE-C—-C,-C>0

since C' is different from R,. By Lemma [[.3.8 the inequality D-C < % gives us a contradiction.

Suppose that a = —1. Then divisor E consists of three irreducible and reduced curves L.,
R, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have

153
D-M=D-E=D-L~D-R = ——.
M*=E-M-Ly,-M—R,-M>E-M—Cy-M~—Cy-M>0.
By Lemma [[L3:8] the inequality D - M < % gives us a contradiction. Therefore, the log pair

(X, %D) is not log canonical at the point Oy.
Put D = aL,, + bR, + A, where A is an effective Q-divisor whose support contains neither
L,. nor R,. Then a > 0 since otherwise we would have a contradictory inequality
1 10

7= 41D - Ly, > multo, (D) > =k

Therefore, we may assume that R, ¢ Supp(A) by Lemma[[.3.6l Similarly, we may assume that
Ly ¢ Supp(A) if b > 0.
If b > 0, then
2 2b

— . > . =
17 - 29 D th = bRx th 177

and hence b < %. Similarly, we have

10 D RS> 5a b multp,(D)—a—b _ 4a 4

5041 w2 ggto 11 VTR RVTE

47
Therefore, 0 < 35759

Let m: X — X be the weighted blow up at the point O; with weights (9,4) and let F' be the
exceptional curve of the morphism 7w. Then F contains two singular points Qg and @4 of X
such that Qg is a singular point of type %(1, 1), and Q4 is a singular point of type i(3, 1). Then

. 28 - . 4 _ . 9 - N c

Ky ~on"(Kx)— —F, Ly, ~qn"(Ly:) — =F, Ry~qn"(Ry)— —=F, Ar~gn"(A)——

41 41 41

where Eyz, R, and A are the proper transforms of L., R, and A by m, respectively, and c is a
non-negative rational number. Note that F'N R, = {Qa} and F'N Ly, = {Qo}.

F,
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The log pull-back of the log pair (X, %D) by 7 is the log pair

_ 5la. .- 51
<X, 5aLyz+5—bRx+f—0A+91F>,

10 10
where
9, — 280 + 51(4a + 9b + ¢)
t 10- 41
This is not log canonical at some point @) € F'.
We have
- 44 54b
0<A-R, = +54b  a ¢

17-41 41  4-41°

This inequality shows 4a + ¢ < 1%(4 + 54b). Since b < 2—19, we obtain

_ 280+ 51(4a+9b+c) _ 4760 + 51(16 + 369)
B 10 - 41 = 10-17-41

Suppose that Q & R, U L,,. Then the log pair (F, %Ah:) is not log canonical at the point
@, and hence

01 < 1.

120 10
1

by Lemma [[.3.8l Thus, we see that ¢ > 11—270. However, since b < 54, we obtain

120

4

17
Therefore, the point Q must be either Q4 or Q.
Suppose that @ = Q4. The pair (R,, (%A + 01F)|p,) is not log canonical at Q. It then
follows from Lemma [[.3.8 that

51 - _ 4-51 (4 + 54b a c
1<4<1—0A+91F>’Rx——10 <17.41 —5—4.41>+91.

However,

<1

4-51 <4+54b a c > Lo — 4760 + 51(16 + 369b)

10 \17-41 41 4-41 10-17 - 41

This is a contradiction. Consequently, the point ¢ must be Q.
Let ¢: X — X be the blow up at the point ()9 and let E be the exceptional curve of the
morphism 1. The surface X is smooth along the exceptional divisor £. Then
. 7 ~ = 1 ~ . 1 ~ . x d
KX’ ~Q T;Z) (KX) - §E, Lyz ~Q ¢ (Lyz) - §E, F ~Q TzZ) (F) - §Ev A ~Q ¢ (A) - §E,
where I:yz, F and A are the proper transforms of Eyz, F and A by 1, respectively, and d is a
non-negative rational number.

The log pull-back of the log pair (X, 22 D) by m o4 is the log pair

’ 10
~ ola - 51b ~ o1 « ~
(X, 1—0Lyz + 1—0Rm + 1—0A + 01 F + 92E> ,
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where R, is the proper transform of R, by 1 and

0, — 70+ 51(a +d) + 106, 3150 + 51(45a + 9b + c + 41d)
2 90 a 90 - 41 ‘
This is not log canonical at some point O € E.

We have

A Eym:AEyz—§—2+53a b C d
<

9  14-41 41 9-41 9’
and hence 9b+ ¢+ 41d 1%(2 + 53a). Therefore, this inequality together with a < % gives
us
0, — 3150 + 51(45a 4+ 9b + c + 41d)
2 90 - 41 -
3150 + 2295a n 51(9b + ¢ + 41d)
9041 90 - 41 h
5002 + 6273a
{———— < L
10-14-41
Suppose that the point O is in the outside of f}yz and F. Then the log pair (E, %A]E) is not
log canonical at the point O and hence

1~ 1
10 10
However,
9 10 - 41

since a < 2,2417,29. This is a contradiction.

Suppose that the point O belongs to f/yz Then the log pair (F, (%ijz 5—0 )|£) is not log
canonical at the point O and hence

5la - 51 ~ 51
L.+ —A)-E=
10 Y +10 ) 10

1< ( —(a+d).

However,

51 51 9
— < — — (2 1
10(a—l—d) 10 <a—|— 14'41( +53a)> <
since a < 55799 21 55+ Lhis is a contradiction. Therefore, the point O is the intersection point of F
and F.

Let &: X — X be the blow up at the point O and let H be the exceptional divisor of &.
We also let Lyz, Rx, A E and I be the proper transforms of Lyz7 R,., A, E and F by ¢,
respectively. We have

Kg~g&(Kg)+ H, E~g&(E)—H, Frg&(F)—H, A~g&(A)—eH,

5L D) via mogog

where e is a non-negative rational number. The log pull-back of the log pair (X, 5

is

. bla - 51b ol 4 A .
(X, 1—0Lyz + WR;B + EA + 01F+ 92E+ 93H> 5
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where
9 01+ 0o+ @ 1= 1980 + 51(81a + 90b + 10c + 41d + 369¢)
PTUTE T 0T 90 - 41 :
This log pair is not log canonical at some point A € H. We have
c d A
— ———e=A-F>0.
9. 9

Therefore, 4d 4+ 36e < ¢. Then

0. — 1980 + 51(81a + 90b 4 10c¢) n 51(d + 9e) <
37 90 - 41 90 O

7920 + 51(324a + 360b + 81¢)
49041
_22451b  51-8l(ate)
41 4-90-41
22+ 51b  9-51(2+ 27b)
< +
41 5-17-41

since b < 55 and 4a + ¢ < £+ (4 + 54b).

Suppose that A ¢ FUE. Then the log pair <X
A. Applying Lemma [[.3.4] we get

N

<1

, 10A + 0sH ) is not log canonical at the point

14
10 10
However,
1 1 A454b 10
< —(4d +366) < — < —(4 < <.
¢S ggdd+360) S g S pldat o) S - < o

Therefore, the point A must be either in Forin E.
Suppose that A € F. Then the log pair (X , 5—0A +0.F + 0sH ) is not log canonical at the
point A. Applying Lemma [[.3.4], we get

51 4 . 51 [ ¢ d 7920 + 51(324a + 360b + 81c)
1< (2ZA+6:H) F= ¢ - .
<<10 s > 10< e>+93 4-90 41

9.4 9
However,
7920 + 51(324a + 360b + 81¢)
4-90-41
as seen in the previous. Therefore, the point A is the intersection point of H and E. Then the
log pair < ) 10A + 0.F + 93H) is not log canonical at the point A. From Lemma [[.34] we
obtain

<1

51 4 . 51 1980 + 51(81 90b + 10 410d
1<<—A+93H> B=2o(d—e)+ 0 = + 51 “9*0 41+ c+410d)
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However,
1980 + 51(81a + 90b + 10c + 410d) 220 +459a | 51(9b + ¢ + 41d)
90 - 41 1041 941 h
220 4+ 459a  51(2 + 53a) <1
S10-41 1441
since 9b + ¢ + 41d < 1%(2 + 53a) and a < %1?29. The obtained contradiction completes the
proof. O

3.3. SPORADIC CASES WITH [ =3

Lemma 3.3.1. Let X be a quasismooth hypersurface of degree 33 in P(5,7,11,13). Then
let(X) = 33.

Proof. The surface X can be defined by the quasihomogeneous equation
23 4+ yt? + ayt 4+ 2+ exdyz =0,

where € € C. Note that the surface X is singular at O,, O, and O;.
The curves C,, Cy are irreducible. Moreover, we have

25 3 3
E = ICt(X, ng) > ICt(X, ?Cy) =

49
36
Therefore, let(X) < 33.

Suppose that lct(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of D contains neither C, nor Cy. Since the curve Cy is singular at the point Oy, the
three inequalities

36 63 36

9

show that the point P is located in the outside of the set C, U C,,.
Let £ be the pencil on X that is cut out by the equations

Az’ + py® =0,

where [\ : ] € P1. Then the base locus of the pencil £ consists of the point O;. Let C be the
unique curve in £ that passes through the point P. Since the point P is in the outside of the set
Cp Uy, the curve C is defined by an equation of the form y® — ax’ = 0, where « is a non-zero
constant. Suppose that C' is irreducible and reduced. Then multp(C) < 3 since the curve C' is
a triple cover of the curve

v’ —az’ =0C IP’(5, 7, 13) = Proj ((C[m,y,t]).

In particular, lct(X, %C) > é—g. Thus, we may assume that the support of D does not contain

the curve C and hence we obtain

36 9 36
- < . = — —
49<multp(D)\D C 13 < 19
This is a contradiction. Thus, to conclude the proof it suffices to prove that the curve C is

irreducible and reduced.
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Let S C C* be the affine variety defined by the equations
Y —ar' =24y oyttt +ertyz=0cCt Spec(C[w,y,z,t}).

To conclude the proof, it is enough to prove that the variety S is irreducible.
Consider the projectivised surface S of S defined by the homogeneous equations

vw? — az’” = 2Bw? + yt?w? 4+ zyt + 2t + exdyz = 0 € P* = Proj ((C [m, Y, 2, T, w] )

Then we consider the affine piece S’ of S defined by y # 0. The affine surface S’ is defined by
the equations

w? — oz’ =B PP e+t +edz=0cCt Spec((C[m,z,t,w]).
This is isomorphic to the affine hypersurface defined by
(a2 + axbt? 4+ 1+ 23t + ex?2) =0 C C3 = Spec((C [a:, z, t] >

This affine hypersurface has two irreducible components. However, the component defined by
x = 0 originates from the hyperplane section of S by w = 0. Therefore, the original affine
surface S must be irreducible and reduce. O

Lemma 3.3.2. Let X be a quasismooth hypersurface of degree 40 in P(5,7,11,20). Then
let(X) = 22,
Proof. The surface X can be defined by the quasihomogeneous equation
t(t — xb) + y23 + zyd + exdy’z,
where € € C. Note that X is singular at the points O, Oy, O, and Q5 =[1:0:0: 1].
The curve C, is irreducible. We have
3 25
let(X,=Cy) = —.
ct(X,50) = 33

Therefore, lct(X) < %. Meanwhile, the curve C, is reducible. It consists of two irreducible
components L, and R, = {y =1t — zt = 0}. The curve L, intersects R, only at the point O.,.
It is easy to see

13 4
72 2 I
Suppose that lct(X) < —%2. ['hen there is an effective Q-divisor D ~g —Kx such that the

pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of D does not contain the curve C,. Moreover, we may assume that the support of D

does not contain either L,; or R, since

3 35 25
let(X, = =— > —.
X700 = 91> 15
Then one of the inequalities
3 18 3 18
multoz(D) <11D- Lyt = g < %, multOZ(D) <11D- Ry = g < %
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must hold, and hence the point P cannot be the point O,. Also, since 7D - C,
point P cannot belong to the curve C'.

We write D = aL,; + bR, + €, where €2 is an effective Q-divisor whose support contains
neither Ly nor R,. If a # 0, then we have

3 4
2 —D-Ry>aly Ry = —

6 18
11 < 959 the

55 11°
Therefore, a < 23—0. By the same way, we also obtain b < %.
Since we have
34+13a 18 34+13a 18
5(D —aLy) - Ly = <—, 3(D—-bR,)) Ry =—— < —
(D= aly) Lyt = = 25 O w) By == 2

Lemmal[[.3.8limplies that the point P is in the outside of C,,. Consequently, the point P is located
in the outside of C,,UC,,. However, since H(P, Op(40)) contains monomials 28, zy®, 2%t and the
natural projection X --» IP(5,7,20) is a finite morphism outside of the curve C,, Lemma [3.9]

shows that the point P must belong to the set C, U C,. This is a contradiction. O
Lemma 3.3.3. Let X be a quasismooth hypersurface of degree 95 in P(11,21,29,37). Then
let(X) = L.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation
t2y +t22 + :17y4 + 2%z =0.

The surface X is singular at the points O, Oy, O., O;. Each of the divisors C;, Cy, C., and C;
consists of two irreducible and reduced components. The divisor C, (resp. Cy, C., Cy) consists
of Ly (resp. Ly, Ly., Ly) and R, = {x = yt + 22 = 0} (resp. R, ={y =2t + 28 = 0},
R,={z=a2y+1t> =0}, Ry = {t = y* + 2°2 = 0}). Also, we see that

Lyt MRy ={0y}, Ly "Ry ={0:}, Ly.N R, ={0,}, Laut N Ry = {0, }.

It is easy to check that lct(X,2>C,) = 2 is less than each of the numbers lct(X, 2C,),
let(X, £C.) and let(X, £ Cy). Therefore, let(X) < L.

Suppose that lct(X) < %. Then, there is an effective Q-divisor D ~g —Kx such that the log
pair (X, %D) is not log canonical at some point P € X.

The intersection numbers among the divisors D, Ly, Ly., R, Ry, R., R; are as follows:

1 2 18
D Ly=—— D-Ry=——, D-R,=—,
ST 7.37 v 929.37
2 12
D L,=—— D R,=—, D-R = ,
v* T 11.37 R 711 Ry 11-29
2 6 2 4
Lyt Ry = 57, Ly =5y Ly: Re=—, La- = 50’
oo B = o7 Lyz By 377 Y R =1 e By 29
N , 52 , 48
#91.9297 TT T 91.377 TY T 99.37
) 45 ) 16 , 104

- R R? = .
yz 11-377 "% 11-210 "% 11-29
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By Lemma [I.3.6l we may assume that the support of D does not contain at least one component
of each divisor C, Cy, C;, C;. The inequalities

3 4 6
21D'th—ﬁ<ﬁ, 21DRI_§<ﬁ
imply that P # O,. The inequalities
3 4 2 4
11D-Lyz_§<ﬁ, 11D'Rz—?<ﬁ
imply that P # O,. The inequalities
1 4 29 3 4

imply that P # O,. The curve R; is singular at the point O, with multiplicity 4.

We write D = moLyt +mi Ly, +maR, + m3Ry +myR, + msR; + €2, where € is an effective
divisor whose support contains none of the curves L., L., R;, Ry, R., R;. Since the pair
(X, 1%D) is log canonical at the points O, O,, O, the numbers m; are at most %. Then by
Lemma [[.3.8] the following inequalities enable us to conclude that either the point P is in the
outside of C, UC, UC, UC} or P = Oy:

3+47m0 4 3+45m1 4
D —moLay) - Lot = 20 « 2 (D L,.) - Ly, = S0 o 2
(D =molar) - Lot = =595~ S qpp (Pmmilee) - Loe = =g s 4
6+52my _ 4 18+ 48my _ 4
D—maRy)- Ry = 2222 « 2 (D uR,) - R, = 8 o 2
(D=malte) o =55 S g (Pomsl) Ry = =g S 4
6—16my _ 4 12— 104ms _ 4
- R, =T = - Ry=— T
(D m4Rz) Rz 1121 X 117 (D mSRt) Rt 11-29 B 11

Suppose that P # O;. Then we consider the pencil £ defined by Ayt 4+ puz? =0, [\ : u] € PL.
The base locus of the pencil £ consists of the curve L,, and the point O,. Let E be the unique
divisor in £ that passes through the point P. Since P ¢ C, U Cy U C, U (Cy, the divisor E is
defined by the equation 22 = ayt, where o # 0.

Suppose that a # —1. Then the curve E is isomorphic to the curve defined by the equations
yt = 22 and t?y 4+ zy* 4+ 252 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by ¢ # 0 is the curve given by
z(z+ 22" +2°%) = 0. Therefore, the divisor E consists of two irreducible and reduced curves Ly,
and C'. We have the intersection number

169
D-C=D-E-D-L,, = T11.37

Also, we see
C?=FE-C-C-Ly,>E-C—-0C,-C>0
since C is different from R,. The multiplicity of D along the curve C is at most % since the

intersection number C'- Cy is positive and the pair (X, 1741D) is log canonical along the curve Ct.
Then by Lemma [[.3.8] the inequality D - C' < % gives us a contradiction.



EXCEPTIONAL DEL PEZZO HYPERSURFACES 89

Suppose that & = —1. Then divisor E consists of three irreducible and reduced curves L.,
R,, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have

147
D-M=D-E—-D-L,,—D -Ry = ———,
Y R 7-11-37

M*=E-M—-Ly, M-~R, M>E-M~-Cy-M—C,-M>0.

The multiplicity of D along the curve M is at most % since the intersection number M - C}
is positive and the pair (X, 1%D) is log canonical along the curve C;. By Lemma [[.3.8] the
inequality D - M < 1;41 gives us a contradiction. Therefore, P = Oy.

Put D = aL,, + bR, + A, where A is an effective Q-divisor whose support contains neither
L. nor R,;. Then a > 0 since otherwise we would obtain an absurd inequality

3 4
— = . > —
11 37D - Ly, > multp, (D) > 11

Therefore, we may assume that R, ¢ Supp(A) by Lemma [[.3.6
If b > 0, the curve L,; is not contained in the support of D, and hence

S D LR L=

21-29 21°
Therefore, b < %. Similarly, we have
18 6a b multp,(D)—a—b _ ba 4
——— =D R, > —+ — : > =+ —
29 - 37 4 Z37+37+ 37 37+11-37

and hence a < %.

Let m: X — X be the weighted blow up of the point O; with weights (13,4) and let F be
the exceptional curve of the morphism 7. Then F' contains two singular points Q13 and Q4 of
X such that Qi3 is a singular point of type %(1, 2) and Q4 is a singular point of type %(3, 1).
Then

. 20 . - N 4 _ . 13 . < . c
KX ~Q T (KX) — §F7 Lyz ~Q T (Lyz) — ﬁ , Rx ~Q T (R:C) — ﬁFj A ~Q T (A) — ﬁFj
where Eyz, R, and A are the proper transforms of L., R, and A by 7, respectively, and c is a
non-negative rational number.
The log pull-back of the log pair (X, %D) by 7 is the log pair

- 1lla - 116 — 11 -
<X, TLyz + TRx + ZA + 91F> ,
where
9 11(4a + 13b + ¢) + 80
1= .

4-37
This pair is not log canonical at some point ) € F. We have

S 6 + 52b a c
<A-R, = e <
0 R 21-37 37 4-37
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This inequality shows 4a + ¢ < %(6 + 52b). Then

11(4a+c¢) 1430 20 < 11 143b 20 1944 + 5291b

0, = = M) + —2 4 =
! 437 137 T37 Sargr 0o+ +

4-37 37 4-21-37

since b < 2. Note that F N R, = {Q4} and F N Ly, = {Q13}.
Suppose that the point ) is neither Q4 nor ()13. Then the pair (X' %A ) is not log
canonical at the point Q). Then
11c 11 -
=—A-F>1
16-13 4 ~
3

by Lemma [[L34l However, ¢ < 4a + ¢ < 21‘1(6 + 52b). This is a contradiction since b < zg.
Therefore, the point () is either Q4 or (3. - B B

Suppose that the point @ is the point Q4. Then the log pair (X, %Rx %A + 91F) is not
log canonical at the point Q. It then follows from Lemma [[.3.4] that

1<4<%A+91F>.Rx:11<6+52b—i— ¢ >+91.

21-37 37 4-37

However,

6+52b a c 1944 + 5291b

21-37 37 4.37 YT g1 37
Therefore, the point () must be the point Q13.

Let ¢: X — X be the weighted blow up at the point Q13 with weights (1,2). Let G be the
exceptional divisor of the morphlsm ¢. Then G contains one singular point Q2 of the surface X
that is a singular point of type ( 1). Let Lyz, R,, A and F be the proper transforms of Ly,,
R., A and F by ¢, respectlvely. We have

. 10, - . 2 = 1« ax  d

KX ~Q (b (KX) - 1_3G7 Lyz ~Q (25 (Lyz) - EGa FNQ (b (F) - EGa A ~Q (25 (A) - 1_3G7
where d is a non-negative rational number. The log pull-back of the log pair (X, 1ID) via To ¢
is

~ 1la - 116 -~ 11 - -
(X, Ry Rt TATOF 4 62G> ,

4
where
11 61 10 1560 + 11(78a + 13b+ c + 37d)
= (2 2
b= rglatdt gty 4-13-37
This log pair is not log canonical at some point O € G. We have
= 3+45 b d
0<A-L, = tha V¢ 2

11-37 37 13-37 13
We then obtain 13b + ¢+ 37d < —?(3 + 45a). Since a < %, we see

1560 + 11(78a + 13b + ¢ + 37d) < 1560 + 858a 3 + 45a

< 1.
11337 11337 4.3 ©

0, =
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Note that FNG = Q4 and Qy ¢ ﬂyz. Suppose that O ¢ Fu]’iyz. The log pair (X %A G)
is not log canonical at the point O. Applying Lemma [1.3.4] we get

11d
1 —A G=
< 4.2
and hence d > &. However, d < ﬁ(l?)b +c+37d) < o 37 (3 + 45a). This is a contradiction

since a < & 181229 Therefore, the point O is either the point ()5 or the intersection point of G

and Lyz. In the latter case, the pair (X , HTaEyZ + %A + 92G> is not log canonical at the point
O. Then, applying Lemma [[.34] we get

11 ~ ~ 11 (3 + 45a b c d
1<(ZA+92G>-Lyzzz<ﬁ—§—m—ﬁ>+92-
However,
E<3+45G_E_L_i> 02:E<3+45a> 15604—858a<1
4 \(11-37 37 13-37 13 4 \ 11-37 4.-13-37

since a < 5 11 55+ Lherefore, the point O must be the point Q.

Let &: X — X be the blow up at the point ()2 and let H be the exceptional divisor of .
We also let Lyz, Rx, A, G, and F' be the proper transforms of Lyz, Ry, A, G and F by ¢,
respectively. Then X is smooth along the exceptional divisor H. We have

£ - * 1 ~ %/ T 1 A %/ X e
Ky ~ € (Kx), G~ (G) —5H, Fr&'(F)—5H, A~q &' (A) -5 H,
where e is a non-negative rational number. The log pull-back of the log pair (X, 1741D) via mogof
is

5 1la - 11b » 11 A A

where
01+ 0 . & 2600 + 11(130a + 182b + 14c + 37d + 481e)

O~ — _
’ 2 8 8-13-37
This log pair is not log canonical at some point A € H. We have

c d e

Therefore, 2d 4+ 26e < ¢. Then
2600 + 11(130a + 182b + 14¢) ~ 11(d + 13e) .

bs = 81337 tg3 S
_ 5200+ 11(260a + 364b + 65¢)
= 16 - 13- 37
5200 +4004b  11-65(4a + ¢) -
16-13-37 16-13-37
100 +77b  5-11(6 4+ 52b) 2430 + 4477b
STa37r T T 12137 12137

since b < 2 and 4a + ¢ < 5 (6 + 52b).
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Suppose that A € FUG. Then the log pair (X ) %A +60sH ) is not log canonical at the point
A. Applying Lemma [[.3.4] we get

11 .
1<_A.H:&‘
1
However,
1 e 1 A4(6 4+ 520) _ 4
< (204 266) € = < —(da+ o) < o2 2
¢S 5g2d+26e) S g S ggldat o) S Yo S

Therefore, the point A must be either in F or in G.
Suppose that A € F. Then the log pair <X, %A +6,F + 93H) is not log canonical at the
point A. Applying Lemma [[.3.4], we get

1<<1741A+93H>-F:E< c d e>+03:5200+11(260a+364b+65c)'

4 \4-13 2-13 2 16-13 - 37
However,
5200 4 11(260a + 364b + 65¢) _ 400 +11-28b 11 -5(4a + ¢) < 2430 + 4477 <1
16 -13 - 37 16 - 37 16 - 37 4-21-37

Therefore, the point A is the intersection point of H and G. Then the log pair
<X , %A + 0,G + 03 H > is not log canonical at the point A. From Lemma [I.3.4], we obtain

11 ., ~ 11 /d e 2600 + 11(130a + 182b + 14c 77d
1<<ZA+93H>'G:Z<§_§> b3 = (8-13-37 )+4.13'

However,

2600 + 11(130a + 182b + 14c¢) N 77d _ 100 + 55a n 77(13b + ¢+ 37d) < 121 4 370a

8-13-37 4-13 437 4-13-37 S 4-37

since a < % and 13b + ¢ + 37d < %(3 + 45a). The obtained contradiction completes the
proof. O
Lemma 1;)5;3.4. Let X be a quasismooth hypersurface of degree 196 in P(11,37,53,98). Then
let(X) = 75.

Proof. The surface X can be defined by the quasihomogeneous equation
2 + yz3 + :L"y5 + 2Bz =0.
It is singular at the points O, Oy and O.. The curves C, and Cy are irreducible. We have

95 3 3 37-5
1_8 = lct <X, ﬁCx> < lct <X, ﬁCy) = T,

5
and hence let(X) < 2.

Suppose that let(X) < ?—g. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, ‘;’—gD) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D contains neither C, nor Cy. Then the inequalities

18 6 18

6
D Cp=— 11D-Cy= — < —
53D - C, < Cy=53 <=

37 55
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show that the point P is a smooth point in the outside of C,. However, since H°(P, Op(583))
contains the monomials 23, y™z'% and 2!, it follows from Lemma [[.3.9] that the point P is
either a singular point of X or a point on C,. This is a contradiction. ([l

Lemma 3.3.5. Let X be a quasismooth hypersurface of degree 95 in P(13,17,27,41). Then
let(X) = 8.

Proof. The surface X can be defined by the quasihomogeneous equation

22t + y4z + zt? + xGy =0.

The surface X is singular at the point O, Oy, O, and O;. Each of the divisors C,, Cy, C.,
and C} consists of two irreducible and reduced components. The divisor Cy, (resp. Cy, C, C)
consists of Ly, (vesp. Lyt, Ly, Ly) and Ry = {x = y* + 2t = 0} (resp. R, = {y = 2>+t = 0},
R, ={z=1t+2°y =0}, Ry = {t = 2° + y?2 = 0}). The curve L,, intersects R, (resp. R,)
only at the point O; (resp. O,). Also, the curve L,; intersects R, (resp. R;) only at the point

Oy (resp. Oy).
It is easy to check

3 1 4
Ky Lyy=—— —Ky-Ljy=—— —Ky -R,=——
X Loe = o ~Bx Ly = grge —Bxc e =g
6 6 2
-Ky-Ry=——, - Kx - R.=——, - Ky-R=——
e T L L I | A A S T
s 55 o 37 o 56 o 48 R — 28
TETT41 VYT 1327 T 274410 Y 13417 TF T 1317
16 4 2 2 2
R=—— Ly, -Re=—, Ly Ry=-=, Ly, R, ==, Lyt Ry = ~.
t 3. 177 xz x 417 yt Yy 137 Tz z 177 yt t 9

We have let(X) < 8 since

% = lct <X, %Cx> < % = lct <X, %Cy> < % = lct <X, 4—310t> < % = lct <X, %Cz> .

Suppose that lct(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of D does not contain at least one irreducible component of each of the curves C, C,,
C, and C;. The curve R, is singular at the point O,. The curve C; is singular at O, with
multiplicity 3. Then in each of the following pairs of inequalities, at least one of two must hold:

1 2 6 24

lto,(D) < 13D - Ly = = < —, multo, (D) < 13D - Ry = — < =
multo, (D) S 13D Lyt = 5 < g, multo, (D) 13D By = 33 < &
3 24 17 3 2

1 D)L17TD - L, = — < —, 1 D)< =D -R,=— <=,
multo, (D) < 17 1 <5 Mo, (P)s 5 D-R=m <&
3 24 27 6 24

lto.(D) < 27D - Ly = — < —= multo,(D) < 2D - Ry = — < =
multo_ (D) 7 "= 13 < o5 multo_ (D) 3 R, T, < s

Therefore, the point P can be none of O, Oy, O;.



94 IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

Put D = moLy, + miLy + maR,; + m3Ry + myR, + msRy + Q, where (2 is an effective Q-

divisor whose support contains none of L., Ly, Ry, Ry, R, R;. Since the pair (X, %D) is log
canonical at the points O, Oy, O, we have m; < % for each i. Since
3+ 55myg 24 34+ 3Tmq 24
D—mgLy,) Lyy=———<—, (D—miLy) Lyp=———< —,
(D =moluz) - Les = == S g (P mmilo) Ly = =557 S G
12+ 56mo 24 6+ 48mg 24
D — . =— < —, (D- Ry= —-"" < —,
(D =mafe) - R = == S g (D mmalty) - By = =570 < 55
6—28my 24 2—16ms 24
D—-—myR,) R,=———<—, (D-msRy) Ry =—-—< —
(D =mate) - Re = 3737 S o (D=msB) - Be = —557= S

Lemma [[.3.8] implies that the point P cannot be a smooth point of X on C, UCy U C, U C;.
Therefore, the point P is either a point in the outside of C, U Cy U C, U Cy or the point O.

Suppose that the point P is not the point O;. We consider the pencil £ on X defined by the
equations Azt + pz? =0, [X: u] € PL. Then there is a unique curve Z, in the pencil £ passing
through the point P. Since the point P is located in the outside of C, U C, U C}, the curve Z,
is defined by an equation of the form

ot + az? =0,

where « is a non-zero constant. Note that any component of C; is not contained in Z,. The
open subset Z, \ C; is a Z4;-quotient of the affine curve

rta=2"+ylz+a+2by=0cCdx Spec(C[m,y,z])
that is isomorphic to the plane affine curve defined by the equation
2yt + (1 —a)z +al2My) =0c C? = Spec((C [y,z]).

Therefore, if a # 1, then the curve Z, consists of two irreducible components L,, and C,. On
the other hand, if & = 1, then the curve Z, consists of three irreducible components L., R,,
and C;. Since P ¢ C, U Cy U C, U Cy, the point P must be contained in C, (including a = 1).
Also, the curve C, is smooth at the point P. By Lemma [[.3.60] we may assume that Supp(D)
does not contain at least one irreducible component of the curve Z,.

Write D = mCy +TI', where I is an effective Q-divisor whose support contains C,. Suppose
that m # 0. If a # 1, then we obtain

3 109m
:DL:(:Z> a’L:cz:—
17-41 mé, 17 - 41
and hence m < %. If @ =1, then one of the inequalities
3 92m 6 11m
—— =D -L,, > L, = , —D- > . _ -
17 - 41 mc 17-41 13-41 Ry 2mCy - Ry =

must hold, and hence m < Tﬁm' We also see that

B D'(Za—sz)Zmlfa?él,
D-Ca= 33
D(Za—sz—Ry):ﬂlfazl

Also, if @ # 1, then
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41
C’g:Za-Ca—Lm-C’a>Za-C’a—(LerRw)-C’a:ED-C’Q.
Ifa=1,

C? =7y Cr— Ly +R,)-C1>Zy - Cr— (Lyz + Ry + Ly + R,) - C1 =8D - C.

In both cases, we have C2 > 0. Since

24
(D—mC,)-Cy <D -Cy < o
Lemma [[.3.8] gives us a contradiction. Therefore, the point P must be the point O;.

If L., is not contained in the support of D, then the inequality
24

3

17 = 65

is a contradiction. Therefore, the irreducible component L, . must be contained in the support
of D, and hence the curve R, is not contained in the support of D. Put D = alL,, + bR, + A,
where A is an effective Q-divisor whose support contains neither L,, nor R,. Then

multp, (D) < 41D - L,, =

4 multo, (D) —a _ 3a 24
— —-D-R,>al,. R, + — "7/ 7
941 # 2 Oz fa A1 TR
and hence a < %. If b # 0, then Ly; is not contained in the support of D. Therefore,
1 2b

m:D'Lyt >bRy‘Lyt:1—3,
and hence b < %.

Let m: X — X be the weighted blow up at the point Oy with weights (1,4) and let F' be the
exceptional curve of the morphism 7. Then F contains one singular point Q4 of X such that
Q4 is a singular point of type %(3, 1). Then
KX NQ T(-*(KX) - §F7 LSL‘Z NQ W*(L:cz) - %F, Ry NQ W*(Ry) — i 4_61
where L., Ry and A are the proper transforms of L., R, and A by 7, respectively, and c is a
non-negative rational number. Note that ' N R, = {Q4}.

The log pull-back of the log pair (X, D) by  is the log pair

F, An~g7*(A)— —F,

)24
— 65a - 65b - 65 -
<X, ﬂsz + gRy + ﬂA + 91F> ,
where
0, — 864 + 65(4a + b+ ¢)
= 24 - 41

This is not log canonical at some point () € F. We have
3+55a b c
17-41 41 417
This inequality shows b + ¢ < %7(3 + 55a). Since a < %,
6, — 864 + 260a  65(b+ ¢) . 864 + 260a n 65(3 + 55a) _ 121 + 65a
24 - 41 24-41 ©  24-41 17-24-41 8-17

we obtain

<1
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Suppose that the point () is neither ()4 nor the mtersectlon point of F and L,,. Then, the
point @ is not in L,, U R,. Therefore, the pair (X SA+F ) is not log canonical at the point
@, and hence

)24

65 - 65¢

1< 24A F_4.24.

But c < b+c¢< 17(3 + 55a) < % since a < %. Therefore, the point Q is either Q4 or the
intersection point of F' and L.

Suppose that the point Q is the intersection point of F and L,,. Then the point Q is in L,

but not in R Therefore, the pair (X Ly, + SZA + 60, F ) is not log canonical at the point Q).

Then
65 65 (3+55a b+c 121 + 65a
1<< A+91F> __<17 41_41>+91_ 8-17

However, this is impossible since a < 585 Therefore, the point () must be the point Q4.

Let ¢: X — X be the weighted blow up at the point Q4 with weights (3,1) and let E be the
exceptional curve of the morphism 1/1 The exceptional curve E contains one singular point Os
of X. This singular point is of type ( 2). Then

1 ~ - d

~E, A~gy*(A)—-F

1 E Q¥ (A) - 1B,
where Ry, F and A are the proper transforms of Ry, F and A by 1, respectively, and d is a
non-negative rational number.

The log pull-back of the log pair (X

. _ 3 .
Kx ~o¢"(Kx), Ry~qu'(Ry) — 1B, Fro¢'(F) -

, giD) by 7 o1 is the log pair

~ . b
(X, o Fs + s By + 65A+91F+92E>

24 2
where ( )
65(3b + d 1
92—74'24 +191.

This is not log canonical at some point O € E.

\We have d 6+48 4 d

- - — + a—+c
OB By=A-By—g=onm ~ T 1

and hence 4a + ¢+ 41d < %( + 48b). Therefore, this inequality together with b < 18 gives us

65(3b+d) , 864+65(4a+b+c) _

b= =2 1.24-41
864 + 8060b + 65(4a + ¢ + 41d) o
B 4-24-41 =
6 + 55b
< 1.
24 <
Suppose that the point O is in the outside of R, and F. Then the log pair (E, 24A|E) is not
log canonical at the point O, and hence



EXCEPTIONAL DEL PEZZO HYPERSURFACES 97

However,

41 -72
(6+ 48b) < 2L-T2

41d < 4 41d <
a—+c+ 65

&~

since b < %. This is a contradiction.
Suppose that the point O belongs to Ry Then the log pair (E, (%—Efﬁy + %A) ‘E) is not log
canonical at the point O, and hence

65b ~ 65 65 d
1<<24R+ A> 24<b+3>

65 d 65 4
-~ i R g -
> <b+3> <P <b+3'13'41 (6+48b)> <1

since b < %. This is a contradiction. Therefore, the point O is the point O3 which is the

However,

intersection point of E and F.

Let £: X — X be the weighted blow up at the point O with weights (1,2) and let H be the
exceptional divisor of £. The exceptional divisor H contains a singular point of X. This singular
point is of type %(1, 1). We have

1 - . = 2 A . x e
Ky ~g €(Kg), Bng €(B) = 5H, F g€ (F) - SH, Ang '(8) - SH,

where E , F , A, be the proper transforms of E, F, A by 5 , respectively, and e is a non-negative

rational number. The log pull-back of the log pair (X, 24D) via mo o€ is

.65 65b -
(X’2—4aL +24R + A+91F+92E+93H>

where L, and Ry are the proper transforms of L,, and R by &, respectively, and

1 65¢
2 _
05 3( 91+62)+3 51

This log pair is not log canonical at some point A € H. We have

QgA.F:A.F_i_f:E_i_E,
12 3 4 12 3

and hence d + 4e < 3c. Then

1 65e 3 65(3b + d 65e
05 3(291+02)+ﬁ221 1+ 3(4 )+3 24<
2592+65(12a+44b—|—3c)+65(d—|—4e)<
3-32-41 3-4.-24
<2592+65(12a+44b—|—3c) 65¢c
= 3-32-41 4.24
_2592+65(12a+44b+44c)<
3-32-41 h

216 + 650 65-11(3 + 55a) _ 321 + 1040a

< _ 1
8 41 3.8.17 41 3.8-17
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since b+ ¢ < £(3 4+ 55a) and a < .

Suppose that A ¢ FUE. Then the log pair < ¢ 24A + 03H) is not log canonical at the point
A. Applying Lemma [[.3.4], we get

65 , 65¢
1<ﬂA'H_E
However,
1 3¢ 3 3(3+5ba) 48
< - de) < — < — ———— < —.
e 4(aH— e) 1 4(b—|—c) 117 <65

Therefore, the point A must be either in F or in E.
Suppose that A € F. Then the log pair < , 24A +6,F + 03H) is not log canonical at the
point A. Applying Lemma [[.3.4], we get
P 65 <4 d e) L, — 2592+65(12a+44b—|—44c).

65 4
1<<ﬂA+93H>' T 2u\4 12 3 3.32-41

However,

2592 + 65(12a + 44b + 44c) o 321 + 1040a
3-32-41 S 3.8-17
Therefore, the point A is the intersection point of H and E. Then the log pair
<X , gZA + 0.F + 03 H ) is not log canonical at the point A. From Lemma [[.3.4], we obtain

1<2<65A—|—93H> o 65<2d e>+0:2592+65(12a+44b+3c) 65d

<1

24\3 3 33241 32
However,
2592 4 65(12a + 44b + 3¢) n 65d _ 648 + 715b n 65(4a + ¢ + 41d) - 12186 + 21515b
3-32-4 32 3-8-41 32-41 S 17-24-41
since b < is and 4a+c+41d 3 1 (6-+48b). The obtained contradiction completes the proof. [

<1

Lemma 3.3.6. Let X be a quasismooth hypersurface of degree 196 in P(13,27,61,98). Then
let(X) = 3.

Proof. The surface X can be defined by the quasihomogeneous equation

2+ 902 + 222 + 23y = 0.
The surface X is singular at the points O, O, and O,. The curves C, and Cy are irreducible.
Therefore, let(X) < 2

We have o1 3 5
— =1 X, —-C, | X, .
30 ct( ,13C’><ct< 270) >

X 30°

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the

pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D contains neither the curve C, nor the curve C,. Then the inequalities

2 30 6 30
61D -C,=- < — 13D-C, = — <« ==
*=9 o1 v =51 S o1
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show that the point P is a smooth point in the outside of C,,. However, H°(P, Op(793)) contains
201 42627 y13234 and 213, it follows from Lemma [[.3.9] that the point P must be a singular
point of X or a point on C,. This is a contradiction. O

Lemma 3.3.7. Let X be a quasismooth hypersurface of degree 148 in P(15,19,43,74). Then

let(X) = 2L

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y23 + a:y7 +272=0.
The surface X is singular at the points O, O, and O,. The curves C,, Cy, and C, are irreducible.
We can see that

3 o7 3 25 3 129

Therefore, let(X) < 2L

Suppose that let(X) < ?—Z. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[L3.6] we may assume that the
support of the divisor D contains none of C,, Cy, C,. Note that the curve Cj is singular at the

point O,. The inequalities

6 14 43 1 14 2 14
19D'Cx_4—3<§, ED'Cy_g<§, D-CZ_%<§
show that the point P is located in the outside of C,, U C, U C,.

Now we consider the pencil £ on X defined by the equations \z% + pzy® = 0, [\ : u] € P
Then there is a unique member C in £ passing through the point P. Since the point P is located
in the outside of C;, UC, UC., the curve C is cut out by the equation of the form 2y +az® =0,
where « is a non-zero constant. Since the curve C is a double cover of the curve defined by the
equation 2% +az® = 0 in P(15,19,43), we have multp(C) < 2. Therefore, we may assume that
the support of D does not contain at least one irreducible component. If o # 1, then the curve
C is irreducible, and hence the inequality

6 14
multp(D) <D-C= 519 < 57
is a contradiction. If @ = 1, then the curve C consists of two distinct irreducible and reduced
curve C1 and Cy. We have

3 9 5 11
50 T Ty
Put D = a1C1 4+ a2Cs + A, where A is an effective Q-divisor whose support contains neither Cy
nor Cy. Since the pair (X, %D) is log canonical at O, both a1 and ao are at most %. Then a
contradiction follows from Lemma [I.3.8] since

D-Ci=D-Cyp=

3 - &
5.-19 57
for each 1. O

(D—aZCZ)CZSDCZ:
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3.4. SPORADIC CASES WITH [ =4

Lemma 3.4.1. Let X be a quasismooth hypersurface of degree 24 in P(5,6,8,9). Then lct(X) =
1.

Proof. The surface X can be defined by the quasihomogeneous equation
2+ yt? —yt + ex?yz + 23t =0,

where ¢ € C. The surface X is singular at the points O, O, Q2 = [0 : 1 : 1 : 0] and
Q3=1[0:1:0:1].
The curves C,, Cy, C, and C; are all irreducible. We have

4 4 ) 4

and lct (X, %C’t) > 1. Therefore, lct(X) < 1.

Suppose that let(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the pair
(X, D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the support
of the divisor D contains none of the curves C;, Cy, C, and Cj. Also, the curve Cy is singular at
the point O, with multiplicity 3 and the curve C, is singular at the point O,. Then the following
intersection numbers show that the point P is located in the outside of the set C, UC, UC, UC}:

2 9 4 16 5
3D-C,=~<1, 2D-C,=-<1. D-C.=— <1, =D-C, = 1.
r=3<b 3 vy =5 S T t

Now we consider the pencil £ on X defined by the equations Azt + pyz = 0, where [\ :

p] € P There is a unique member Z in the pencil £ passing through the point P. Since
P& C,UC,UC,UCy, the divisor Z is defined by an equation of the form

Tt = ayz,

where « is non-zero constant. Note that the curve C, is not contained in the support of Z. The
open subset Z \ C, of the curve Z is a Zs-quotient of the affine curve

t—ayz=2"+yt* +yt teyz +t=0cC C* = Spec(@[y,z,t]),
that is isomorphic to the plane affine quintic curve Z’ given by the equation
B a4yt (e+a)yz=0c C?x Spec(@ [y, z])

This affine plane curve Z’ is irreducible and hence the curve Z is also irreducible. The multiplicity
of Z at the point P is at most 3 since the quintic Z’ is singular at the origin. This implies that
the log pair (X, %Z ) is log canonical at the point P. Thus, we may assume that Supp(D) does
not contain the curve Z by Lemma Then we obtain a contradictory inequality

i—i :D-Z>multp(D) > 1.

O

Lemma 3.4.2. Let X be a quasismooth hypersurface of degree 30 in P(5,6,8,15). Then
let(X) = 1.
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Proof. The surface X can be defined by the quasihomogeneous equation
t(t —23) —y° +y23 + ex®y?z = 0.
The surface X is singular at the points O,, O,, Q5 =[1:0:0:1], Q3 =[0:1:0: 1] and
Q2=[0:1:1:0].
The curve C, is irreducible. However, the curve Cy consists of two irreducible curves L,; and
L= {y=t—a3=0}. It is easy to check

4 4 )
1=1ct (X, = let | X,=C, ) = -.
ct<,60y><ct<,50> 1

Therefore, lct(X) < 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ~g —Kx such that the pair
(X, D) is not log canonical at some point P. By Lemma [[.3.0] we may assume that the support
of the divisor D does not contain the curve C,. Similarly, we may assume that the support of
D does not contain either L,; or L.

We have the following intersection numbers for L,; and L:

9 3
2 L, L=2
40" Y 8

Since H°(P, Op(30)) contains the monomials y°, yz3 and t2, it follows from Lemma [[3.9] that
the point P is either a singular point of X or a point on Cy. However, since 3D - C, = % <1,
the point P must belong to the curve C.

Since the support of D does not contain either L,; or L, one of the inequalities

4 4
multo, (D) < 8D - Ly = = < 1, multp, (D) < 8D L= s < 1

L, =L"=—

must hold, and hence the point P cannot be the point O,.
We put D = kL+mLy+ A, where A is an effective Q-divisor whose support contains neither
L nor Ly. If k # 0, then m = 0 and
1 3k
1—0:DLyt>kLLyt:§
Therefor, k < 1%. By the same way, we can also obtain m < 1%. Then, by Lemma [[.3.8] the
inequalities

<1

5(D—I<:L)-L:4—;9k 44 9m

<1, 5(D — mLyt) . Lyt =
show that the point P cannot belong to the curve C,. This is a contradiction. g

Lemma 3.4.3. Let X be a quasismooth hypersurface of degree 45 in P(9,11,12,17). Then
let(X) = ZL.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation
Py +ydz+azd+2°=0.
It is singular at the points Oy, O, Oy, and the point Q3 = [1: 0 : —1 : 0]. The curve C, consists

of two irreducible and reduced curves L, and R, = {z = t* + y?2 = 0}. The curve C, consists
of two irreducible and reduced curves Ly, and R, = {y = 2> + 2* = 0}. The curves C, and C;
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are irreducible and reduced. It is easy to check that let(X, 110 ) = 6—8 is less than each of the
numbers let(X, 3C;), lct(X, 120 ) and let(X, +C}).

Suppose that lct(X) < 60 Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, ggD) is not log canonical at some point P. By Lemma we may assume that the
support of D contains neither C, nor C;. Similarly, we may assume that the support of D does
not contain either L, or R,. Also, we may assume that the support of D does not contain
either L., or R,. Then in each of the following pairs of inequalities, at least one of two must

hold: 60 8 60
— 1 D)<12D - R, = — < —;
=y to. (D) R 1< -

4

7

1 4
o, (D) < 17D Ly = 5 < 50, multo, (D) < 5Dy =3 < 20,

Therefore, the point P can be neither O, nor O;. The curve C’ is smgular at the point O,.
Then the inequalities

multp_ (D) < 12D - Ly, =

11 10 60 5 60
z = 75 ) D - = 17 =
gD CGEg < W G=<7
imply that the point P cannot belong to C, U C}.

We can see that

1 2 4 1
L., -D=—— R, -D=—, R,-D=——, L., -R,=~
v 17-37 ¢ 337 Y 3.17 T T g
3 25 1 2
Ly Ry=—, L} =— RZ= ——, R:=_"_.
R T A 12.177 °* 337 Y 3.17

If we write D = nLg, + A, where A is an effective Q-divisor whose support does not contain
the curve L,,, then we can see that n < 1% since D - Ry > nRy - Ly for n # 0. By Lemma [[L.3.8]
the inequality
44 25n 60
Lyy-D—nL2) = <

(Lay ) 12-17 77
implies that the point P cannot belong to the curve L;,. By the same method, we see that the
point P must be in the outside of R,.

If we write D = mR, + , where (2 is an effective Q-divisor whose support does not contain
the curve R,, then we can see that 0 < m < % since D - Ly = mR, - Ly, for m # 0. By
Lemma [[L3.8] the inequality

(Ry- D —mR.) < Ry D<%

implies that the point P cannot belong to the curve R,,.

Now we consider the pencil £ on X cut out by At 4 uy?z = 0. The base locus of the pencil £
consists of three points O, O, and Q. Let F' be the member in £ defined by t24+ 922 = 0. The
divisor F' consists of two irreducible and reduced curves R, and E = {t?> + y%z = 2* + 23 = 0}.
The curve E is smooth in the outside of the base points. We have

8

33

E-D=_—

Since o
E?=F-E-R,-E>F-E—(Ly+R,) E= <D F
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the self-intersection E? is positive. We write D = kE + I', where I is an effective Q-divisor
whose support does not contain the curve E. Since (X, ZL D) is log canonical at the point Oy,

) 60
the non-negative number % is at most %. By Lemma [I.3.8, the inequality
8 60
E-D-kE*)<E-D=— < —
( ) 33 77

implies that the point P cannot belong to the curve E.

So far we have seen that the point P must lie in the outside of C;, UC, UC, UC; U E. In
particular, it is a smooth point. There is a unique member C' in £ which passes through the
point P. Then the curve C is cut out by t? = ay?z where « is a constant different from 0 and
—1. The curve C is isomorphic to the curve defined by 13z + 222 + 2° = 0 and 2 = y?2z. The
curve C' is smooth in the outside of the base points and the singular locus of X by the Bertini
theorem, since it is isomorphic to a general curve in the pencil £. We claim that the curve C' is
irreducible. If so then we may assume that the support of D does not contain the curve C' and

hence we obtain o 6
multp(D) < C-D = 33 < =
This is a contradiction.

For the irreducibility of the curve C, we may consider the curve C as a surface in C* defined
by the equations 33z + 223 + 2% = 0 and t?> = y?z. Then, we consider the surface in P* defined
by the equations y3zw + 23w+ = 0 and t?w = y?z. We take the affine piece defined by t # 0.
This affine piece is isomorphic to the surface defined by the equation y>zw + zz3w + 2° = 0 and
w = y?z in C*. Tt is isomorphic to the irreducible hypersurface y®2z% + zy?z° + 2° = 0 in C3.
Therefore, the curve C' is irreducible. O

Lemma 3.4.4. Let X be a quasismooth hypersurface of degree 75 in P(10, 13,25,31). Then
let(X) = 2.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + 23 + :17y5 + 2%z =0.

It has singular points at O,, O, Oy and Q = [-1 : 0 : 1 : 0]. The curve C, and C; are
irreducible and reduced. The curve Cy (resp. C.) consists of two irreducible reduced curves L,
and Ry = {y = 2% + 2° = 0} (resp. R, = {y =t* + 2y’ = 0}). It is easy to see that

4 91 4 4 4
let(X, —C,) = — < let(X, —C,) < let(X, —C,) < let(X, —C,).
HX, 3C) = gg < 1et(X, 15 Ca) <Iet(X, 52 C2) <let(X, 37C1)
Also, we have the following intersection numbers:
2 4 4
Ky -L.,=——" _Ky- = _Ky- =_ -
S T xRy == x B = e
5 1 37 12 12
L, R =—. L, -R ==, L2 =__" _ 2 _ 7 2_ =
ve iy 317 Y R 5 TYE 10 - 31’ Ry 5-31° E; 5-13

Suppose that lct(X) < %. Then, there is an effective Q-divisor D ~gp —Kx such that the

log pair (X, %D) is not log canonical at some point P € X. Since the curves C, and C} are
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irreducible we may assume that the support of D contains none of them. The inequalities

60 60
13D'Cx<9—1, 5D-Ct<ﬁ

show that the point P must lie in the outside of C, U Cy \ {Oy, O}.
By Lemma [[.3.6] we may assume that the support of D does not contain either L,, or R,. If
the support of D does not contain L, ., then the inequality

2 60
1D-L,, = - < —
s 27591
shows that the point P cannot be O;. On the other hand, if the support of D does not contain R,),

then the inequality
31 2 60
p P =5
shows that the point P cannot be O;. Note that the curve R, is singular at the point O;. We
use the same method for C, = R, + L. so that we can see that the point P cannot be O,.
We write D = mR,, + ), where  is an effective Q-divisor whose support does not contain
the curve R,. Then we see m < % since the support of D does not contain either L,, or R,
and D - Ly, > mRy - L,.. Since R, - D —mR2 < 59, Lemma [[3.8 implies that the point P is
located in the outside of R,. Using the same argument for L,, , we can also see that the point
P is located in the outside of L,,. Also, the same method shows that the point P is located in
the outside of R,. Consequently, the point P must lie in the outside of C, U C, U C, U C}.
Now we consider the pencil £ on X cut out by A\t? + pzy? = 0. The base locus of the pencil £
consists of three points O, Oy, and (). Let F' be the member of £ defined by t2 4+ zy* = 0. The
divisor F' consists of two irreducible and reduced curves R, and E = {t? + 2y* = 22 + 25 = 0}.
The curve FE is smooth in the outside of Sing(X). We have

8
E-D=——.
5-13

Since
37
E*<F-E-R, E>F-FE—(Ly,+R,)-E= <D F
the self-intersection E? is positive. We write D = kE + I', where I' is an effective Q-divisor
whose support does not contain the curve E. Since (X, %D) is log canonical at the point O,,
the non-negative number k is at most %. By Lemma [[.3.8] the inequality

9 8 60
(E-D—-kE°)< E D—5‘13<91
implies that the point P cannot belong to the curve E.

So far we have seen that the point P must lie in the outside of C, UC, UC, UCy U E. In
particular, it is a smooth point. There is a unique member C in £ which passes through the
point P. Then the curve C is cut out by t?> = axy*® where « is a constant different from 0
and —1. The curve C is isomorphic to the curve defined by zy® + 2> + 2%z = 0 and t? = ay*.
The curve C' is smooth in the outside of the base points and the singular locus of X by Bertini
theorem, since it is isomorphic to a general curve in the pencil £. We claim that the curve C is



EXCEPTIONAL DEL PEZZO HYPERSURFACES 105

irreducible. If so then we may assume that the support of D does not contain the curve C' and

hence we obtain
12 60

multp(D) < C-D = T 13 < o
This is a contradiction.

For the irreducibility of the curve C, we may consider the curve C as a surface in C* defined
by the equations zy® + 2% + 2%z = 0 and t?> = zy*. Then, we consider the surface in P* defined
by the equations zy® + w323 + 2%z = 0 and t?w?® = zy*. We then take the affine piece defined by
y # 0. This affine piece is isomorphic to the surface defined by the equation x 4+ w323 +2°2 = 0
and t?w? = x in C*. Tt is isomorphic to the hypersurface defined by t?w? + w323 + t'0w!®2 =0
in C3. It has two irreducible components w = 0 and t?+23+t1%!'22 = 0. The former component
originates from the hyperplane at infinity in P4. Therefore, the curve C' must be irreducible. [

Lemma 3.4.5. Let X be a quasismooth hypersurface of degree 71 in P(11,17,20,27). Then
let(X) = 4.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation
t2y + y3z + 228 + 2t =0.

The surface X is singular at the points O, Oy, O., O;. Each of the divisors C;, Cy, C., and C;
consists of two irreducible and reduced components. The divisor C; (resp. Cy, C, C}) consists
of Lyy (vesp. Lyy, Lu, Ly) and Ry = {z = y?2 + 1% = 0} (resp. Ry, = {y = 23t + 23 = 0},
R,={z=a%+yt =0}, Ry = {t = > + 222 = 0}). Also, we see that

LyyN Ry ={0.}, LyyN Ry ={0:}, LyNR, ={0,}, LN R, ={0;}.

One can easily check that let(X,C,) = % is less than each of the numbers lct(X, 2LC,),
let(X, 22C.) and let(X, 2LCy). Therefore, let(X) < %. Suppose let(X) < %. Then, there is
an effective Q-divisor D ~g —Kx such that the log pair (X, %D) is not log canonical at some
point P € X.

The intersection numbers among the divisors D, Ly, L., Ry, Ry, R., R; are as follows:

1 2 4
DLSC = T a0 D T = T a5 D = 5 1
Y527 R 5-17 Ty 9-11
4 16 3
D Lyj=——=, D-Ro=——5, D-B=—,
Ty R 17-27 i 5-11
1 1 4 3
Lgcy‘Rgc Ey Lmy'Ry—ga th'Rz—ﬁa th‘Rt—ﬁy
43 3 2
2 2 2
7Y 20-27" % 5-177 Y 3.11’
5 24 5 28 5 21

AT 1117 T 1re2r Tt 2011
By Lemma [1.3.6] we may assume that the support of D does not contain at least one component
of each divisor Cy, Cy, C,, C;. Since the curve R; is singular at the point O, and the curve R,



106 IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

is singular at the point O; with multiplicity 3, in each of the following pairs of inequalities, at
least one of two must hold:

4 6 11 3 6
multp, (D) < 11D - L 7 < 1 multp, (D) < 5 DR, 10 < Ik
multp, (D) < 20D - L,, = 4 < Ll multp, (D) < 20D - R, = 3 < S

O:AF) W o T 11 O ST ANETE

1 6 27 6

Ito,(D) < 27D - Ly, = = < —, Ito, (D)< —D - R, = — < —.
mu Ot( ) Yy 5 < 11 mu Ot( ) 3 ) 11 < 11

Therefore, the point P can be none of O, O,, Oy.
Suppose that the point P is the point O,. We then put D = mL,;+ A, where A is an effective
Q-divisor whose support does not contain the curve L,;. If m = 0, then

4 6
1 D)L1TD - L= — < —.
mu tOy( ) 7 zt 11 < 11
This is a contradiction. Therefore, m > 0, and hence the support of D does not contain the
curve R,. Since

16 4m  multo, (D) —m  3m 6
1727 T 17 7 i
we obtain m < % However, we obtain
44 24m 6

from Lemma [[L3.8l This is a contradiction. Therefore, the point P is a smooth point of X.

We write D = agLyy + a1L. + aoRy + a3Ry + a4 R, + as Ry 4+ Q, where Q is an effective
Q-divisor whose support contains none of the curves L.y, L., R;, R,, R., R;. Since the pair
(X, 1?GlD) is log canonical at the points O, O,, O, the numbers a; are at most %. Then by
Lemma [[.3.8] the following inequalities enable us to conclude that the point P is in the outside
of C, UC, UC,UCy:

4+ 43ay 6 4 4+ 24aq 6
D—aylyy) Lyy=—-<—, (D—a1Ly) Ly =—-—"7-<—,
( aop y) Yy 20 . 27 11 ( ai t) t 11 - 17 11
2+ 3as 6 4 — 6ag 6
(D —azfy) Be = p32= < g (P—asly) - By = =37 < g
16 + 28ay 6 12 — 21as 6
— . = <= — R =0 <
(D a4Rz) RZ 1727 I 11, (D a5Rt) Rt 20 - 11 NS 11

We consider the pencil £ defined by Aty + pxz* = 0, [\ : u] € PL. The base locus of the pencil
L consists of the curve L., and the point O,. Let E be the unique divisor in £ that passes
through the point P. Since P ¢ C, U C, U C, U Cy, the divisor E is defined by the equation
ty = ax?*, where o # 0.

Suppose that o # —1. Then the curve E is isomorphic to the curve defined by the equations
ty = x* and 2% + y32 + 23 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by t # 0 is the curve given by
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z(x? + 22 + 23) = 0. Therefore, the divisor E consists of two irreducible and reduced curves
L,y and C. We have
267

51727
02:E-C—ny-c>E-C—ny.C—Rx-C=%D.C>0.

D-C=D-E—~D-Ly =

By Lemma [[.3.8] the inequality D - C' < % gives us a contradiction.

Suppose that a = —1. Then divisor E consists of three irreducible and reduced curves L,
R,, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have

11
527’

1
M2:E-M—ny-M—RZ-M>E-M—CI-M—CZ-M:Z3D~M>0.

D-M=D-E—-D-Ly,—D-R, =

By Lemma [[.3.8] the inequality D - M < 1% gives us a contradiction. O

Lemma 3.4.6. Let X be a quasismooth hypersurface of degree 79 in P(11,17,24,31). Then
let(X) = 2.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation
t2y +t22 + a:y4 + 2%z =0.

The surface X is singular at the points O, Oy, O., O;. Each of the divisors C;, Cy, C., and C;
consists of two irreducible and reduced components. The divisor C; (resp. Cy, C, C}) consists
of Lyt (vesp. Ly, Lys, Lyt) and R, = {x = yt + 22 = 0} (resp. Ry, = {y = 2t + 2° = 0},
R,={z=ay +1> =0}, Ry = {t = y* + 22 = 0}). Also, we see that
Lyt MRy ={0y}, Ly "Ry ={0:}, Ly.-N R, ={0,}, Ly N Ry = {0 }.

One can easily check that let(X, £C,) = 23 is less than each of the numbers let(X, £Cy),
let(X, 55C-) and let(X, 55 C;). Therefore, let(X) < 23. Suppose let(X) < 2. Then, there is
an effective Q-divisor D ~g —Kx such that the log pair (X

point P € X.
The intersection numbers among the divisors D, Ly, Ly., R, Ry, R., R; are as follows:

, %D) is not log canonical at some

D-th:ﬁ, D-RI:N;}J, D-Ry:(f?,
DLye=qrgp Prle=qm TR
th'Rw:%, Lyz'Ry:3_51, Lyz'Rz:%7 th'Rt:éy
S U S | NS :

o oq7.247 T 17-317 YT 24-31°
) 38 ) 14 ) 10

v=7 11-317 A 11-177 Ot T 3411



108 IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

By Lemma [I.3.6l we may assume that the support of D does not contain at least one component
of each divisor C, Cy, C;, C;. The inequalities

1 16 8 16
1 D . LLE - = - 1 D . r = —— J—
7 t=5 <33 TP fe=37<33

imply that P # O,. The inequalities
4 16 8 16
11D L,=—<=—, 11D-R, = — < —
vz = 37 < 33 R.=17<33

imply that P # O,. Since the curve R; is singular at the point O, with multiplicity 4 the
inequalities

24 16 24 4 16
imply that P # O,.

We write D = a1Ly + a2Ly, + a3R; + asRy + asR. + agRy + Q, where Q is an effective
Q-divisor whose support contains none of the curves Ly, Ly, Ry, Ry, R., R;. Since the pair
(X, %D) is log canonical at the points O, O, O, the numbers a; are at most %. Then by
Lemma [I.3.8] the following inequalities enable us to conclude that either the point P is in the

outside of C, UC, UC, UC} or P = Oy:

33 181 33 113 33 2%
Lyl =t o] Cpp g0 Bpp o pr 22
6P et b =g ar g < P e e =g gy < PRy =gy < b
33 185 33 5 33 47

O DI = 1 PpR R > 1 ®pR_R— 1.
16 Y =31~ 16 R.— R, 5. 11-17 = 16 Ri—Fy 3.8 11

Suppose that P # O;. Then we consider the pencil £ defined by Ayt + uz? =0, [\ : u] € PL.
The base locus of the pencil £ consists of the curve L,, and the point O,. Let E be the unique
divisor in £ that passes through the point P. Since P ¢ C, U C, U C, U (4, the divisor FE is
defined by the equation 22 = ayt, where o # 0.

Suppose that o # —1. Then the curve E is isomorphic to the curve defined by the equations
yt = 2% and t?y + xy* + 2°2 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by t # 0 is the curve given by
2(z + 227+ 2°%) = 0. Therefore, the divisor E consists of two irreducible and reduced curves L,
and C. We have the intersection numbers

D-C=D-E-D-L, ——"2

2
— 2 _
oarar Ot =P e b =gy

11
Also, we see

C?=E-C—C-L,,>0.
By Lemma [[.3.8] the inequality D - C' < % gives us a contradiction.

Suppose that & = —1. Then divisor E consists of three irreducible and reduced curves L.,
R,, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have

4-119
D-M=D-E—-D-L,,—D- =
v Ao 11-17-31°
M*?<E-M—-Ly,-M~R, M>E-M~-Cy-M~C,-M=5D-M>0.
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By Lemma [[.3.8] the inequality D - M < % gives us a contradiction. Therefore, P = O;.

We write D = aL,. +bR, + A, where A is an effective divisor whose support contains neither
L,. nor R,. Note that we already assumed that the support of D cannot contain either L,
or R,. If the support of D contains R,, then it does not contain L,,. However, the inequality
31D-L,, = % < % shows that P # O;. Therefore, the support of D does not contain the curve
R,. The inequality D - Ly > bR, - Ly implies b < % On the other hand, we have

5 5a b multo,(D)—a—b _ 4a 16
TR A T T 31 31 T3
and hence a < 4?—36.

Let 7: X — X be the weighted blow up of O; with weights (7,4) and let F be the exceptional
curve of w. Then

N 20 , - N 4 - N 7 ~ N &

Kx ~om(Kx) = g7 8 Lyz ~@ 0 (Lyz) = g7 B Ba g (Ro) — 57 F) A g 7 (A) = 57

where A, Eyz, R, are the proper transforms of A, Ly., R;, respectively, and c is a non-negative

rational number. The curve F' contains two singular points ()7 and Q4 of X. The point Q7 is a

singular point of type %(1, 1) and the point Q4 is of type %(1, 3). Note that the curve R, passes

through the point Q4 but not the point ()7. The curve L,. passes through the point ()7 but not
the point Q4.

The log pull-back of the log pair (X, %D) by 7 is the log pair

_ 33a - 33b - 33 -
X, —L — —A F
< 9 16 yz+ 16Rx+16 +91 >7

F,

where

33(4a + Tb + ¢) + 320
16 - 31
This pair is not log canonical at some point ) € F. We have

OgA'Rx:8+4Ob a c

0, =

17-31 31 4-31
This inequality shows 4a + ¢ < %(8 + 40b). Then

33(4a + c) +231b+320 _ 6496 + 9207

b = 16 - 31 S 7161731

. 1
since b < 13-

‘Suppose that the point @ is neither the point @7 nor the point (4. Then the log pair
(X BALF ) is not log canonical at the point ). Then

’ 16
e Sy
16 -28 16

by Lemma .34 However, ¢ < 4a + ¢ < 11‘7(8 + 40b). This is a contradiction since b <
Therefore, the point () is either the point Q)7 or the point Q4.

&l
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Suppose that the Pomt Q is the point Q4. This point is the intersection point of F and R,.
Then the log pair ( ) 16 bR, —|— A + 60, F ) is not log canonical at the point Q). It then follows
from Lemma [[3.4] that

33 < =

33-4 8+40b_i_ c
16 17-31 31 4-31

However,

- 1.
16 16-17-31

17-31 31 4-31
Therefore, the point @ is the point Q7. This point is the intersection point of F' and L.

Let ¢: X — X be the blow up at the point Q7. Let G be the exceptional divisor of the
morphism ¢. The surface X is smooth along the exceptional divisor G. Let Lyz, R,, A and F

be the proper transforms of L., R, A and F' by ¢, respectively. We have

33 -4 <8+40b a c ) 6496 + 92070
> = 1= —

. 5 ~ = 1 . . 1 ~ .~ d
Kf( ~Q gb (KX') - ?G, Lyz ~Q ¢ (Lyz) - ?G, F ~Q ¢ (F) - ?G7 A ~Q qb (A) - ?G,
where d is a non-negative rational number. The log pull-back of the log pair (X, iI’gD) via mo ¢

is

~ 33a - 33b ~ 33 - -
X, —Ly. - Ly —A F ,
( ' 16 ] + 16 Ry + 16 + 91 -+ 92G>
where
33 33 atd)+ 61 L5 2800 + 33(35a + 7b + ¢ + 31d)
7-16 TT 716 -31 '
This log pair is not log canonical at some point O € G. We have

- - 4 + 38a b c d
<A L,=-——"—"7"_Z __~- -
0 Y« 11-31 31 7-31 7

9 =

We then obtain 7b + ¢ + 31d < - (4 + 38a). Since a < %, we see
0, — 2800 + 33(35a + 7b + ¢ + 31d) < 4532 + 3069a <1
2 7-16-31 ST116-31

Suppose that O ¢ F'U ﬂyz. The log pair (X, %A + G> is not log canonical at the point O.

Applying Lemma [[.3.4], we get
33 ~ 33d
1< =A-G=—,
16 16
and hence d > 33, However, d < 37 (7b+c+ 31d) < 157 31 (44 38a). This is a contradiction since

a < 23 Therefore, the point O is either the intersection point of G and F' or the intersection

264

point of G and Lyz. In the latter case, the pair (X , 35’69 Ly, + %A + 92G> is not log canonical

at the point O. Then, applying Lemma [[.3.4] we get

33 33 /4438 b ¢ d
1<<16A+62G> 92_16<11 31 _5_7.31_?>+92'

However,

<1

33 /4438 b c d) . _ 453243069
11-31 31 7-31 7 2=

6\ 11-31 31 7-31 7 11-16-31
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Therefore, the point O must be the intersection point of G and F.
Let &: X — X be the blow up at the point O and let H be the exceptional divisor of &.
We also let Lyz, Rx, A, G, and F' be the proper transforms of Lyz, Ry, A, G and F by ¢,

respectively. Then X is smooth along the exceptional divisor H. We have
Ky~ €(Kg) = H, Grg€'(G) = H, Frg &' (F) — H, A~g &' () —eH,

where e is a non-negative rational number. The log pull-back of the log pair (X, iI’gD) via Togof
is

5 33a -+ 33b 4 33 % - A
(X,—Lyz—i—l—GRw+EA+91F+92G+93H>,

16
where
33e 1568 + 33(63a + 56b + 8¢ + 31d + 217¢)
03=014+60+——-1= .
R CRT: 7-16-31
This log pair is not log canonical at some point A € H. We have
c d PN
————e=A-F2>=0.
8 7 °© 0
Therefore, 4d + 28e < ¢
Then
0. — 1568 + 33(63a + 56b + 8¢) 33 - 31(d + Te)
5 7-16-31 7-16-31
< 6272 + 33(252a + 224b + 63c)
- 4-7-16-31

6272+ 73920 n 33-63(4a + ¢) .
4.7-16-31  4-7-16-31
28 +33b  9-33(1 +5b) 773 4 20460
ST231 T 2ar81 21731
since b < —2 and 4a +c < = L (8 4 40b). In particular, 63 is a positive number.

Suppose that A ¢ FUG. Then the log pair (X , 16A + 03H ) is not log canonical at the point
A. Applying Lemma [[.3.4], we get

However,

1 c 1
— <
28(4d+28) %8 28(4a+c)\

Therefore, the point A must be either in ForinG.

Suppose that A € F. Then the log pair <X , i’gA +6,F + 6sH ) is not log canonical at the

point A. Applying Lemma [[.3.4] we get

33 . .33 d 6272 + 33(252a + 224b + 63¢)
1< (2Z2A40,H) F= - .
<<16 + 05 ) 6(8 e>+93 1.7-16-31

7
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However,
6272 + 33(252a + 224b + 63c¢) o 773 4 20465
4-7-16-31 S 2.17-31
Therefore, the point A is the intersection point of H and G. Then the log pair
<X 3B3A 4 0,G + 05H > is not log canonical at the point A. From Lemma [I.3.4], we obtain

<1

) 16
1< (%A N 93H> O % (d— ) + 5 = 1568 + 33(637a'—|1—65‘6§1+ 8c + 248d)'
However,
1568 + 33(63a + 56b + 8c + 248d) _ 224 +297a N 33(7b + ¢+ 31d) - 320 + 1209a
7-16-31 16 - 31 2.7-31 S 16-31
since a < % and 7b + ¢ + 31d < 1—71(4 + 38a). The obtained contradiction completes the
proof. O

Lemma 3.4.7. Let X be a quasismooth hypersurface of degree 166 in P(11,31,45,83). Then
let(X) = 2.

Proof. The surface X can be defined by the quasihomogeneous equation
t2 + y23 + xy® + 2 =0.
The surface X is singular only at the points O,, O, and O,. The curves C, and C, are

irreducible. We have
55 4 4 13-31

Therefore, let(X) < 22.

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X 5—5D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D contains neither C, nor Cy. Then the inequalities

) 24
8 24 8 24
45D -C, = — < —. 11D-C, = — < ==
T =31 <55 v =15 <55

show that the point P is a smooth point in the outside of C,,. However, H°(P, Op(495)) contains
the monomials 2%, y"z'4 and 2!, it follows from Lemma [[L3.9] that the point P is either a
singular point of X or a point on C,. This is a contradiction. O

Lemma 3.4.8. Let X be a quasismooth hypersurface of degree 71 in P(13,14,19,29). Then
let(X) = 8.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation
ty3 + y23 +at? + 2tz = 0.

The surface X is singular at the points O, Oy, O., O;. Each of the divisors C;, Cy, C., and C;
consists of two irreducible and reduced components. The divisor C; (resp. Cy, C,, C}) consists
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of Lyy (vesp. Lyy, Lu, Ly) and Ry = {z = 23 +ty®> = 0} (resp. Ry, = {y = 232 +1* = 0},
R,={z=9y>+at =0}, Ry = {t = 2* + y2% = 0}). Also, we see that

LyyN Ry ={0:}, LyyNRy = {O } L.NR,={0.}, LxNR ={0,}.
One can easily check that lct(X, 130 ) = —6 is less than each of the numbers let(X, 4Cy),
let(X, §C-) and lct(X, 55Cy). Therefore, lct(X) < 3. Suppose lct(X) < 52, Then, there is

an effective Q-divisor D ~g —Kx such that the log pair (X, ggD) is not log canonical at some
point P € X.

The intersection numbers among the divisors D, Ly, L., Ry, Ry, R., R; are as follows:

4 6 8
DLy, = D-Rp=——, D-Ry=——,
Y7 19.29° R 729 Ty 13-19
2 12 8
D-Ly,=—— D-R,= D R =—,
ST 13-29’ ST
3 2 3
Lgcy‘Rx:Ey Lmy'Ry:Ey th'Rz:Ea th'Rt:_
2 _ 44 s 3 R 2
YT 19.297 TP 14.29° TV 13.19°
2 23 o 30 5 20

27T P 1329 YT 719
By Lemma [I.3.6] we may assume that the support of D does not contain at least one component
of each divisor C;, Cy, C., C;. Since the curve R; is singular at the point O, and the curve R,

is singular at the point O,, in each of the following pairs of inequalities, at least one of two must
hold:

multo, (D) S 13D - Ly = % < % multo, (D) < 13D - R, = % < %;
multo, (D) < 14D - L, = 143 gg, multo, (D) < 1—24D R, = % < 2?
multoz(D)<19D-ny:2i9<§, multoz(D)<§D.Ry:% g;
multo, (D) < 29D - Ly, = % < %, multo, (D) < D R, = % < %

Therefore, the point P can be none of O, Oy, O, O.

We write D = agLyy + a1L. + aoRy + a3Ry + a4 R, + as Ry + Q, where Q is an effective
Q-divisor whose support contains none of the curves Ly, L., R;, R,, R., R;. Since the pair
(X, ggD) is log canonical at the points O,, O, O, Oy, the numbers a; are at most %. Then by

Lemma [[L3.8] the following inequalities enable us to conclude that the point P must be located
in the outside of C;, UCy, U C, U Cy:

4 4 44ay < 36 4+23a; _ 36

_ . i AP _ . — 2 2T

(D= aoLay) - Loy = 79755 S g5 (P maibae) - L = 50 S
12+ 3ay _ 36 8—2a3 _ 36
(D= azlte) Ro = —4rog” S G5 (P maslly) By = 3599 S G
12+ 300, _ 36 8 — 20a5 _ 36

D- Ro= 2 P (DasRy) Ry = o0 < 2
(D= aife) R = =59 S5 (Dash)-Bi= == <
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We consider the pencil £ defined by Atz + puy® = 0, [X : u] € PL. The base locus of the pencil
consists of the curve L, and the point O,. Let E be the unique divisor in £ that passes through
the point P. Since P ¢ C, U Cy U C, U (4, the divisor E is defined by the equation tx = ay’,
where o # 0.

Suppose that a # —1. Then the curve E is isomorphic to the curve defined by the equations
tr = y3 and xt? + y2° + 2*2 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P. The affine piece of E defined by ¢t # 0 is the curve given by
y(y? + y''z + 23) = 0. Therefore, the divisor E consists of two irreducible and reduced curves
L,y and C. We have

800

D-C=D-E—D -Lyy=——.
¢ Y 13.19-29
Also, we see

C?=E-C—-C-Lyy>E-C—C,-C>0.

By Lemma [I.3.8] the inequality D - C < % gives us a contradiction.

Suppose that a = —1. Then divisor E consists of three irreducible and reduced curves L,
R,, and M. Note that the curve M is different from the curves R, and L,;. Also, it is smooth
at the point P. We have

572

D M=D-E-D-L,,—D-R,=——
e R 13-19-29’

M2:E-M—ny-M—Rz~M>E-M—CI-M—CZ-M:gD-M>0.
By Lemma [[L3.8] the inequality D - M < % gives us a contradiction. O

Lemma 3.4.9. Let X be a quasismooth hypersurface of degree 79 in P(13,14,23,33). Then
let(X) = 2.

Proof. The surface X can be defined by the quasihomogeneous equation
22t + y4z + zt? + x5y =0.
The surface X is singular at O, O, O, and O;. We have

lct (X, %C’m> = % < lct (X, %C’x> = %1 < lct <X, %Ct> = % < lct (X, %C’z> = %
In particular, let(X) < 8.

Each of the divisors Cy, Cy, C,, and C; consists of two irreducible and reduced components.
The divisor C; (resp. Cy, Cs, Cy) consists of Ly, (resp. Lyt, Ly, Lyt) and R, = {x = y*+2zt = 0}
(resp. Ry={y=22+at=0}, R, ={z =2y +t> =0}, Ry = {t = 2° + y32 = 0}). The curve
L, intersects R, (resp. R.) only at the point Oy (resp. O,). The curve Ly intersects R, (resp.
R;) only at the point O, (resp. O.).

We suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the

log pair (X, %D) is not log canonical at some point P € X.
The intersection numbers among the divisors D, L., Ly, R,, Ry, R., R; are as follows:
9 43 9 40 4 4 16

== iy T Taggy e e T gy D00

33’ ®2 T q4.337 7 T T 93033
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32 38 2 4 8
2 2
— - T D-L D R, =—
w="13.03 M 1333 M =13 w=13.93 P = 13733
20 2 8
2
= L. = D-R,=——,
B=4G Re=1p PrR= 3y
95 5 20
2
- D R =—"—.
t T 14137 TV Ry = 23’ R 14 - 23

By Lemma [I.3.6] we may assume that the support of D does not contain at least one component
of each divisor C,, Cy, C., C;. Since the curve R; is singular at the point O, with multiplicity
3 and the curve R, is singular at the point O, in each of the following pairs of inequalities, at
least one of two must hold:

4 32 8 32
| D)<13D -Lyi=—< —, 1 D)< 13D - = _ < —:
multo, (D) 3 =53 < 55 mu to, (D) 3D - R, 33 < i
4 32 14 4 32
lto, (D) < 14D - Ly, = — < 22, multo, (D) < —D - R, = — < 2.
multo, (D) 33 <gp mu o,(D) 5 R 5 <%
4 32 23 10 32

Ito. (D 23D - L — Ito. (D) < —D -
multo, (D) < 28D - Lyt = 13 < gz multo.(D) < D Ry = 57 < &2

Therefore, the point P can be none of O, Oy, O..

Put D = moLy, + miLy + maR,; + m3Ry + myR, + msRy + €, where (2 is an effective Q-
divisor whose support contains none of L., Ly, Ry, Ry, R, R;. Since the pair (X, ggD) is log
canonical at the points O, Oy, O, we have m; < % for each i. Since

A+ 43mg 32 A432m; 32
D J— L . L = - < > _D - L * L — < Py

(D =molas) - Low = —15755™ S g (D= muly) - Ly = —37557 S

16 + 40my, 32 8+ 38ms 32

(D=maly) - Bo = —e—a3= S o (D =mahy) - By = —520= <

8—20m, 32 20 — 95ms 32

D — . = — g - D —_ N — g e

(D=mal) - R. = =5 < o (D =mslty) - Ry 14-23 65

Lemma [[.3.8] implies that the point P cannot be a smooth point of X on C, UC, U C, U C;.
Therefore, the point P is either a point in the outside of C, U Cy U C, U Cy or the point O.

Suppose that P ¢ C, UCy UC, U C;. Then we consider the pencil £ on X defined by the
equations Azt + puz? =0, [\ : pu] € PL. There is a unique curve Z, in the pencil passing through
the point P. This curve is cut out by

zt + az? =0,

where « is a non-zero constant.
The curve Z, is reduced. But it is always reducible. Indeed, one can easily check that

Za = Ca +L:cz

where (|, is a reduced curve whose support contains no L,,. Let us prove that C,, is irreducible
if a # 1.

Any component of the curve Cy is not contained in the curve Z,. The open subset Z, \ C; of
the curve Z, is a Zsz-quotient of the affine curve

r+at=2+yts+a+a2%y=0cC? §Spec<(C[a:,y,zD,
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that is isomorphic to a plane affine curve defined by the equation
z ((a —Dz+yt - a5yz9) =0cCC? Spec((C [y, z])

Thus, if a # 1, then the curve Z, consists of two irreducible and reduced curves L,, and C,. If
a = 1, then the curve Z, consists of three irreducible and reduced curves L,., Ry, and C;. In
both cases, the curve C,, (including o = 1) is smooth at the point P. By Lemma [[.3.6] we may
assume that Supp(D) does not contain at least one irreducible component of the curve Z,.

If o # 1, then

8
D-Cp=—,
¢ 13-14
33

C? =74 Co =Ly, Co>Zo Co— (Ry+ Ly.) - Coo=—D-Cqy >0.

4
If « =1, then
152

~13-14-33°
19
C%:Zl-Cl—(LerRy)-Cl2Zl-Cl—(Rx+LxZ)-Cl—(Lyt+Ry)-Cl:ZD-Cl>0.

We put D = mCy, + Ay, where A, is an effective Q-divisor such that C, ¢ Supp(A,). Since
C,, intersects the curve Cy and the pair (X, g—gD) is log canonical along the curve C}, we obtain
m < %. Then, the inequality

D-C;

(D—mC’a)-C’agD-C’a<%

implies that the pair (X, %D) is log canonical at the point P by Lemma [[L3.8. The obtained
contradiction conclude that the point P must be the point O;.

If L., is not contained in the support of D, then the inequality

2 32
is a contradiction. Therefore, the curve L., must be contained in the support of D, and hence
the curve R, is not contained in the support of D. Put D = alL,, + bR, + A, where A is an

effective QQ-divisor whose support contains neither L., nor R,. Then

16 multp, (D) —a _ 3a 32
2333 ¢ * 33 33 ' 33-65
and hence a < %. If b # 0, then L,; is not contained in the support of D. Therefore,
4 2b

S =D Ly>bR, Ly = —,
13-23 vt T

and hence b < %

Let m: X — X be the weighted blow up at the point O; with weights (13,19) and let F be
the exceptional curve of the morphism 7. Then F' contains two singular points Q13 and Q19 of
X such that Q3 is a singular point of type 1—13(1, 1), and Q19 is a singular point of type %(3, 7).

Then
. 1 . 19 . . 13 . - .
Kg~qm (KX)—ﬁF, Ly, ~qm (Lm)—gF, R, ~qm (Ry)—ﬁF, A ~g T (A) —

Cc

—F,
33
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where L., Ry and A are the proper transforms of L,., R, and A by m, respectively, and c is a
non-negative rational number. Note that F' N R, = {Q19} and F N L,, = {Q13}.
The log pull-back of the log pair (X, % D) by = is the log pair

» 32
- 6ba - 65b - 65 -
<X’ g Lot gt T §A+91F> !
where
0. — 32 4+ 65(19a + 13b + ¢)
b 32-33 '
This is not log canonical at some point () € F'. We have
S 4+4
0<A.L, — +43a b ¢

14-33 33 13-33°

This inequality shows 13b + ¢ < %(4 + 43a). Since a < %, we obtain

6, — 32+ 1235a  65(13b + ¢) < 32+ 1235a 13- 65(4 + 43a)
32-33 32-33 32-33 14-32-33

Suppose that the point @ is neither Q3 nor Q9. Then, the point @ is not in L,, U Ry.

Therefore, the pair (X' , %A + F ) is not log canonical at the point ), and hence
65¢

13-19-32°
But ¢ < 13b+ ¢ < %(4 +43a) < % since a < %. Therefore, the point @ is either Q13
or .

SQul;pose that the point @ is Qi3. Then the point Q is in L., but not in Ry. Therefore, the
pair (X Loy + %A + 60 F ) is not log canonical at the point ). However, this is impossible since

13<@A+91F>-Em:13'65<4+43a—£ c >+91:

< 1.

65 ~
1< —=A-F=
32

32 32 \14-33 33 13-33
32+ 1235a n 13- 65(4 + 43a)
32.33 14 -32-33
Therefore, the point () must be the point Q9.
Let ¢¥: X — X be the weighted blow up at the point Q19 with weights (3,7) and let E be the

exceptional curve of the morphism 9. The exceptional curve E contains two singular points O3
and O7 of X. The point Og is of type %(1, 2) and the point Oy is of type %(4, 5). Then

, o o 3 T d
KXNQw(KX)—EE Ry”@¢(Ry)—EE= Fwa(F)—l—gE, ANQl/J(A)—l—g

where ]?y, F and A are the proper transforms of Ry, F and A by 1, respectively, and d is a

non-negative rational number.
The log pull-back of the log pair (X, g—gD) by m o) is the log pair

-~ 65a = 65b ~ 65 - -~
(X, — Ly + Ry + 3—2A + 0 F + 92E> ,

<1

E,

32 32
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where L. is the proper transform of L,. by 1 and

0 65(3b+d) 7 9 9728 + 65(133a + 1900 + 7c + 33d)
2= =

1932 19719 19-32-33

This is not log canonical at some point O € E.
We have

L o d 8+38 19a+c d
<A R,=A-R,— — _ _ :
0 Ty Ry 7-19  13-33 19-33  7-19

and hence 133a + 7c + 33d < %(8 + 38b). Therefore, this inequality together with b < % gives
us

g, _ 9728 +65-190b  65(1330 + 7c + 33d) _
19-32-33 19-32-33
0728 +65-190b | 65-7(8+38h) _
19-32-33 13-32-33

~X

Suppose that the point O is in the outside of R, and F. Then the log pair (E, %A| E) is not
log canonical at the point O and hence

65 65d
1<3—2A'E_3'7'32.
However,
1 33 3.7.32
d < —(133a + Tc + 33d) < 8 + 38b
33 (1330 +Te433d) < 355 (8 4 38) < —

since b < % This is a contradiction.
Suppose that the point O belongs to ﬁy. Then the log pair (X', 6—5bRy + %A + 92E> is not
log canonical at the point O and hence

- - . 1

32 \13-33 19-33 7-19

However,

<1

7-65 (8438 19a+c d 9_9728+65-190b+65'7(8+38b)
32 13-33 19-33  7-19 7 719-32-33 13-32-33

This is a contradiction. Therefore, the point O is the point Os.
Suppose that the point O belongs to F. Then the log pair (X, %A + 6, F + HQE) is not log
canonical at the point O and hence

65 « . 3.65( ¢ d
1 CA+6E)F - 0.
<3<32 o ) 32 (13-19 3-19>Jr2
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However,

32 \13-19 3-19 T 13-19-32 19-32-33
_ 512+455a N 65 - 190(13b + ¢)
32.33 13-19-32-33
512 + 455a N 65 - 190(4 + 43a) -1
= 32.33 14-19-32-33

since 13b 4 ¢ < %(4 +43a) and a < %. This is a contradiction. O

3-65 ( c d > + 3 - 65c¢ 9728 + 65(133a + 190b + 7c)
2

Lemma 3.4.10. Let X be a quasismooth hypersurface of degree 166 in P(13,23,51,83). Then
let(X) = 3.

Proof. The surface X can be defined by the quasihomogeneous equation
2 +ydz 422+ 2My=0.

The surface X is singular only at the points O,, O, and O,. The curves C, and C, are
irreducible. We have

91 4 4 115

— =let | X, — let | X, — =

40 Ct( ’13Cm> < Ct( ’23Cy> 24
and hence let(X) < 3.

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, Z—(l]D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D contains neither C, nor Cy. Then the inequalities

8 40 8 40
51D-C.= — < —. 13D .-C, = — < —
*= 53 < op’ v =51 S o1

show that the point P is a smooth point of X in the outside of C,. However, H°(PP, Op(663))
contains 2!, y3x?8, 2625 and 2'3, and hence it follows from Lemma [[.3.9] that the point P is
either a singular point of X or a point on C,. This is a contradiction. O

3.5. SPORADIC CASES WITH [ =5

Lemma 3.5.1. Let X be a quasismooth hypersurface of degree 63 in P(11,13,19,25). Then
let(X) = L.

Proof. The surface X can be defined by the quasihomogeneous equation
2t +yt? + oyt + 2tz =0,

and X is singular at O, Oy, O, and O.

The curve C,, (resp. Cy, C, Cy) consists of two irreducible and reduced curves Ly (resp Ly,
Lyz, Lyt) and Ry = {x = 22 + yt = 0} (vesp. Ry ={y=a'+ 2t =0}, R, = {z = t? + 2y = 0},
Ry = {t = y* + 232 = 0}). The curve L,; intersects R, (resp. R;) only at the point O, (resp.
O:). The curve L, intersects R, (resp. R.) only at the point O (resp. O5).
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We have the following intersection numbers

5 1 2 4 10
Dp-Ly,=——— D-L,=— D-RR=—— D-R,=—— D-R,=——
13,19’ v 50117 B 5-13’ Ry 5-19° R 11-13’
20 2 4 4 2
D-RR=— L4 R,=—, Ly -Rh=—, Ly, -R,=—, Ly, -R,=—
t 11 - 197 xt T 137 xt t 19, Yz Y 25) Yz z 11’
5 27 5 31 5 28 5 24 5 12 5 56

La="mag lv="mms &= 3 &= 1w B mn BT aw

We have

lct <X, %Cy> = %3 < lct <X, 1—51Cx> = % < lct <X, %Ct> = :13—2 < lct <X, %C‘Z> = %
In particular, we have let(X) < 12

We suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
log pair (X, 18—3D) is not log canonical at some point P € X.

Suppose that the point P is located in the outside of C, U Cy U C, U C;. We consider the
pencil £ on X defined by the equations Az* + uzt = 0, where [X : u] € P!. The curve L, is the
unique base component of the pencil £. There is a unique member Z in the pencil £ passing
through the point P. Since the point P is in the outside of C, U Cy U C, U C}, the curve 7 is
defined by an equation of the form

azt + 2t =0,
where « is a non-zero constant.
The open subset Z \ C, of the curve Z is a Zjg9-quotient of the affine curve

art +t=t+ytl+ayt+at=0cC Spec(C[w,y,z]),
that is isomorphic to the affine curve given by the equation
z((l-a)z®+a®2’y+y') =0cC C* Spec((C[y,z]).

If a # 1, the divisor Z consists of two irreducible and reduced curves L, and Z,. On the
other hand, if a = 1, then the divisor Z consists of three irreducible and reduced curves L., R,
and Z;. Since P ¢ C, UCy U C, U Cy, the point P must be contained in Z, (including a = 1).
Also, the curve Z, is smooth at the point P.

Write D = nZ,, + I', where I is an effective Q-divisor whose support contains Z,. Since Z,,
passing through the point O; and the pair (X, %D) is log canonical at the point O,, we have
n < %. We can easily check

22
D-(Z—th):771fa7él,
D.7. — 5-13-19

“ 35 ¢ 1
D-(Z— Ly — = if 0 = 1.

( Ry = gg e

Also, if @ # 1, then

33

ZizZ-Za—th-Za)Z-Za—(Lm+Rx)-Za:€D-Za.
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Ifa=1,
Z2=7 -Zy— (Lot +Ry) Zo>Z Zo— (Lyg + Ry + Lys + Ry) - Zo = 4D - Z,.

In both cases, we have Z2 > 0. Since

8

13

Lemmal[l.3.8shows that the pair (X, 1873D) is log canonical at the point P. This is a contradiction.
Therefore, the point P must belong to the set C, UC, U C, U C;.

It follows from Lemma that we may assume that Supp(D) does not contain at least
one irreducible component of the curves C,, C,, C., C;. Since the curve R; is singular at the
point O, with multiplicity 3 and the support of D does not contain either L,; or Ry, one of the
inequalities

(D =nZy) Za <D Zo <

multp, (D) < 19D - Ly = % < %, multop, (D) < ?D- ;= % < %
must hold, and hence the point P cannot be the point O,. Similarly, we see that the point P
can be neither O, nor O,.

Now we write D = moLyt+mi Ly, +moR, +m3Ry+myR, +msR; 4, where € is an effective
Q-divisor whose support contains none of Ly, Ly, Ry, Ry, R., R;. Since the pair (X, %D) is
log canonical at the points O, Oy, O., we must have m; < %. Then the inequalities

(D - mOLmt) Ly = %'717;0
(D —miLy.) - Ly, = %125”“
PEPPRIIES [
(D —myh,) - Ry = LR [ 13
(D= - B, = B50ms

imply that the point P must be the point Oy.
Put D = aL,, + bR, + A, where A is an effective Q-divisor whose support contains neither
the curve L,. nor R,. If a = 0, then we obtain

5 < 8

11 13

This is a contradiction. Therefore, a > 0, and hence the support of D dose not contain the curve
R,. Since

multo, (D) < 25D - L, =

4 multp, (D) —a _ 3a 8

25 ~ 55 T 1395
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36
and hence a < 50 If 6 > 0, then

) 2b
- = . > . —_
13-19 D th = bRx th 137

and hence b < %.

Let m: X — X be the weighted blow up of O; with weights (7,3) and let F' be the exceptional
curve of m. Then

Kx ~om (Kx) - % , Ly, ~q 7 (Ly:) — 23—5F, R, ~g 7 (R.) — 2_75F, A ~g T (A) — 2_651:’
where A, Eyz, R, are the proper transforms of A, L., R;, respectively, and c is a non-negative
rational number. The curve F' contains two singular points Q7 and Q)3 of X. The point Q7 is a
singular point of type %(1, 1) and the point Q3 is of type %(2, 1). Note that the curve R, passes
through the point Q3 but not the point ()7. The curve L,. passes through the point ()7 but not
the point Q3.

The log pull-back of the log pair (X, %D) by 7 is the log pair

_ _ b 13 _

where

9, — 13(3a + 7b + ¢) + 120
' 8-25 '
This pair is not log canonical at some point ) € F. We have

_ - 10 + 28b a c
<A-Ry=—"—————— .
0 e 13-25 25  3-25

This inequality shows 3a + ¢ < +5(10 4 28b). Then

13(3a + ¢) +91b + 120 6+ 7b
0 = ( 8)-25 STg <

1

since b < %.

Suppose that the point ) is neither the point ()7 nor the point (J3. Then the log pair
(X , %A + F ) is not log canonical at the point ). Then

13¢ 13 -

TR A-F>1
by Lemma [[L.34 However, ¢ < 3a + ¢ < %(10 + 28b). This is a contradiction since b < ;’—8.
Therefore, the point () is either the point ()7 or the point Q3.

Suppose that the point Q is the point Q3. This point is the intersection point of F' and R,.
Then the log pair (X' ) %’I’Rm + %A + 60, F ) is not log canonical at the point Q). It then follows
from Lemma [I.3.4] that

1<3<§A+91F>.Rx

13-3/10+28 a ¢ ;
T8 13-25 25 3.25 !

However,

_e 9, =~ 1.
8 1395 25 3.25) 7" <

13-3(10—1—281) a c > 6+ 7b
8
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Therefore, the point () is the point ()7. This point is the intersection point of F' and Eyz.

Let ¢: X — X be the blow up at the point Q7. Let G' be the exceptional divisor of the
morphism ¢. The surface X is smooth along the exceptional divisor G. Let L., R;, A and F
be the proper transforms of L,., R,, A and F by 7 o ¢, respectively. We have

. 5 ~ = 1 - . 1 ~ .~ d
KX’ ~Q gb (KX') - ?G, Lyz ~Q ¢ (Lyz) - ?G, F ~Q ¢ (F) - ?G7 A ~Q qb (A) - ?G,
where d is a non-negative rational number. The log pull-back of the log pair (X, %D) via To ¢
is

~ 13a - 130 ~ 13 -+ ~
(X, %Lyz 4 %bRx 4 §3A +OF + 62G> ,

where

0 13( _|_d)_|_ﬁ+§_1120+13(28a+7b+0+25d)
2 7-8 7 7T 7.8-.925 .

This log pair is not log canonical at some point O € G. We have

< 5+3la b c d
<A Ly,="—" " —— _—,
0 Y 11-25 25 7-25 7

We then obtain 7b + ¢ 4 25d < 1—71(5 + 3la). Since a < %, we see
1120 + 13(28a + 7b + ¢+ 25d) _ 511+ 273a
0y = < < 1.
7-8-25 7-8-11

Suppose that O ¢ F'U ﬂyz. The log pair (X, %A + G> is not log canonical at the point O.

Applying Lemma [[.34], we get
13 13d
1< =A-G= ,
8 8
and hence d > 2. However, d < 5= (7b+ ¢+ 25d) < 115 25 (54 31a). This is a contradiction since

a < 35, Therefore, the point O is either the intersection point of G and F' or the intersection

247
point of G and Lyz. In the latter case, the pair <X , I?’T"Lyz + 1—§’A + 92G> is not log canonical
at the point O. Then, applying Lemma [[.3.4] we get

13 13 /5 +3la b c d
1<<8A+62G> _§<W_2_5_7.—25_?>+92‘

However,

11-25 25 7-25 7

Therefore, the point O must be the intersection point of G and F.
Let &: X — X be the blow up at the point O and let H be the exceptional divisor of &.
We also let Lyz, R,, A, G, and F be the proper transforms of Lyz, Ry, A, G and F by ¢,

respectively. Then X is smooth along the exceptional divisor H. We have

K¢rmg&(Kg)—H, Grg&(G)—H, F g & (F)—H, A~g&(A)—eH,

13(54+8la b ¢ _d\y . _ 5114273
8 2T 781



124 IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

where e is a non-negative rational number. The log pull-back of the log pair (X, %D) via mogo&
is

~ 13a -+ 13b -+ 13 A N
(X, S e+ Ry + — A+ 00F 4 026G + 63H> ,

8 8 8
where 4 ) 4+ 1750)
13e 560 + 13(49a + 56b + 8¢ + 25d + 175e
03=01+6+——1= .
3= TRt 7-8-25
This log pair is not log canonical at some point A € H. We have
c d PO
— ———eA-F>
21 7

Therefore, 3d + 21e < ¢
Then

560 + 13(49a + 56b + 8¢)  13(d + 7e) <
7-8-25 7-8 h
1680 + 13(147a + 168b 4 49¢)
3-7-8-25
1680 4+ 1284b 13 -49(3a + ¢)
3-7-8-25 3-7-8-25
140 4+ 1076~ 7(5+14b) 21 + 36b
2725 4-25 28
since b < @ and 3a + ¢ < 13(10 + 28b). In particular, 63 is a positive number.
Suppose that A ¢ FUG. Then the log pair (X JBA 4+ 03H ) is not log canonical at the point
A. Applying Lemma [[.3.4], we get

03 =

N

< <1

13 . 13¢
1< 2A.H=2C
8 8
However,
1 3(10 +28b) _ 8
— <R 2
(3d+2l ) < 21 SqBeto s TS

Therefore, the point A must be either in F or in G.
Suppose that A € F. Then the log pair <X, %A +6,F + 93H) is not log canonical at the
point A. Applying Lemma [[L3.4], we get

13 a 13 d _ 1680+13(147a+168b+496)
1<<8A+93H> 8(21 ?—€>+93— 3.7.8.95 .

However,
1680 + 13(147a + 168b + 49c¢) < 21 4 360

3:-7-8-25 S28
Therefore, the point A is the intersection point of H and G. Then the log pair
<X , 1—§’A + 0,G + 03H > is not log canonical at the point A. From Lemma [I.3.4], we obtain

<1

13 - A 13 560 + 13(49 56b + 8 200d
1<<§A+93H> =2 (d—e)+s = + 13( “7+8 25* ¢ +200d).
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However,

560 + 13(49a + 56b + 8c +200d) 80 +9la n 13(7b + ¢ + 25d) < 56 + 169a <1
7-8-25 - 8:25 7-25 So8-11

since a < % and 7b+4c+25d < 1—71(5+31a). The obtained contradiction completes the proof. [

Lemma 3.5.2. Let X be a quasismooth hypersurface of degree 136 in P(11,25,37,68). Then
let(X) = 4.

Proof. The surface X can be defined by the quasihomogeneous equation
:17y5 + 292 + yz3 +t2=0.

The surface X is singular at the points O, Oy and O,.
The curves C, and Cy are reduced and irreducible. We have
Thus, let(X) < L.

11 5 5 55

ot (X, 20 ) <let [ X, 20, ) = 2.

6 C<’110><C< 25Cy> 18
6

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of D contains neither C, nor C,. Then two inequalities

2 6 10 6

D-Cpo==-<—, 11D-C,=— < —

31D - G 511 C 37 S 11
imply that the point P is neither a singular point of X nor a point on C,. Since H°(P, Op(407))
contains %7, 2! and z'?y!!, we see that this cannot happen by Lemma 3.9l O

Lemma 3.5.3. Let X be a quasismooth hypersurface of degree 136 in P(13,19,41,68). Then
let(X) = %.
Proof. The surface X can be defined by the quasihomogeneous equation
Py 4+ Pzt =0.
The surface X is singular only at the points O, O, and O,.
The curves C, and Cy are reduced and irreducible. Also, it is easy to check

% = lct <X, %Cx> < let(X, %Cy) = %
Therefore, let(X) < 22.

Suppose that lct(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of D contains neither C, nor C,. Then two inequalities

10 50 10 50
41D -Cpo = —< —, 13D-Cy=— < —
Co=qg<gp BP-G=q<q
imply that the point P is neither a singular point of X nor a point on C,. However, by

Lemma [[L3.9] this is impossible since H(P, Op(533)) contains z*', '3 and x3y2°. O
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3.6. SPORADIC CASES WITH [ =6

Lemma 3.6.1. Let X be a quasismooth hypersurface of degree 45 in P(7,10,15,19). Then
let(X) = 22,

Proof. The surface X can be defined by the equation 23 — 32 + zt2 + 2%y = 0. It is singular at
the points O, Oy, Oy and Q@ =[0:1:1:0].

The curve C,, consists of two irreducible and reduced curves L., and R, = {z = 22 —y3 = 0}.
These two curves L,, and R, meets each other at the point O;. Also,

23 8 3

2 2

=— RE=——— L,.,-R,=—.
vz 10-19° °° 5-197 7 719

The curve R, is singular at the point O;. The curve C, is irreducible and

35 6 6 25
D e (x,20, ) <1et (X, 20, ) = 2.
B¢ < ’7C>< ¢ ( 1OCy> 18

35
Therefore, lct(X) < £7.

Suppose that let(X) < g—i. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, g’—ZD) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D does not contain the curve Cy. Similarly, we may assume that either

L. Z Supp(D) or R, € Supp(D).

Since H%(P, Op(105)) contains the monomials z%, y72° and 27, it follows from Lemma [3.9]
that the point P is either a point on C, or the singular point O,.

Since either L,, Z Supp(D) or R, € Supp(D), one of the inequalities

multo, (D) < 19D - L, = g < %, multp, (D) < %D -Ry = g < %
must hold, and hence the point P cannot be the point O;. On the other hand, the inequality
7D-Cy = % < % shows that the point P cannot be the point O,.
Put D = mL,, + Q, where  is an effective Q-divisor such that L,, ¢ Supp(Q2). If m # 0,

then

6 3m
5.19 D fe 2 mbes M =g
and hence m < % Then,
6+ 23 54
10(D — mLy,) - Ly, — 2222

19 T35
Thus it follows from Lemma [[L3.8] that the point P cannot belong to L.

Now we write D = eR, + A, where A is an effective Q-divisor such that R, ¢ Supp(A). If
€ # 0, then

3 3€
5.19 ch 19
and hence € < % Then
3+ 8 54
D — ) Ry = —— < ——.
5( eRy) R 19 3%

By Lemma [[.3.8 the point P cannot be contained in R, either. Therefore, the point P is located
nowhere. O
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Lemma 3.6.2. Let X be a quasismooth hypersurface of degree 106 in P(11,19,29,53). Then
let(X) = 52,

Proof. We may assume that the surface X is defined by the quasihomogeneous equation
'z + xy5 + yz3 +t2=0.

The surface X is singular at O,, Oy and O,. The curves C, and Cy are irreducible. It is easy

o see 6 55 6 57
X, 1 C) = g5 < 1K gC) = 5g
Suppose that lct(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the

pair (X, 23 D) is not log canonical. For a smooth point P € X \ C,, we have

’ 36
6-319 - 106 36
multr(D) S 779972953 < 55
by Lemma [[3.9] since H(P, Op(319)) contains the monomials z%°, z!'' and 2'%y'!. Therefore,
either there is a point P € C, such that multp(D) > 22 or we have multo, (D) > 28. Since the
pairs (X, £22.C,) and (X, 332.C,) are log canonical and the curves C, and Cy are irreducible,
we may assume that the support of D contains neither the curve C, nor the curve C,. Then we

can obtain
11-19-106-6 36

o, (D) <110y - D < w72 < ==
multo, (D) Cy 11-19.29.53 ~ 55

and for any point P € C,

29-11-106 -6 < 36

11-19-29-53 55

This is a contradiction. Therefore, lct(X) = %. O

Lemma 3.6.3. Let X be a quasismooth hypersurface of degree 106 in P(13,15,31,53). Then
let(X) = 3.

multp(D) < 29C, - D <

Proof. The surface X can be defined by the quasihomogeneous equation
a:7y + 2%+ y5z +t2=0.

The surface X is singular at the points O, Oy and O..
The curves C,, Cy and C; are reduced and irreducible. We have

let (X, %Cx> = % < lct <X, 1—%@,) = % < lct <X, %CZ> = %
Therefore, let(X) < 2.

Suppose that let(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the pair
(X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the support
of D contains none of C;, C,, C.. Since C, is singular at the point O, and 32—1D -Cy = 1% < 8—(1),
the point P must be in the outside of C,. Furthermore, the point P is in the outside of C;; U C,
since 15D-C’m:% < % andD-C’Z:% <%.

Now we consider the pencil £ on X defined by the equations \2® + pzSy = 0, [\ : u] € P
Then there is a unique member C in £ passing through the point P. Since the point P is located
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in the outside of C;, UC, UC,, the curve C is cut out by the equation of the form 2y +az® =0,
where « is a non-zero constant. Since the curve C is a double cover of the curve defined by the
equation 2% + az® = 0 in P(13,15,31), we have multp(C) < 2. Therefore, we may assume that
the support of D does not contain at least one irreducible component. If oo # 1, then the curve
C is irreducible, and hence the inequality

12 60
Itp(D)<D-C=—< —
multp (D) C=% <0
is a contradiction. If « = 1, then the curve C consists of two distinct irreducible and reduced

curve C1 and Cy. We have

DQ:D@:%,@:@:%
Put D = a1C1 4+ a2Cs + A, where A is an effective Q-divisor whose support contains neither Cy
nor Cy. Since the pair (X, %D) is log canonical at O, both a1 and ao are at most %. Then a
contradiction follows from Lemma [I.3.8] since
12 60
(D—CLZCZ)CZQDCZ:@ < ﬁ
for each i. O

3.7. SPORADIC CASES WITH [ =7

Lemma 3.7.1. Let X be a quasismooth hypersurface of degree 76 in P(11,13,21,38). Then
let(X) = 2.

Proof. We may assume that the surface X is defined by the equation % + y2® + zy® + 2°2 = 0.
The surface X is singular at O, Oy and O.. The curves C,, Cy and C, are irreducible. We
have

21 7 55 7 7 13

JR— :l —C, J— :1 ,—Cy 1 , T = —.

10 ct(X, 210 ) > 5 ct(X 110 ) > let(X 1?)C'y) 10
Therefore, lct(X) < 12.

Suppose that lct(X) < %. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of D contains none of the curves C,, Cy and C..

Since the curve Cy is singular at the point O,, the inequality 11D - C, = % < % shows that
the point P does not belong to the curve Cy. Also, the inequality 13D - C, = % < % implies
that the point P cannot belong to C, either. The inequality D -C, = % < % shows that the
point P cannot belong to C,

Consider the pencil £ on X defined by the equations A\y® + pa*z = 0, [\ : u] € P'. There is
a unique member Z in £ passing through the point P. Since P ¢ C, U Cy U C;, the curve Z is
defined by an equation of the form z*z = ay®, where « is a non-zero constant. The open subset
Z \ C, of the curve Z is a Zj1-quotient of the affine curve

z—ay’ =t* +y? +y° +2=0 C(C?”ESpec((C[y,z,tD
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that is isomorphic to the plane affine curve C' C C? defined by the equation
2+’ + (14 a)y’ =0c C? = Spec(C ly, z])

The curve C is irreducible if o # —1 and reducible if & = 1. Since the C, is not contained in the
support of Z, the curve Z is irreducible if & # —1 and reducible if @ = 1. From the equation of
C', we can see that the log pair (X, %Z ) is log canonical at the point P. By Lemma [[.3.6] we
may assume that Supp(D) does not contain at least one irreducible component of the curve Z.

Suppose that o # —1. Then Z Z Supp(D) and

10 10

33 = D-Z> multp(D) > IEh

This is a contradiction. Thus, & = —1. Then it follows from the equation of C' that the curve
Z consists of two irreducible and reduced curves Z; and Z,. Without loss of generality we may
assume that the point P belongs to the curve Z;.

Put D = mZ; + Q, where Q is an effective Q-divisor such that Z; ¢ Supp(2). Since the pair

(X, %D) is log canonical at the point O, one has m < %. Then
5 10
D—mZy) - Z1<D-Z1=— < —.
(D —m21) - 2% 1733513
since Z12 > 0. By Lemma [[.3.§] the log pair (X, %D) is log canonical at the point P. This is a
contradiction. O

3.8. SPORADIC CASES WITH [ = 8

Lemma 3.8.1. Let X be a quasismooth hypersurface of degree 46 in P(7,11,13,23). Then

let(X) = Z—g.

Proof. The surface X can be defined by the equation t? + y3z 4+ 223 + 2%y = 0. The surface X
is singular at the points O, Oy and O,. The curves C,, Cy and C, are irreducible. We have

35 8 8 91 8 55

— =let (X, 2C; )| <let | X, —=C, )| = =<t | X, —=C, | = —.

48 C<’7x> C<’13Z> 80 C<’11 y) 48

In particular, lct(X) < %. Suppose that lct(X) < %. Then there is an effective Q-divisor

D ~qg —Kx such that the pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6]

we may assume that the support of the divisor D contains none of the curves C,, Cy and C..
Since the curve C, is singular at the point O,, the inequality

16 48
11D - == < —
Ca 13~ 35
shows that the point P cannot belong to C,. Also, the inequality
16 48
D.C, = — <~
DGy 13" 35
implies that the point P is not in C,. Since
16 48
D-C. = ——_ <«
*T7 113

the point P cannot be in C, either.
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Consider the pencil £ on X defined by the equations Az*y 4+ puz® = 0, [\ : u] € P'. There is
a unique member Z in £ passing through the point P. Since P ¢ C, U Cy U C;, the curve Z is
defined by an equation of the form z*y = az3, where « is a non-zero constant. The open subset
Z \ C, of the curve Z is a Zz-quotient of the affine curve

y—ad =t* 4324+ +y=0cC = Spec(@[y,z,t])
that is isomorphic to the plane affine curve C' C C? defined by the equation

a2+ (14+a)2=0cC? Spec((C[y,z]).

The curve C' is irreducible if « # —1 and reducible if « = —1. Since the C, is not contained
in the support of Z, the curve Z is irreducible if @ # —1 and reducible if @ = —1. From
the equation of C', we can see that the log pair (X, 2?;,’—542 ) is log canonical at the point P. By

Lemma [[L3.6] we may assume that Supp(D) does not contain at least one irreducible component
of the curve Z.
Suppose that o # —1. Then Z Z Supp(D) and
48 48

This is a contradiction. Thus, a = —1. Then it follows from the equation of C' that the curve
Z consists of two irreducible and reduced curves Z; and Zs. Without loss of generality we may
assume that the point P belongs to the curve Z;.

Put D = mZ; + Q, where Q is an effective Q-divisor such that Z; ¢ Supp(2). Since the pair

(X, %D) is log canonical at the point O, one has m < %. Then
24 48
D—mZy) - Z1 <D -Z1 = — < —.
(D —m21) - 2% B TNET
since Z2 > 0. By Lemma [[.L3.8] the log pair (X, %D) is log canonical at the point P. This is a
contradiction. O

Lemma 3.8.2. Let X be a quasismooth hypersurface of degree 81 in P(7,18,27,37). Then
let(X) = 22.

Proof. The surface X can be defined by the quasihomogeneous equation
2 — P4 at? + 2% = 0.

The surface X is singular at the points O, Oy, Oy and Q@ =[0:1:1:0].
The curve C,, consists of two irreducible and reduced curves L,, and R, = {x = 22 —y3 = 0}.
These two curves intersect each other only at the point O;. Also,

47 20 3
L2, = — R2=—-—""+— L, -R,=—.
vz 18-37" 7 9.377 T T 37
The curve Cj is irreducible and

35 8 8 15
2 et (X, 20, let [ X, — i —
™ ct< ,70 > < ct( 18Cy> 3
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Suppose that lct(X) < % Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, %D) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
Lyz € Supp(D) or Ry Z Supp(D).

Since either L,, Z Supp(D) or R, € Supp(D), one of the inequalities

multo, (D) < 37D - Ly, — % < % multo, (D) < 37D - R, — g < %
must hold, and hence the point P cannot be O;. Since multp,(D) < 7D - C, = % < ?, the
point P cannot be the point O,.
Put D = mL,, + Q, where Q is an effective Q-divisor such that L., ¢ Supp(2). If m # 0,
then

16 3m
18- 37 By 2mbe: - Be = 57
and hence m < %. Since
8+47Tm T2
18(D —mLy,) - Lyy = —5— < o2
8(D —mLs:) 37 35

it follows from Lemma [[3.8] that the point P cannot belong to L..,.
Now we write D = e€Z, + A, where A is an effective Q-divisor such that Z, ¢ Supp(A). If
€ # 0, then

8 3€
18 - 37 cft 37
and hence € < 2%. Since
8 +20e T2
(D —ehs) 37 35

it follows from Lemma [[.3.§] that the point P cannot belong to R;. Consequently, the point
P must be a smooth point in the outside of C,. However, since H(P, Op(189)) contains the
monomials 227, y"z? and 27, it follows from Lemma [[.3.9] that P must be either a singular point
of X or a point on C,. This is a contradiction. O

3.9. SPORADIC CASES WITH [ =9

Lemma 3.9.1. Let X be a quasismooth hypersurface of degree 64 in P(7,15,19,32). Then
let(X) = g’—i.
Proof. The surface X can be defined by the quasihomogeneous equation
P +yz a2 +2Ty=0.
The surface X is singular only at the points O,, O, and O,. The curves C, and C, are

irreducible, and
35 9 9 25
— =lct | X, =C, let (| X, — = —.
54 C< ’7C><C< 15Cy> 18

In particular, let(X) < £2.
Suppose that let(X) < g—i. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X, g’—ZD) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the
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support of the divisor D contains neither the curve C, nor the curve Cy. Then two inequalities
19D - C, = g < %, D -Cy = % < % show that the point P must be a smooth point in the
outside of C.

Note that H°(P, Op(133)) contains the monomials z'?, y7z* and 2" and hence it follows from
Lemma [[.3.9] that the point P is either a singular point of X or a point on C,. This is a
contradiction. O

3.10. SPORADIC CASES WITH I = 10

Lemma 3.10.1. Let X be a quasismooth hypersurface of degree 82 in P(7,19,25,41). Then
let(X) = 5.

Proof. The surface X can be defined by the quasihomogeneous equation
2 +yz+ a2+ 2% =0.
It is singular at the points O, O, and O,.
The curves C, and Cy are irreducible. We have

7 10 10 19

Lot (x, 20, <let (X, 220, ) = 22,

12 C<’7C><C< 190y> 12
and hence let(X) < Z.

Suppose that let(X) < 1—72 Then there is an effective Q-divisor D ~g —Kx such that the pair
(X, 1—72D) is not log canonical at some point P. By Lemmal[l.3.6] we may assume that the support
of the divisor D contains neither the curve C; nor the curve Cy. Since 25D - C, = % < % and
D -Cy = % < 1—72, the point P must be a smooth point in the outside of the curve C,. Note
that HO(P, Op(175)) contains the monomials 22°, z5y” and 27, and hence the point P cannot

be a smooth point in the outside of C, by Lemma [[.3.91 Consequently, lct(X) = 1—72 O

Lemma 3.10.2. Let X be a quasismooth hypersurface of degree 117 in (7,26, 39,55). Then
let(X) = &.

Proof. The surface X can be defined by the equation 22 — y3z + xt?2 + 23y = 0. It is singular
at the points O, Oy, Oy and Q =[0:1:1:0].
The curve C,, consists of two irreducible curves L,, and R, = {x = 22— = 0}. These two
curves intersect each other only at the point Oy. It is easy to check
9 71 9 32 3
= 9555 T Tig.g e fe=gp
On the other hand, the curve Cj is irreducible. We have

7 10 10 13
—:1 — Uy l , = = —.
13 ct <X, 7C’ > < let <X 260y> 5

In particular, let(X) < &.
Suppose that let(X) < 1—78. Then there is an effective Q-divisor D ~g —Kx such that the
pair (X lD) is not log canonical at some point P. By Lemma [[.3.6] we may assume that the

» 18
support of the divisor D does not contain the curve Cy. Similarly, we may assume that either

L. ¢ Supp(D) or R, ¢ Supp(D).
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Since 7D - C, = % < 1—78, the point P cannot be the point O,. Meanwhile, since the support
of D does not contain at least one components of C,, one of the inequalities

5) 18

Ito,(D) < 55D - L, = — < —,
multp, (D) < 55 13< -
10 18

lto, (D) < 55D - Ry = — < —
multp, (D) < 55D - R 13< -

must hold, and hence the point P cannot be the point O;.
Put D = mL,, + Q, where Q is an effective Q-divisor such that L,, ¢ Supp(Q2). If m # 0,
then

10 3m
Y _D.R,>mL,, R, = 2.
13-55 @ 2 Mbwz " fa = 5p
and hence m < %. Then
10+ 71 18
26(D — mLys.) - Lys = % <=

and hence Lemma [[.3.8] implies that the point P cannot belong to L,.,.
Now we write D = eR, + A, where A is an effective Q-divisor such that R, ¢ Supp(A). If
€ # 0, then

10 3€
2 - 55 cft 55
and hence € < %. Then
10+ 32¢ 18
13(D —€eR,) - Ry = —— < —.
(D —eh) 55 7

Thus, Lemma [[.3.4] shows that the point P is not on R,.

Therefore, the point P must be a smooth point in the outside of the curve C,. Since
HO(P,Op(273)) contains the monomials x3%, 372'3 and 27, it follows from Lemma [[3.9] that
P is either a point on C, or a singular point of X. This is a contradiction. O

Part 4. The Big Table

The tables contains the following information on del Pezzo surfaces.

The first column: the weights (ag, a1, as,as) of the weighted projective space P.

The second column: the degree of the surface X C P.

The third column: the self-intersection number K)z( of an anticanonical divisor of X.
The fourth column: the rank p of the Picard group of the surface X.

The fifth column: the global log canonical theeshold lct(X) of X.

The sixth column: the possible monomials in x, y, 2z, t in the defining equation
f(x,y, z,t) = 0 of the surface X.

e The seventh column: the information on the singular points of X. We use the standard
notation for cyclic quotient singularities along with the following convention: when we
write, for instance, 0,0, = n x %(a, b), we mean that there are n cyclic quotient sin-
gularities of type %(a, b) cut out on X by the equations z = t = 0 that are different
from the point O, in the case when O, € X and O, is not of type %(a, b), and that are
different from the point Oy in the case when O, € X and O, is not of type %(a, b).



Log del Pezzo surfaces with I =1

Weights Degree K)2( o | lct Monomials Singular Points
vyt Yt
3 .4 2
Yyz=, 27, xt 9 O (1 1)
9 x”"‘l t, w"“zt, 4n+1
(2,27’L+ 1,2n—|— 1,4n+ 1) 8n +4 CnrD)[@Antl) 8 1 wgn+1y27 OyOz =
w2n—i—1yz7 =4 X 2n +1(1 n)

x2n+122 x4n+2

2, yat, Y222, o,

3 2 3
, TY“t, XYz,

;U2zt, :n2yz2,
12 2,4 3
(1,2,3,5) 10 1 9 | zv| TYLTUL o, =1(1,1)
10 x3 y Z, T z ,

T y3 xt, x° yz
2592, w7z 8y,
210

25, yzt, y°, wt?,

:Eygz, xzyzz,
. 1¢ T y2t x zt
(1,3,5,7) 15 i 9 | zal 28yt aty?z, | Op=1(3,5)
B ® Z,xyt,wy,
x7 Yz, xSt z? y ,

xloz 7l y 3315

yzt Y’z

3, oy, a2y,
w2y3z, w3zt,
10 1 1‘ yz 1‘ y 9 Oy =
zoyt, 25y>z, 0, =
26 2 7y3 St’
28 yz z10 y

Mz, By, @

(1,3,5,8) 16

|
N
Y=o
—
—
—
N

16

a: if C; has an ordinary double point, b: if C; has a non-ordinary double point,
c: if the defining equation of X contains yzt, d: if the defining equation of X does not contain yzt.
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Log del Pezzo surfaces with I =1

Weights Degree | K% | p | lct Monomials Singular Points
t%, yz°, y’t, o°,
2.2 2
9a xTY“z°, x°2t, _1
(2,3,5,9) 18 L | 7| b 22y3z, 2dyt, O: 5(1’2)1
6 Pyt 2122 Py 0,0 =2 x 3(1,1)
td §52y2;2xtg ZJd O O 5 1(1 1)
P ) ) ) =5 x %
3,3,5,5 15 L5 2 5 xyt, 22y e 3
(777) 15 y,xy , 7Y, OzOt:3Xl(1,1)
23y2. oty 2P 5
th, y5, th, O, = %(1, 1)
(3,5,7,11) 25 = | 5] 2 ryiz, xlyz?, 0. = 1(3,5)
z3yt, 2592, 252 O; = ﬁ(5, 7)
t2, zzt, 24, xy5, O, = %(1, 1)
(3,5,7,14) 28 = 6] % 223z, 2y, O, = 1(1,2)
w3y222,5w6y2, 39672 0,0, =2 x %(3, 5)
A T S A S LR (O
(3,5,11,18) 6 | 15 6] T | 3,2 452 |O-=wGD)
251, 27y, 212 0,0; =2 x 5(1,1)
O, = %1(2, 1)
2 .4 .3 .5 0, =(7,2)
57 147 17721 56 _4 4 25 yt Y, T2V, XYz, z 17\
( ) 1785 8 27t O = %(57 17)
0,0; 1:(1 x 1(5,3)
0, =121
(5,19,27,31) 1| o3 ||z | Ayt aTyz | 1(2 ?2)
49y 21, 2945 6 2104 vy IS
Ot - 5(5, 27)
0O, = 1:(2,3)
2 0B eud. T y = 19\
(5,19,27,50) | 100 | g5 (4] B | 50T g YT | 00 = 52(5,23)
’ OmOt =2 X %(27 1)
O, =3(3,1)
23, 4t, xtz, 3 32, T
(7,11,27,37) 81 | 525 3|4 Y 210, Y510, =L(7.5)
Oy = 5=(11,27)

a: if Oy has a tacnodal point, b: if Cy has no tacnodal points.
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Log del Pezzo surfaces with I =1

Weights Degree | K% [p]let Monomials Singular Points

7(3,1)
(11,17)
x &(7,5)

8
-3

12 y4t yS xz3
7,11,27,44 88 2 |4 35 YL Y )
( T e ) 2079 8 $4y327 l,lly

I3

<
S

I3

8 8
S
Il 5l=2 1=

(9,15,17,20)

(@)

(@)
—

w
|2

3 .4 3 .5
765 t,y,xz,:ny

=y B

<
~

3 42 .24 .3 4
t°, zte, 2°t, 2°, xy”,
2%y

<

8 8
S
I &=l

1
(9,15,23,23) 69 s | 5] 6

IS}
~

8
—
=
Ve
— 3
O Ot
P

(11,29,39,49) | 127 |20 13| 2| 22 y12 2yt 282

183
g~
—~

o~
1
|>—@|’_‘

8
—
=
—
w ~3
S—

(11,49,69,128) | 256 | 527 | 2| 22 | 2, y23, o, 2172

I

<
&l-
—~ —~ —~

<
|

(13,23,35,57) | 127 | =22 | 3| 8| 224 ¢z 242 2By

8

|
-l
— —

Y
Il

Rl
—
[\]
w
w
(@)
SN—

©
—_

3

8
=y

(13,35,81,128) | 256 | so2== |2 2,0z, x23, 21Ty

—_
o
<

OCLLLLL VL LLICLL/L L2200
|
g~

I3
o
=

9¢T
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Log del Pezzo surfaces with I = 2

Weights Degree K§< p | lct Monomials Singular Points
3, 2t2, 2%, 23, xy’, Oy = 3n(1 1)
(3.3n,3n+1,3n+1) | 9n+3 ST 7|1 n+1y23 xinﬂy 0,0y = 3 x 3(11,(1) |
n+ OOt—3><3nJrl 1,n
t37 th, z2t> 23, l,y?)’ O 3n+1(1 1)
(3, 3n + 1, 3n + 2, 3n + 2) In+6 m ) 1 gjn—’_lyt, ;p""'lyz, zYt —
p3n+2 =3 x 3n+2 (3,3n 4+ 1)
O, ==(1,1
4(12n+5) p, iz, 22 Oz = ( (2’) 3n)
n 2 2 +1 o 3n+1
(3,3n+1,3n+2,6n+1) | 12n+5 ST G2 G ) 51 1 | t?z, ;p"gﬁi’l $2n yt, 0. = o 2(3 Sn 4 1)
x Y Lt
O, = 6n+1(3n—|—1 3n+2)
A 23 5t at? ahyz?, | Oy = 3n+1(1 n)
(3, 3n + 1, 6n + 1, Qn) 18n + 3 m ) 1 (L’2ny22, w3”y3, Ot (37'L + 1 6n + 1)
$3n+1t, wﬁn—i—l Oth — 2 % (1 1)
2 .3, .0 3
nt—i—,l Yy 2t7 yZ;L—‘,a-le ) Oz 6n+1 (3TL+1 3”-1-2)
8 7 TYzs, T y>z, 0.0, =2 % (11)
(3,3n+1,6n+1,9n+3) | 18n+6 ST Gn D) 6] 1 Ly ity Ot
x’6n+2 ’ OyOt =2X 3n—|—1(1 ’I’L)
O, = 1(1 1)
23, 4222 yly oS 4
’ g T | O = (2n +1,4n+2)
3 2 n+1 2n+1 6n+1
(4, 2n + 1, 4n + 2, 6n + 1) 12n + 6 @nt1)(6n11) 6 1 xt s xwzn?itf -g z, O O —1x (1 1)
Y 0,0. —3><2n+1(1 n)
O; = I 4(2 2)
1 y47 ygzv y222, yzgv O O j+2 X (1 1)
(4, 2n + 3, 2n + 3, an + 4) 8n + 12 m 7 1 z4’ l‘t2, $n+2t’ O Ot

x2n+3

:4>< sz (4,2n + 1)
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Log del Pezzo surfaces with I = 2

Weights Degree | K% | p | lct Monomials Singular Points
3 v —
1a Zﬂy2t7y7xt7 :l 4
(2,3,4,5) 12 2 15 70| xyPz, 222?22yt Or=5(3,4) 1
12 232, 2z, 0,0. =3 x 3(1,1)
t2, Yyzt, y2z2, :Uzg, Oy = %(L 1)
(2,3,4,7) 14 5 |6 1| ayt 2Pyt 2tz | 0. = (1 1)
2322, 242, 2%z, 27 | 0,0, =3 x ;(1, 1)
2 3 t2’ Zzta 247 y5a wy32, Or N %(17 1)1
(3,4,5, 10) 20 15 5} b} wzyt’ w2y227 w4y27 OyOt =1x 5(1, 1)
252 0,0, =2 x (3,4
0, =1(1,1)
t2, 23, 52, T 3t, v
1 s | 2058wy 10,0 =1x3(L1)
(3,4,10,15) 30 = | 7| 5 | z7yzs, 27y’ 2ty i
25, 26y3, 210 0:0;=1x£(3,4)
’ ’ 0,0, =2 x £(1,1)
O, =1(3,4
(5,13,19,22) 57 | 5 |s| m | et et atm | o i((2 ?),)
y 19y 4+ 715 12 27t vy 113 ’
Oy = 55(5,19)
O, = (2,3)
2 .3 5 ,.5,2 y = 13\
8 25 7, yz°, xy°, v°y°z, _ 1
(5,13,19, 35) 70 5 |3 B o7t gl O, = 15(5,16)
’ 0,0; =2 x £(3,4)
2, A g3 32 | Op = £(2,3)
10.1 4 4 25 t 2, Y, T2T, 7Y, t 13\
(6,9, 0, 3) 36 195 12 26 OmOy =2 X %(1, 1)
0,0, =1x %(1,1

a: if the defining equation of X contains yzt, b: if the defining equation of X contains no yzt.
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Log del Pezzo surfaces with I = 2

Weights Degree | K% | p| lct Monomials Singular Points
O, = 2(5,4)
4 .3 2 2,3 r T\
(7,8,19,25) 57 | L 3| | W v;”;fyv TYE o, = %1(7,3)
@:$@w)
O, = =(5,4)
t2, t 4’ 8’ CL’Z?’, T T\
(7,8,19,32) 64 4 4 2 x;/ygzy s 0. = 4(8,13)
’ 0,0; =2 x £(7,3)
O, = 5(4,7)
0.=%(4,1)
12,13,1 4 1 63 3 .4 3 .4 z 3\
(9,12,13,16) 8 7 || ; 7,y w2, a2ty 0,0, = 1 x 1(1,1)
0,0; =1x 1(1,1)
O, = 5(1,1)
3, 122, t22, 23, ayt, | Oy = 5(1,1)
9,12,19,19 57 1 5 3 ’ ’ ’ ) ) Yy 12\
(9,12,19,19) 171 2oy OzOyzlxé(l,l)
0.0, =3 x +(3,4)
Oy = 1%9(374)
0. = 4(19,7)
9,19,24,31 81 | 125 |3| 3| t%, v’z 223, 2f RN
( ) 1178 Y, Yz, xz", Ot:3—11(3,8)
0,0, =1x1(1,1)
O, = 11io(?,, 1)
O, = (16,5)
10,1 4 1 _6 57 2 3 5 .7 y — 19\1Y,
(10,19, 35,43) 05 o8 | 3| 1 7y, 27, xy°, 'z Ot:%@’?)
0,0, =1 x 1(4,3)
O, = ?11(10,3)
0, = =(11,19)
11,21,28,47 105 | =2- (3| 5 yz3 xt2 z7 y T\
( ) 3619 30 Yy, Yy, v, 'z Ot—4—17(3,4)
0,0; =1x 1(4,5)
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Log del Pezzo surfaces with I = 2

Weights Degree | K% | p|let Monomials Singular Points
0, = £(3,10)
0, = (11, 16)
11,25, 32,41 107 107\ 3| 1L 42, 3, 08 46 vy = a5\t
( ) 90200 3 Y, Yoz, 27, 0. = 3(25,9)
O = 4—1%(11,32)
0, = ?(3, 10)
O, = 5=(1,2)
11,25,34,43 111 | =222 [ 3|33 | 42, .24 04 o7 v = 25\h
( ) 201025 8 tey, z°t, xy*, x'z 0, = ?%4(11’25)
Oy = £(11,34)
0, = £(10,3)
(11,43,61,113) | 226 | oo | 2] 22 | #2923 2P 22 | Oy = 5(2,3)
0, = &(11,52)
O, = ?13(2,3)
0, = =(13,7)
13,18, 45,61 135 2 13| B 3 by a2 29 y = 18U
( ) 2379 30 , Yoz, 7, 7Y Otzﬁ%(2,5)
0,0, =1 x £(4,7)
0, = ?13(7,8)
‘ O, = 5(13,9)
13,20,29, 47 107 A07_ 131 65 3 3 42 6 y = 20
( ) 88595 18 yot, yz©, ottt 20z 0, = 2_19(13’ 18)
O, = 4—1{(20, 29)
‘ O, = (13,9)
13,20, 31,49 111 A1l ) 3] 65 34 oA 2 7 y = 3p\19
( ,49) 98735 16 z2°t, Yz, xtt, 'y 0. 3%(13’20)
Oy = £(20,31)
. 0, = 1(6,9)
91
(13,31,71,113) | 226 | mom3 | 2] 55 | % v°z, 223, 2y | Oy = $:(13,20)
0. = +(31,42)
O, = 11%1(3, 13)
O, = +(12,7)
14,17,29, 41 99 198 | 3| 51 2, 52 5 .5 y = 17\44
( ) 141491 0 | 7Y, 27wy, 202 0. — 2_19(14’ 17)
Oy = £(14,29)

ovt
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Log del Pezzo surfaces with I =3

Weights Degree K)z( P | lct Monomials Singular Points

= %(2’ 1)

Oy
t2 3 4 3
(5,7,11,13) 33 2L 3] 2 y,z,;@;,wyz, O, = £(2,3)

t

<

18 25 t27 yz37 wy57 x3y227
(5,7,11,20) | 40 | 48 4|2 PRl

183

==
o NS

=~

~—

< 8 8

oS

Rl
—

= Ot

[N N}

SN—

(11,21,29, 37) 95 | g 13| 3| 2y, 2%, ay?, 252

+ow
|
g

8
—
—

(11,37, 53,98) 196 | oiobr | 2] 22 | #2, y2B, oy, 2132

<

8

<
|

(13,17,27,41) 95 | o2 |3 B 22 gz, at?, 2y

I

o~

8

(13,27,61,98) 196 | 525 [ 2] B | 12, 902, w23, 2'3y

<
|
e o e e oo 4

8

=2 ~&iH

(15,19,43,74) | 148 | &= | 2| 50| #2423, o7, 272

<

QXL LLLLLLLLL L0
I

183
I
=2}
—
—~ |~~~
[\)
N
w
|
~—

S}
1
o
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Log del Pezzo surfaces with I =4

Weights Degree K% p | lct Monomials Singular Points
0, =5(1,1)
5 1342 224 53 Oy = 6n1+3(1’11)
(6, 6n + 3, on + 5, 6n + 5) 18n + 15 W 5 1 .;'y3’ 7‘%.2”_’_’2?4 ’ OxOy =1x g(l, 1)
0,0; = ,
=3 x16n+5(2,2n+1)
3¢, at?, T
(6,6n+5,12n +8,18n +9) | 360 + 24 | gmrsyEnrs | 3 | L 2n+1322 Vonea | = T +9(6n+5 12n+8)
0,0, =1 x (1 1)
0,0, =1x (1 1)
0, = 12n+8(6n—i—5 6n+7)
2 43t 5. 123 0,0,=1x 3 (11)
4 )
(6, on + 5, 12n + 8, 18n + 15) 36n + 30 m 4 1 2n+2y22 l‘6n+5 O Ot =1x (1 1)
0,0; =
:2>< on 5(2 2n+1)
F= 109
2 4 .3 .2 = _(5 )
24 3 1 ty7yaz7xyza 9\
(5,6,8,9) 15 3 34 oyoz —1x1(1,1)
0,0, =1 x 3(1,1)
t2 y5 y23 OmOt =2 X l(1,3)
5,6,8,15 30 2 4|1 AR 5
( ) Yy Oy ) 15 x2y227 .Z'3t, x6 OyOt =1x %(1, 1)
0,0, =1x (1,1
T
Oy == ?23, 2))
0, = +(11,5
11,12,1 4 20 n 2 3 3 .5 z = T2\t
(9,11,12,17) 5 56T 31 | Py, viz, 223, Otzl%(374)
0,0, =1x %(1,1)

47!
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Log del Pezzo surfaces with I =4

Weights Degree Ki p | lct Monomials Singular Points
O, = ?1023 1))
0, = +(12,5
24 91 )
(10,13,25,31) 5 as |3 e |t 2wt b sz 31%5’)(275)
0,0, =1x £(3,1)
O, = 17(2,3)
(11,17,20,27) | 71 |24 | 3| L | 12y 432 223, 2% 0§= %(11,10)
9 9 9 BEOY 3 5 2, 27, X
25245 6 Yy 0, = 21_10(17’ 7)
O; = 2—I(11,20)
0, = (1,2
(11,17, 24, 31) 79 | 23813 33| 2y 422, 2yt 252 vy
17391 16 Y Y 0, = 21—14(11, 17)
O; = g—%(11,24)
32 55 O:v B ?(3’ 2)
(11,31, 45,83) 166 | == |2 57 | 3, w2t a2ty | Oy = 31—1(2,3)
0. = 4—15(11,38)
0, = +(13,5
(13,14, 19, 29) 71 D68 13 85 g3 23 a2, 2tz P
50141 36 vy 0, = 11—19(13, 10)
O; = 2—?(14, 19)
. 0, = +(13,5
(13,14,23,33) 79 | 83213 831 422 gz a2, 4P R
69069 32 Yy Y 1o, = 21_13(13, 14)
8t = 2_13((14a 2)3)
= L(7,6
T 11\
(13,23,51,83) 166 | 25 2| 55 | 12 402, a28, 2y | Oy = 5(13,14)
0. = =(23,32)
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Log del Pezzo surfaces with I =5

Weights Degree Ki p | lct Monomials Singular Points
Oy = 111 (273)
0, = (1,2)
11,13,19,2 _63_ 13 2 2 4 .4 y — 13\b
(11,13,19,25) 63 7= | 3| § | toy, tz7, xyt, atz 0. =1(11,13)
Oy = =(11,19)
(11,25,37,68) 136 = 2|8 2y b 2% |0y= 21%(2,3)
0, = +(11,31)
(13,19,41,68) | 136 | 125 |2 | 25 | 2, 902 223, 2% | Oy = £5(13,11)
0. = £(19,27)

44t
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Log del Pezzo surfaces with I = 6

Weights Degree Ki P | let Monomials Singular Points
Oy = x(4n +5,4n +9)
1
9(12n+23) 2t yt2, ay?, | Ov = s (1,2)
(8,4n+5,4n+7,4n+9) | 12n+ 23 ST T5) (I +7) (T 59) 3|11 ont2, 0, = #4_7(8,4714-5)
Or = 58, 4n +7)
Oy = §(3n +11,6n + 13)
O, = =1=(9,6n + 13)
2 3 2 Y 3n+8\7?
4(12n+35) z°t, y°z, xt”,
(9,3n +8,3n +11,6n + 13) | 120+ 35 | mrgmners | 5 | | o, gz = 57(9,3n 4 8)
t pr—
= 5z (3n+8,3n+11)
Oy = 1(1,5)
3,3 2 |0, =+(7,9)
7,10,15,19 45 e 3| & | #HVHE Py =10
( ) 665 54 w5y O, = %(273)
0,0, =1 x £(1,2)
72 55 | 2, y23, xyd® Ox = ?11(8’9)
(11,19, 29, 53) 106 2 2| 22 7yx7; Yo 0y =5(2,3)
0, = %(11,24)
Om = i(57 1)
24 o1 | 12, 9z, w2, _ P
(13,15,31,53) 106 e 2| & o7y Oy = 1:(13,8)
0, = +-(15,22)
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Log del Pezzo

surfaces with I =7

Weights Degree K)z( p | lct Monomials Singular Points
0, = £(2,5)
(11,13,21,38) 76 55 12 12| 2y 2l 22 | Oy =£(2,3)
0, = £+(11,17)

surfaces with I = &

Weights Degree | K% | p | lct Monomials Singular Points
O, =1(3,1)
(7,11,13,23) 46 | £ 12 B g2 48y 228 2%y |0y = £(T.1)
0, = 1(11,10)
O, = 2(3,1)
0, = =(7,1)
18.2 1 32 35 3 3 2 .9 y — I8\h
(7,18,27,37) 8 = | 3| 53 | y°z 2°, xt?, 2’y O = L(2,3)
Oy »=1X %(771)
Log del Pezzo surfaces with I =9
Weights Degree | K% | p|lct Monomials Singular Points
(7,15,19, 32) 64 228 | 22 2Ty | Oy =£(7,2)
0, = +(15,13)
Log del Pezzo surfaces with I = 10
Weights Degree K)z( p | lct Monomials Singular Points
(7,19,25,41) 82 =12 5| B a2t 2y | Oy = 4(7,3)
0, = %(19,16)
0, = 7(2,3)
(7,26,39,55) 117 | 32313 & | 9%z, 28, at?, 2By Of: ge 30)
0,0, =1x £(7,3)

971
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1]
2]
8]
[4]
[5]
[6]

[7]
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