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EXCEPTIONAL DEL PEZZO HYPERSURFACES

IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

Abstract. We compute global log canonical thresholds of a large class of quasismooth well-
formed del Pezzo weighted hypersurfaces in P(a1, a2, a3, a4). As a corollary we obtain the exis-
tence of orbifold Kähler–Einstein metrics on many of them, and classify exceptional and weakly
exceptional quasismooth well-formed del Pezzo weighted hypersurfaces in P(a1, a2, a3, a4).
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Part 1. Introduction

All varieties are always assumed to be complex, algebraic, projective and normal unless oth-
erwise stated.

1.1. Background

The multiplicity of a nonzero polynomial f ∈ C[z1, . . . , zn] at a point P ∈ Cn is the non-
negative integer m such that f ∈ m

m
P \ m

m+1
P , where mP is the maximal ideal of polynomials

vanishing at the point P in C[z1, . . . , zn]. It can be also defined by derivatives: the multiplicity
of f at the point P is the number

multP (f) = min

{

m
∣

∣

∣

∂mf

∂m1z1∂m2z2 . . . ∂mnzn
(P ) 6= 0

}

.

On the other hand, we have a similar invariant that is defined by integrations. This invariant,
which is called the complex singularity exponent of f at the point P , is given by

cP (f) = sup
{

c
∣

∣

∣
|f |−c is locally L2 near the point P ∈ Cn

}

.

In algebraic geometry this invariant is usually called a log canonical threshold. Let X be a
variety with at most log canonical singularities, let Z ⊆ X be a closed subvariety, and let D be
an effective Q-Cartier Q-divisor on the variety X. Then the number

lctZ

(

X,D
)

= sup
{

λ ∈ Q

∣

∣

∣
the log pair

(

X,λD
)

is log canonical along Z
}

is called a log canonical threshold of the divisor D along Z. It follows from [26] that for a
polynomial f in n variables over C and a point P ∈ Cn

lctP

(

Cn,D
)

= cP
(

f
)

,

where the divisor D is defined by the equation f = 0 on Cn. We can define the log canonical
threshold of D on X by

lctX

(

X,D
)

= inf
{

lctP

(

X,D
)

∣

∣

∣
P ∈ X

}

= sup
{

λ ∈ Q

∣

∣

∣
the log pair

(

X,λD
)

is log canonical
}

.

For simplicity, the log canonical threshold lctX(X,D) will be denoted by lct(X,D).
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Example 1.1.1. Let D be a cubic curve on the projective plane P2. Then

lct
(

P2,D
)

=















































































1 if D is a smooth curve,

1 if D is a curve with ordinary double points,

5

6
if D is a curve with one cuspidal point,

3

4
if D consists of a conic and a line that are tangent,

2

3
if D consists of three lines intersecting at one point,

1

2
if Supp

(

D
)

consists of two lines,

1

3
if Supp

(

D
)

consists of one line.

Now we suppose that X is a Fano variety with at most log terminal singularities.

Definition 1.1.2. The global log canonical threshold of the Fano variety X is the number

lct
(

X
)

= inf
{

lct
(

X,D
)

∣

∣

∣
D is an effective Q-divisor on X with D ∼Q −KX

}

.

The number lct(X) is an algebraic counterpart of the α-invariant introduced in [44] and [48]
(see [14, Appendix A]). Because X is rationally connected (see [50]), we have

lct
(

X
)

= sup

{

λ ∈ Q

∣

∣

∣

∣

∣

the log pair
(

X,λD
)

is log canonical for every

effective Q-divisor numerically equivalent to −KX

}

.

It immediately follows from Definition 1.1.2 that

lct
(

X
)

= sup







ε ∈ Q

∣

∣

∣

∣

∣

∣

the log pair
(

X,
ε

n
D
)

is log canonical for every

divisor D ∈
∣

∣− nKX

∣

∣ and every positive integer n







.

Example 1.1.3 ([14]). Suppose that P(a0, a1, . . . , an) is a well-formed weighted projective space
with a0 6 a1 6 . . . 6 an (see [22]). Then

lct
(

P
(

a0, a1, . . . , an

)

)

=
a0

∑n
i=0 ai

.

Example 1.1.4. Let X be a smooth hypersurface in Pn of degree m 6 n. The paper [6] shows
that

lct
(

X
)

=
1

n+ 1 −m

if m < n. For the case m = n > 2 it also shows that

1 −
1

n
6 lct(X) 6 1
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and the left equality holds if X contains a cone of dimension n− 2. Meanwhile, the papers [13]
and [38] show that

1 > lct
(

X
)

>







































1 if n > 6,

22

25
if n = 5,

16

21
if n = 4,

3

4
if n = 3,

if X is general.

Example 1.1.5. Let X be a smooth hypersurface in the weighted projective space P(1n+1, d)
of degree 2d > 4. Then

lct
(

X
)

=
1

n+ 1 − d
in the case when d < n (see [8, Proposition 20]). Suppose that d = n. Then the inequalities

2n− 1

2n
6 lct

(

X
)

6 1

hold (see [13]). But lct(X) = 1 if X is general and n > 3. Furthermore for the case n = 3 the
papers [13] and [38] prove that

lct
(

X
)

∈

{

5

6
,
43

50
,
13

15
,
33

38
,
7

8
,
33

38
,
8

9
,

9

10
,
11

12
,
13

14
,
15

16
,
17

18
,
19

20
,
21

22
,
29

30
, 1

}

and all these values are attained. For instance, if the hypersurface X is given by

w2 = x6 + y6 + z6 + t6 + x2y2zt ⊂ P
(

1, 1, 1, 1, 3
)

∼= Proj
(

C
[

x, y, z, t, w
]

)

,

where wt(x) = wt(y) = wt(z) = wt(t) = 1 and wt(w) = 3, then lct(X) = 1 (see [13]).

Example 1.1.6 ([21]). Let X be a rational homogeneous space such that the Picard group of
X is generated by an ample Cartier divisor D and −KX ∼ rD for some positive integer r. Then
lct(X) = 1

r
.

Example 1.1.7. Let X be a quasismooth well-formed (see [22]) hypersurface in

P(1, a1, a2, a3, a4) of degree
∑4

i=1 ai with at most terminal singularities, where a1 6 . . . 6 a4.
Then there are exactly 95 possibilities for the quadruple (a1, a2, a3, a4) (see [22], [24]). For a
general hypersurface X, it follows from [7], [9], [10] and [13] that

1 > lct
(

X
)

>























































16

21
if a1 = a2 = a3 = a4 = 1,

7

9
if (a1, a2, a3, a4) = (1, 1, 1, 2),

4

5
if (a1, a2, a3, a4) = (1, 1, 2, 2),

6

7
if (a1, a2, a3, a4) = (1, 1, 2, 3),

1 otherwise.
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The global log canonical threshold of the hypersurface

w2 = t3 + z9 + y18 + x18 ⊂ P
(

1, 1, 2, 6, 9
)

∼= Proj
(

C
[

x, y, z, t, w
]

)

is equal to 17
18 , where wt(x) = wt(y) = 1, wt(z) = 2, wt(t) = 6, wt(w) = 9 (see [7]).

Example 1.1.8 ([12]). Let X be a singular cubic surface in P3 with at most canonical singu-
larities. The possible singularities of X are listed in [5]. The global log canonical threshold of
X is as follows:

lct
(

X
)

=



























































2

3
if Sing

(

X
)

=
{

A1

}

,

1

3
if Sing

(

X
)

⊇
{

A4

}

, Sing
(

X
)

=
{

D4

}

or Sing
(

X
)

⊇
{

A2,A2

}

,

1

4
if Sing

(

X
)

⊇
{

A5

}

or Sing
(

X
)

=
{

D5

}

,

1

6
if Sing

(

X
)

=
{

E6

}

,

1

2
otherwise.

So far we have not seen any single variety whose global log canonical threshold is irrational.
In general, it is unknown whether global log canonical thresholds are rational numbers or not(cf.
Question 1 in [46]). Even for del Pezzo surfaces with log terminal singularities the rationality of
their global log canonical thresholds is unknown. However, we expect more than this as follows:

Conjecture 1.1.9. There is an effective Q-divisor D on the variety X such that it is Q-linearly
equivalent to −KX and

lct
(

X
)

= lct
(

X,D
)

.

The following definition is due to [42] (cf. [23], [29], [32], [37]).

Definition 1.1.10. The Fano variety X is exceptional (resp. weakly exceptional, strongly
exceptional) if for every effective Q-divisor D on the variety X such that D ∼Q −KX and the
pair (X,D) is log terminal (resp. lct(X) > 1, lct(X) > 1).

It is easy to see the implications

strongly exceptional =⇒ exceptional =⇒ weakly exceptional.

However, if Conjecture 1.1.9 holds for X, then we see that X is exceptional if and only if X is
strongly exceptional. Exceptional del Pezzo surfaces, which are called del Pezzo surfaces without
tigers in [27], lie in finitely many families (see [42], [37]). We expect that strongly exceptional
Fano varieties with quotient singularities enjoy very interesting geometrical properties (cf. [41,
Theorem 3.3], [35, Theorem 1]).

The main motivation for this article is that the global log canonical threshold turns out to play
important roles both in birational geometry and in complex geometry. We have two significant
applications of the global log canonical threshold of a Fano variety X. The first one is for the
case when lct(X) > 1. This inequality has serious applications to rationality problems for Fano
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varieties in birational geometry. The other is for the case when lct(X) > dim(X)
1+dim(X) . This has

important applications to Kähler-Einstein metrics on Fano varieties in complex geometry.
For a simple application of the first inequality, we can mention the following.

Theorem 1.1.11 ([7] and [38]). Let Xi be birationally super-rigid Fano variety with lct(Xi) > 1
for each i = 1, . . . , r. Then the variety X1 × . . . ×Xr is non-rational and

Bir
(

X1 × . . . ×Xr

)

= Aut
(

X1 × . . .×Xr

)

.

For every dominant map ρ : X1 × . . . × Xr 99K Y whose general fiber is rationally connected,
there is a subset {i1, . . . , ik} ⊆ {1, . . . , r} and a commutative diagram

X1 × . . . ×Xr

π

��

σ
//______ X1 × . . .×Xr

ρ

))R

R

R

R

R

R

R

R

Xi1 × . . .×Xik ξ
//___________________ Y,

where ξ and σ are birational maps, and π is the natural projection.

This theorem may be more generalized so that we could obtain the following

Example 1.1.12 ([7]). Let Xi be a threefold satisfying hypotheses of Example 1.1.7 with
lct(Xi) = 1 for each i = 1, . . . r. Suppose, in addition, that each Xi is general in its deformation
family. Then the variety X1 × . . .×Xr is non-rational and

Bir
(

X1 × . . .×Xr

)

=
〈

r
∏

i=1

Bir(Xi), Aut
(

X1 × . . .×Xr

)〉

.

For every dominant map ρ : X1 × . . . × Xr 99K Y whose general fiber is rationally connected,
there is a subset {i1, . . . , ik} ⊆ {1, . . . , r} and a commutative diagram

X1 × . . . ×Xr

π

��

σ
//______ X1 × . . .×Xr

ρ

))R

R

R

R

R

R

R

R

Xi1 × . . .×Xik ξ
//___________________ Y,

where ξ and σ are birational maps, and π is the natural projection.

The following result that gives strong connection between global log canonical thresholds and
Kähler-Einstein metrics was proved in [16], [34],[44] (see [14, Appendix A]).

Theorem 1.1.13. Suppose that X is a Fano variety with at most quotient singularities. Then
it admits an orbifold Kähler–Einstein metric if

lct
(

X
)

>
dim

(

X
)

dim
(

X
)

+ 1
.

Examples 1.1.4, 1.1.5 and 1.1.7 are good examples to which we may apply Theorem 1.1.13.
There are many known obstructions for the existence of orbifold Kähler–Einstein metrics on

Fano varieties with quotient singularities (see [17], [19], [31], [33], [40], [47]).
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Example 1.1.14 ([20]). Let X be a quasismooth hypersurface in P(a0, . . . , an) of degree d <
∑n

i=0 ai, where a0 6 . . . 6 an. Suppose that X is well-formed and has a Kähler–Einstein metric.
Then

d

(

n
∑

i=0

ai − d

)n

6 nn
n
∏

i=0

ai,

and
∑n

i=0 ai 6 d+ na0 (see [2], [43]).

The problem of existence of Kähler–Einstein metrics on smooth del Pezzo surfaces is com-
pletely solved by [45] as follows:

Theorem 1.1.15. If X is a smooth del Pezzo surface, then the following conditions are equiv-
alent:

• the automorphism group Aut(X) is reductive;
• the surface X admits a Kähler–Einstein metric;
• the surface X is not a blow up of P2 at one or two points.

Acknowledgments. The first author is grateful to the Max Plank Institute for Mathematics
at Bonn for the hospitality and excellent working conditions. The first author was supported by
the grants NSF DMS-0701465 and EPSRC EP/E048412/1, the third author was supported by
the grants RFFI No. 08-01-00395-a, N.Sh.-1987.1628.1 and EPSRC EP/E048412/1. The second
author has been supported by the Korea Research Foundation Grant funded by the Korean
Government (KRF-2008-313-C00024).

The authors thank I. Kim, B. Sea, and J. Won for their pointing out numerous mistakes in
the first version of this paper.

1.2. Results

Let Xd be a quasismooth and well-formed hypersurface in P(a0, a1, a2, a3) of degree d, where
a0 6 a1 6 a2 6 a4. Then the hypersurface Xd is given by a quasihomogeneous polynomial
equation f(x, y, z, t) = 0 of degree d. The quasihomogeneous equation

f
(

x, y, z, t
)

= 0 ⊂ C4 ∼= Spec
(

C
[

x, y, z, t
]

)

,

defines an isolated quasihomogeneous singularity (V,O) with the Milnor number
∏n

i=0(
d
ai

− 1),

where O is the origin of C4. It follows from the adjunction formula that

KXd
∼Q OP(a0, a1, a2, a3)

(

d−

3
∑

i=0

ai

)

,

and it follows from [18], [26, Proposition 8.14], [39] that the following conditions are equivalent:

• the inequality d 6
∑3

i=0 ai − 1 holds;
• the surface Xd is a del Pezzo surface;
• the singularity (V,O) is rational;
• the singularity (V,O) is canonical.
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Blowing up C4 at the origin O with weights (a0, a1, a2, a3), we get a purely log terminal blow
up of the singularity (V,O) (see [28], [36]). The paper [36] shows that the following conditions
are equivalent:

• the surface Xd is exceptional (weakly exceptional, respectively);
• the singularity (V,O) is exceptional1 (weakly exceptional, respectively).

From now on we suppose that d 6
∑3

i=0 ai − 1. Then Xd is a del Pezzo surface. Put

I =
∑3

i=0 ai − d. The list of possible values of (a0, a1, a2, a3, d) with 2I < 3a0 can be found
in [4] and [15]. For the case I = 1, we can obtain the complete list of del Pezzo surfaces
Xd ⊂ P(a0, a1, a2, a3) from [25] as follows:

• smooth del Pezzo surfaces
X3 ⊂ P(1, 1, 1, 1), X4 ⊂ P(1, 1, 1, 2), X6 ⊂ P(1, 1, 2, 3),

• singular del Pezzo surfaces
X8n+4 ⊂ P(2, 2n + 1, 2n + 1, 4n + 1), where n is a positive integer,
X10 ⊂ P(1, 2, 3, 5), X15 ⊂ P(1, 3, 5, 7), X16 ⊂ P(1, 3, 5, 8), X18 ⊂ P(2, 3, 5, 9),
X15 ⊂ P(3, 3, 5, 5), X25 ⊂ P(3, 5, 7, 11), X28 ⊂ P(3, 5, 7, 14),
X36 ⊂ P(3, 5, 11, 18), X56 ⊂ P(5, 14, 17, 21), X81 ⊂ P(5, 19, 27, 31),
X100 ⊂ P(5, 19, 27, 50), X81 ⊂ P(7, 11, 27, 37), X88 ⊂ P(7, 11, 27, 44),
X60 ⊂ P(9, 15, 17, 20), X69 ⊂ P(9, 15, 23, 23), X127 ⊂ P(11, 29, 39, 49),
X256 ⊂ P(11, 49, 69, 128), X127 ⊂ P(13, 23, 35, 57), X256 ⊂ P(13, 35, 81, 128).

The global log canonical thresholds of such del Pezzo surfaces have been considered either
implicitly or explicitly in [1], [3], [11], [16], [25]. For example, the papers [1], [3], [16] and
[25] gives us lower bounds for global log canonical thresholds of singular del Pezzo surfaces
with I = 1. Meanwhile, the paper [11] deals with the exact values of the global log canonical
thresholds of smooth del Pezzo surfaces with I = 1.

Theorem 1.2.1. Suppose that I = 1 and Xd is smooth. Then

lct
(

Xd

)

=







































































1 if
(

a0, a1, a2, a3

)

=
(

1, 1, 2, 3
)

and | −KX6
| contains no cuspidal curves,

5

6
if
(

a0, a1, a2, a3

)

=
(

1, 1, 2, 3
)

and | −KX6
| contains a cuspidal curve,

5

6
if
(

a0, a1, a2, a3

)

=
(

1, 1, 1, 2
)

and | −KX4
| contains no tacnodal curves,

3

4
if
(

a0, a1, a2, a3

)

=
(

1, 1, 1, 2
)

and | −KX4
| contains a tacnodal curve,

3

4
if X3 is a cubic in P3 with no Eckardt points,

2

3
if X3 is a cubic in P3 with an Eckardt point.

However, for singular del Pezzo surfaces, the exact values of global log canonical thresholds
have not been considered seriously.

A singular del Pezzo hypersurface Xd ⊂ P(a0, a1, a2, a3) must satisfy exclusively one of the
following properties:

1For notions of exceptional and weakly exceptional singularities see [36, Definition 4.1], [42], [23].
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(1) 2I > 3a0 ;
(2) 2I < 3a0 and

(

a0, a1, a2, a3, d
)

=
(

I − k, I + k, a, a+ k, 2a + k + I
)

for some non-negative integer k < I and some positive integer a > I + k.
(3) 2I < 3a0 but

(

a0, a1, a2, a3, d
)

6=
(

I − k, I + k, a, a+ k, 2a + k + I
)

for any non-negative integer k < I and any positive integer a > I + k.

For the first two cases one can check that lct(Xd) 6 2
3 (for instance, see [4] and [15]). All

the quintuples (a0, a1, a2, a3, d) such that the hypersurface Xd is singular and satisfies the last
condition are listed in Section 4. They are taken from [4] and [15]. Note that we rearranged
a little the quintuples taken from [4] by putting some cases that were contained in the infinite
series of [4] into the sublist of sporadic cases; on the other hand, we removed two sporadic cases,
because they are contained in the additional infinite series found in [15]. The completeness of
this list is proved in [15] by using [49].

We already know the global log canonical thresholds of smooth del Pezzo surfaces. For del
Pezzo surfaces satisfying one of the first two conditions, their global log canonical thresholds
are relatively too small to enjoy the condition of Theorem 1.1.13. However, the global log
canonical thresholds of del Pezzo surfaces satisfying the last condition have not been investigated
sufficiently. In the present paper we compute all of them and then we obtain the following result.

Theorem 1.2.2. LetXd be a quasismooth well-formed singular del Pezzo surface in the weighted
projective space Proj(C

[

x, y, z, t
]

) with weights wt(x) = a0 6 wt(y) = a1 6 wt(z) = a2 6

wt(t) = a3 such that 2I < 3a0 but (a0, a1, a2, a3, d) 6= (I − k, I + k, a, a + k, 2a+ k + I) for any

non-negative integer k < I and any positive integer a > I + k, where I =
∑3

i=0 ai − d. Then if
a0 6= a1, then

lct(Xd) = min

{

lct
(

Xd,
I

a0
Cx

)

, lct
(

Xd,
I

a1
Cy

)

, lct
(

Xd,
I

a2
Cz

)

}

,

where Cx (resp. Cy, Cz) is the divisor on Xd defined by x = 0 (resp. y = 0, z = 0). If a0 = a1,
then

lct(Xd) = lct
(

Xd,
I

a0
C
)

,

where C is a reducible divisor in |OXd
(a0)|.

In particular, we obtain the value of lct(Xd) for every del Pezzo surface Xd listed in Section 4.
As a result, we obtain the following corollaries.

Corollary 1.2.3. The following assertions are equivalent:

• the surface Xd is exceptional;
• lct(Xd) > 1 ;
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• the quintuple (a0, a1, a2, a3, d) lies in the set






































































































































(2, 3, 5, 9, 18), (3, 3, 5, 5, 15), (3, 5, 7, 11, 25), (3, 5, 7, 14, 28),

(3, 5, 11, 18, 36), (5, 14, 17, 21, 56), (5, 19, 27, 31, 81), (5, 19, 27, 50, 100),

(7, 11, 27, 37, 81), (7, 11, 27, 44, 88), (9, 15, 17, 20, 60), (9, 15, 23, 23, 69),

(11, 29, 39, 49, 127), (11, 49, 69, 128, 256), (13, 23, 35, 57, 127),

(13, 35, 81, 128, 256), (3, 4, 5, 10, 20), (3, 4, 10, 15, 30), (5, 13, 19, 22, 57),

(5, 13, 19, 35, 70), (6, 9, 10, 13, 36), (7, 8, 19, 25, 57), (7, 8, 19, 32, 64),

(9, 12, 13, 16, 48), (9, 12, 19, 19, 57), (9, 19, 24, 31, 81), (10, 19, 35, 43, 105),

(11, 21, 28, 47, 105), (11, 25, 32, 41, 107), (11, 25, 34, 43, 111), (11, 43, 61, 113, 226),

(13, 18, 45, 61, 135), (13, 20, 29, 47, 107), (13, 20, 31, 49, 111), (13, 31, 71, 113, 226),

(14, 17, 29, 41, 99), (5, 7, 11, 13, 33), (5, 7, 11, 20, 40), (11, 21, 29, 37, 95),

(11, 37, 53, 98, 196), (13, 17, 27, 41, 95), (13, 27, 61, 98, 196), (15, 19, 43, 74, 148),

(9, 11, 12, 17, 45), (10, 13, 25, 31, 75), (11, 17, 20, 27, 71), (11, 17, 24, 31, 79),

(11, 31, 45, 83, 166), (13, 14, 19, 29, 71), (13, 14, 23, 33, 79), (13, 23, 51, 83, 166),

(11, 13, 19, 25, 63), (11, 25, 37, 68, 136), (13, 19, 41, 68, 136), (11, 19, 29, 53, 106),

(13, 15, 31, 53, 106), (11, 13, 21, 38, 76)







































































































































.

Corollary 1.2.4. The following assertions are equivalent:

• the surface Xd is weakly exceptional and not exceptional;
• lct(Xd) = 1;
• one of the following holds

– the quintuple (a0, a1, a2, a3, d) lies in the set






























































(2, 2n + 1, 2n + 1, 4n + 1, 8n + 4),

(3, 3n, 3n + 1, 3n + 1, 9n + 3), (3, 3n + 1, 3n + 2, 3n + 2, 9n + 6),

(3, 3n + 1, 3n + 2, 6n + 1, 12n + 5), (3, 3n + 1, 6n + 1, 9n, 18n + 3),

(3, 3n + 1, 6n + 1, 9n + 3, 18n + 6), (4, 2n + 1, 4n + 2, 6n + 1, 12n + 6),

(4, 2n + 3, 2n + 3, 4n + 4, 8n + 12), (6, 6n + 3, 6n + 5, 6n + 5, 18n + 15),

(6, 6n + 5, 12n + 8, 18n + 9, 36n + 24), (6, 6n + 5, 12n + 8, 18n + 15, 36n + 30),

(8, 4n + 5, 4n + 7, 4n + 9, 12n + 23), (9, 3n + 8, 3n + 11, 6n + 13, 12n + 35),

(1, 3, 5, 8, 16), (2, 3, 4, 7, 14), (5, 6, 8, 9, 24), (5, 6, 8, 15, 30)































































,

where n is a positive integer,
– (a0, a1, a2, a3, d) = (1, 1, 2, 3, 6) and the pencil |−KX | does not have cuspidal curves,
– (a0, a1, a2, a3, d) = (1, 2, 3, 5, 10) and Cx = {x = 0} has an ordinary double point,
– (a0, a1, a2, a3, d) = (1, 3, 5, 7, 15) and the defining equation of X contains yzt,
– (a0, a1, a2, a3, d) = (2, 3, 4, 5, 12) and the defining equation of X contains yzt.
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Corollary 1.2.5. In the notation and assumptions of Theorem 1.2.2, the surface Xd has an
orbifold Kähler–Einstein metric with the following possible exceptions: X45 ⊂ P(7, 10, 15, 19),
X81 ⊂ P(7, 18, 27, 37), X64 ⊂ P(7, 15, 19, 32), X82 ⊂ P(7, 19, 25, 41), X117 ⊂ P(7, 26, 39, 55),
X15 ⊂ P(1, 3, 5, 7) whose defining equation does not contain yzt, and X12 ⊂ P(2, 3, 4, 5) whose
defining equation does not contain yzt.

Corollary 1.2.3 illustrates the fact that exceptional del Pezzo surfaces lie in finitely many
families (see [42], [37]). On the other hand, Corollary 1.2.3 shows that weakly-exceptional del
Pezzo surfaces do not enjoy this property. Note also that Corollary 1.2.3 follows from [29].

1.3. Preliminaries

For the basic definitions and properties concerning singularities of pairs we refer the reader
to [26]. To prove Theorem 1.2.2 we need to compute the log canonical thresholds of individ-
ual effective divisors. The following two lemmas are rather basic properties of log canonical
thresholds but will be useful to compute them. For the proofs the reader is referred to [26] and
[30].

Lemma 1.3.1. Let f ∈ C[x1, . . . , xn] and D = (f = 0). Suppose that the polynomial f vanishes
at the origin O in Cn. Set d = multO(f) and let fd denote the degree d homogeneous part of
f . Let T0D = (fd = 0) ⊂ Cn be the tangent cone of D and P(T0D) = (fd = 0) ⊂ Pn−1 be the
projectivised tangent cone of D. Then

(1) 1
d

6 lctO(Cn,D) 6 n
d
.

(2) The log pair (Pn−1, n
d
P(T0D)) is log canonical if and only if lctO(Cn,D) = n

d
.

(3) If P(T0D) is smooth (or even log canonical) then lctO(Cn,D) = min{1, n
d
}.

Lemma 1.3.2. Let f be a polynomial in C[z1, z2]. Suppose that the polynomial defines an
irreducible curve C passing through the origin O in C2. We then have

lctO(C2, C) = min

(

1,
1

m
+

1

n

)

,

where (m,n) is the first pair of Puiseux exponents of f . We also have

lctO

(

C2, (zn1

1 zn2

2 (zm1

1 + zm2

2 ) = 0)
)

= min

(

1

n1
,

1

n2
,

m1 +m2

m1m2 +m1n2 +m2n1

)

,

where n1, n2, m1, m2 are non-negative integers.

Throughout the proof of Theorem 1.2.2, Inversion of Adjunction that enables us to compute
log canonical thresholds on lower dimensional varieties will be frequently utilized. Let X be a
normal (but not necessarily projective) variety. Let S be a smooth Cartier divisor on X and B
be an effective Q-Cartier Q-divisor on X such that KX +S +B is Q-Cartier and S 6⊆ Supp(B).

Theorem 1.3.3. The log pair (X,S + B) is log canonical along S if and only if the log pair
(S,B|S) is log canonical.

In the case when X is a surface, Theorem 1.3.3 can be stated in terms of local intersection
numbers.
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Lemma 1.3.4. Suppose that X is a surface. Let P be a smooth point of X such that it is also
a smooth point of S. Then the log pair (X,S +B) is log canonical at the point P if and only if
the local intersection number of B and S at the point P is at most 1. In particular, if the log
pair (X,mS +B) is not log canonical at the point P for m 6 1, then B · S > 1.

Lemma 1.3.5. Let D be an effective Q-divisor such that KX +D is Q-Cartier. For a smooth
point P of X, the log pair (X,D) is log canonical at the point P if multP (D) 6 1.

Throughout the proof of Theorem 1.2.2, we interrelate Lemma 1.3.5 with Lemma 1.3.4 to
get some contradictions. To do so, we need the following lemma that plays the role of a bridge
between them.

Lemma 1.3.6. Let D1 and D2 be effective Q-divisors on Y with D1 ∼Q D2. Suppose that the
pair (X,D1) is not log canonical at a point P ∈ Y but the pair (X,D2) is log canonical at the
point P . Then there is an effective Q-divisor D on Y such that

• D ∼Q D1;
• at least one irreducible component of D2 is not contained in the support of D;
• the pair (X,D) is not log canonical at the point P .

Proof. Write D2 =
∑r

i=1 biCi where bi’s are positive rational numbers and Ci’s are distinct
irreducible and reduced divisors. Also, we write D1 = ∆ +

∑r
i=1 eiCi where ei’s are non-

negative rational numbers and ∆ is an effective Q-divisor whose support contains none of Ci’s.
Suppose that ei > 0 for each i. If not, then we put D = D1. Let

α = min

{

ei

bi

∣

∣

∣
i = 1, 2, . . . , r

}

.

Then the positive rational number α is less than 1 since D1 ∼Q D2. Put

D =
1

1 − α
D1 −

α

1 − α
D2

=
1

1 − α
∆ +

r
∑

i=1

(

ei − αbi

1 − α

)

Ci.

It is easy to see that the divisor D satisfies the first two conditions. If the pair (X,D) is log
canonical at the point P , then the pair (X,D1) = (X, (1 − α)D + αD2) must be log canonical
at the point P . Therefore, the divisor D also satisfies the last condition. �

In the present paper, we deal with surfaces with at most quotient singularities. However, the
statements mentioned so far require smoothness of the ambient space for us to utilize them to
the fullest. Fortunately, the following proposition enables us to apply the statements with ease
since we have a natural finite morphism of a germ of the origin in C2 to a germ of a quotient
singularity that is ramified only at a point.

Proposition 1.3.7 ([26]). Let f : Y → X be a finite morphism between normal varieties and
assume that f is unramified outside a set of codimension two. Let D be an effective Q-Cartier
Q-divisor. Then a log pair (X,D) is log canonical (resp. Kawamata log terminal) if and only if
the log pair (Y, f∗D) is log canonical (resp. Kawamata log terminal).
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The following two lemmas will be useful for this paper. The first lemma is just a reformulation
of Lemma 1.3.4 mixed with Proposition 1.3.7 that we can apply to our cases immediately.

Suppose that X is a quasismooth well-formed hypersurface in P = P(a0, a1, a2, a3) of degree d.

Lemma 1.3.8. Let C be a reduced and irreducible curve on X and D be an effective Q-
divisor on X. Suppose that for a given positive rational number λ we have λmultC(D) 6 1. If
λ(C ·D− (multC(D))C2) 6 1, then the pair (X,λD) is log canonical at each smooth point P of
C not in Sing(X). Furthermore, if the point P of C is a singular point of X of type 1

r
(a, b) and

rλ(C ·D − (multC(D))C2) 6 1, then the pair (X,λD) is log canonical at P .

Proof. We may write D = mC + Ω, where Ω is an effective divisor whose support does not
contain the curve C. Suppose that the pair (X,λD) is not log canonical at a smooth point P
of C not in Sing(X). Since λm 6 1, the pair (X,C + λΩ) is not log canonical at the point P .
Then by Lemma 1.3.4 we obtain an absurd inequality

1 < λΩ · C = λC · (D −mC) 6 1.

Also, if the point P is a singular point of X, then we obtain from Lemma 1.3.4 and Proposi-
tion 1.3.7

1

r
< λΩ · C = λC · (D −mC) 6

1

r
.

This proves the second statement. �

Let D be an effective Q-divisor on X such that

D ∼Q OP(a0, a1, a2, a3)

(

I
)

∣

∣

∣

X
.

The next lemma will be applied to show that the log pair (X,D) is log canonical at some smooth
points on X.

Lemma 1.3.9. Let k be a positive integer. Suppose that H0(P,OP(k)) contains

• at least two different monomials of the form xαyβ,
• at least two different monomials of the form xγzδ .

For a smooth point P of X in the outside of Cx,

multP
(

D
)

6
Ikd

a0a1a2a3

if either H0(P,OP(k)) contains at least two different monomials of the form xµtν or the point P
is not contained in a curve contracted by the projection ψ : X 99K P(a0, a1, a2). Here, α, β, γ,
δ, µ and ν are non-negative integers.

Proof. The first case follows from [1, Lemma 3.3]. Arguing as in the proof of [1, Corollary 3.4],
we can also obtain the second case. �

Let us conclude this section by mentioning two results that are never used in this paper, but
nevertheless can be used to give shorter proofs of Corollaries 1.2.3 and 1.2.5. Suppose that X is
given by a quasihomogeneous equation

f
(

x, y, z, t
)

= 0 ⊂ P
(

a0, a1, a2, a3

)

∼= Proj
(

C
[

x, y, z, t
]

)

,

where wt(x) = a0 6 wt(y) = a1 6 wt(z) = a2 6 wt(t) = a3.
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Lemma 1.3.10. Suppose that I =
∑3

i=0 ai − d > 0. Then

lct
(

X
)

>























a0a1

dI
,

a0a2

dI
if f(0, 0, z, t) 6= 0,

a0a3

dI
if f(0, 0, 0, t) 6= 0.

Proof. See [4, Corollary 5.3] (cf. [25, Proposition 11]). �

Lemma 1.3.11. Suppose that I =
∑3

i=0 ai − d > 0, the curve Cx = {x = 0} is irreducible and
reduced. Then

lct
(

X
)

>















min

(

a1a2

dI
, lct

(

X,
I

a0
Cx

))

,

min

(

a1a3

dI
, lct

(

X,
I

a0
Cx

))

if f(0, 0, 0, t) 6= 0.

Proof. Arguing as in the proof of [25, Proposition 11] and using Lemma 1.3.6, we obtain the
required assertion. �

1.4. Notation

We reserve the following notation that will be used throughout the paper:

• P(a0, a1, a2, a3) denotes the well-formed weighted projective space Proj(C
[

x, y, z, t
]

) with
weights wt(x) = a0, wt(y) = a1, wt(z) = a2, wt(t) = a3, where we always assume the
inequalities a0 6 a1 6 a2 6 a3. We may use simply P instead of P(a0, a1, a2, a3) when
this does not lead to confusion.

• X denotes a quasismooth and well-formed hypersurface in P(a0, a1, a2, a3) (see Defini-
tions 6.3 and 6.9 in [22], respectively).

• Ox is the point in P(a0, a1, a2, a3) defined by y = z = t = 0. The points Oy, Oz and Ot

are defined in the similar way.
• Cx is the curve on X cut out by the equation x = 0. The curves Cy, Cz and Ct are

defined in the similar way.
• Lxy is the curve in P(a0, a1, a2, a3) defined by x = y = 0. The curves Lxz, Lxt, Lyz, Lyt

and Lzt are defined in the similar way.
• Let D be a divisor on X and P ∈ X. Choose an orbifold chart π : Ũ → U for some

neighborhood P ∈ U ⊂ X. We put multP (D) = multQ(π∗D), where Q is a point on Ũ

with π(Q) = P , and refer to this quantity as the multiplicity of D at P .

1.5. The scheme of the proof

We have 83 families2 of del Pezzo hypersurfaces in The Big Table. In the present section we ex-
plain the methods to compute the global log canonical thresholds of the del Pezzo hypersurfaces
in The Big Table.

2By family we mean either one-parameter series (which actually gives rise to an infinite number of deformation
families) or a sporadic case. We hope that this would not lead to a confusion.
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Let X ⊂ P(a0, a1, a2, a3) be a del Pezzo surface of degree d in one of the 83 families (actually,
one infinite series has been treated in [15], so we will omit the computations in this case). Set
I = a0 + a1 + a2 + a3 − d. There are two exceptional cases where a0 = a1. The method for
these two cases is a bit different from the other cases. Both cases will be individually dealt with
(Lemmas 2.2.4 and 3.1.5).

If a0 6= a1, then we will take steps as follows:
Step 1. Using Lemmas 1.3.1 and 1.3.2 with Proposition 1.3.7, we compute the log canonical

thresholds lct(X, I
a0
Cx), lct(X, I

a0
Cy), lct(X, I

a0
Cz) and lct(X, I

a0
Ct). Set

λ = min

{

lct(X,
I

a0
Cx), lct(X,

I

a0
Cy), lct(X,

I

a0
Cz), lct(X,

I

a0
Ct)

}

.

Then the global log canonical threshold lct(X) is at most λ.

Step 2. We claim that the global log canonical threshold lct(X) is equal to λ. To prove
this assertion, we suppose lct(X) < λ. Then there is an effective Q-divisor D equivalent to the
anticanonical divisor −KX of X such that the log pair (X,λD) is not log canonical at some
point P ∈ X. In particular, we obtain

multP (λD) >







1 if the point P is a smooth point of X,

1

r
if the point P is a singular point of X of type

1

r
(a, b).

from Lemma 1.3.5 and Proposition 1.3.7.

Step 3. We show that the point P cannot be a singular point of X using the following
methods.

Method 3.1. (Multiplicity) We may assume that a suitable irreducible component C of
Cx, Cy, Cz, and Ct is not contained in the support of the divisor D. We derive a possible
contradiction from the inequality

C ·D > multP (C) ·
multP (D)

r
>

multP (C)

rλ
,

where r is the index of the quotient singular point P . The last inequality follows from the
assumption that (X,λD) is not log canonical at P . This method can be applied to exclude a
smooth point.

Method 3.2. (Inversion of Adjunction) We consider a suitable irreducible curve C

smooth at P . We then write D = µC+ Ω, where Ω is an effective Q-divisor whose support does
not contain C. We check λµ 6 1. If so, then the log pair (X,C + λΩ) is not log canonical at
the point P either. By Lemma 1.3.8 we have

λ(D − µC) · C = λC · Ω >
1

r
.

We try to derive a contradiction from this inequality. The curve C is taken usually from an
irreducible component of Cx, Cy, Cz, or Ct. This method can be applied to exclude a smooth
point.
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Method 3.3. (Weighted Blow Up) Sometimes we cannot exclude a singular point P only
with the previous two methods. In such a case, we take a suitable weighted blow up π : Y → X

at the point P . We can write

KY +DY ∼Q π∗(KX + λD),

where DY is the log pull-back of λD by π. Using method 3.1 we obtain that DY is effective.
Then we apply the previous two methods to the pair (Y,DY ), or repeat this method until we
get a contradictory inequality.

Step 4. We show that the point P cannot be a smooth point of X. To do so, we first apply
Lemma 1.3.9. However, this method does not work always. If the method fails, then we try to
find a suitable pencil L on X. The pencil has a member F which passes through the point P .
We show that the pair (X,λF ) is log canonical at the point P . Then, we may assume that the
support of D does not contain at least one irreducible component of F . If the divisor D itself
is irreducible, then we use Method 3.1 to exclude the point P . If F is reducible, then we use
Method 3.2.

Part 2. Infinite series

2.1. Infinite series with I = 1

Lemma 2.1.1. LetX be a quasismooth hypersurface of degree 8n+4 in P(2, 2n+1, 2n+1, 4n+1)
for a natural number n. Then lct(X) = 1.

Proof. The surface X is singular at the point Ot, which is of type 1
4n+1 (1, 1). It has also four

singular points O1, O2, O3, O4, which are cut out on X by Lxt. Each Oi is a singular point of
type 1

2n+1(1, n) on the surface X.
The curve Cx is reducible. We see

Cx = L1 + L2 + L3 + L4,

where Li is a smooth rational curves such that

−KX · Li =
1

(2n + 1)(4n + 1)
,

and L1 ∩ L2 ∩ L3 ∩ L4 = {Ot}. Then

Li · Lj =
1

4n+ 1

for i 6= j. Also, we have

L2
i = Cx · Li −

3

4n+ 1
=

2

(2n+ 1)(4n + 1)
−

3

4n + 1
= −

6n+ 1

(2n+ 1)(4n + 1)
.

It is easy to see lct(X, 1
2Cx) = 1. Therefore, lct(X) 6 1. Suppose that lct(X) < 1. Then

there is an effective Q-divisor D ∼Q −KX such that the log pair (X,D) is not log canonical at
some point P ∈ X.
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Since
(4n + 2)(8n + 4)

2(2n + 1)2(4n + 1)
=

4

4n + 1
< 1

and H0(P,OP(4n+ 2)) contains x2n+1, y2 and z2, Lemma 1.3.9 implies that P ∈ Cx.
It follows from Lemma 1.3.6 that we may assume that Li 6⊂ Supp(D) for some i. Also, P ∈ Lj

for some j. Put D = mLj + Ω, where Ω is an effective Q-divisor such that Lj 6⊂ Supp(Ω). Since

1

(2n + 1)(4n + 1)
= D · Li =

(

mLj + Ω
)

· Li > mLi · Lj =
m

4n+ 1
,

we have 0 6 m 6 1
2n+1 . Since

(2n + 1)Ω · Lj = (2n + 1)(D −mLj) · Lj = (2n+ 1)
1 +m(6n+ 1)

(2n + 1)(4n + 1)
6

2

(2n+ 1)
< 1

Lemma 1.3.8 implies the point P must be Ot. Note that the inequality

multOt

(

D
)

6 (4n+ 1)D · Li =
1

2n+ 1
6 1,

shows that the point P cannot be the point Ot. This is a contradiction. �

2.2. Infinite series with I = 2

Lemma 2.2.1. Let X be a quasismooth hypersurface of degree 8n + 12 in P(4, 2n + 3, 2n +
3, 4n + 4) for a natural number n. Then lct(X) = 1.

Proof. The only singularities of X are a singular point Ot of index 4n + 4, two singular points
P1, P2 of index 4 on Lyz, and four singular points Q1, Q2, Q3, Q4 of index 2n+ 3 on Lxt.

The curve Cx is reduced and splits into four irreducible components L1, . . . , L4. Each Li

passes through Qi. They intersect each other at Ot. One can easily see that lct(X, 1
2Cx) = 1,

and hence lct(X) 6 1.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X,D) is not log canonical at some point P ∈ X.
By Lemma 1.3.6 we may assume that Li 6⊂ Supp (D) for some i. Since

(4n + 4)Li ·D =
4n+ 4

(2n + 2)(2n + 3)
< 1

for all n > 1, the point P cannot belong to the curve Li.
For j 6= i, put D = µLj +Ω, where Ω is an effective Q-divisor such that Lj 6⊂ Supp (Ω). Since

µ

4n+ 4
= µLi · Lj 6 D · Li =

1

2(n + 1)(2n + 3)
,

we have

µ 6
2

2n+ 3
.

Note that

L2
j = Cx · Lj − 3Li · Lj =

2

2(n + 1)(2n + 3)
−

3

4(n+ 1)
= −

6n+ 5

4(n+ 1)(2n + 3)
.
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By Lemma 1.3.4 the inequality

(2n+ 3)Ω · Lj = (2n+ 3)(D − µLj) · Lj =
2 + (6n+ 5)µ

4(n+ 1)
6

4

2n+ 3
< 1

for all n > 1 shows that P cannot be contained in Lj. Consequently, the point P is located in
the outside of Cx.

By a suitable coordinate change we may assume that P1 = Ox. Then, the curve Ct is reduced
and splits into four irreducible components L′

1, . . . , L
′

4. Each L′

i passes through the point Qi.
They intersect each other at Ox. We can easily see that the log pair (X, 2

4n+4Ct) is log canonical.

By Lemma 1.3.6 we may assume that L′

i 6⊂ Supp (D). Since

multOx(D) 6 4L′

i ·D =
2

2n+ 3
< 1

for all n > 1, the point P cannot be Ox. The point P2 can be excluded in a similar way.
Therefore, P is a smooth point of X \ Cx. Applying Lemma 1.3.9, we see that

1 < multP (D) 6
2(8n + 12)2

4(2n + 3)2(4n+ 4)
6 1

for n > 1 since H0(P,OP(8n + 12)) contains x2n+3, y4 and z4. The obtained contradiction
completes the proof. �

Lemma 2.2.2. Let X be a quasismooth hypersurface of degree 18n + 6 in P(3, 3n + 1, 6n +
1, 9n + 3) for a natural number n > 1. Then lct(X) = 1.

Proof. The only singularities of X are a singular point Oz of index 6n + 1, two singular points
P1, P2 of index 3 on Lyz, and two singular points Q1, Q2 of index 3n + 1 on Lxz.

The curve Cx is reduced and splits into two components L1 and L2 that intersect at Oz. It is
easy to see that lct(X, 2

3Cx) = 1. Therefore, lct(X) 6 1. Note that

L1 · L2 =
3

6n+ 1
and L2

1 = L2
2 = −

9n− 3

(3n+ 1)(6n + 1)
.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X.

We may assume that L2 is not contained the support of D. The inequality

D · L2 =
2

(3n+ 1)(6n + 1)
6

1

6n + 1

shows that the point P cannot belong to the curve L2. Put D = µL1 +Ω, where Ω is an effective
Q-divisor whose support does not contain the curve L1. Since

3µ

6n+ 1
= µL1 · L2 6 D · L2 =

2

(3n+ 1)(6n + 1)
,

we have

0 6 µ 6
2

3(3n + 1)
.
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Lemma 1.3.8 and the inequality

Ω · L1 = (D − µL1) · L1 =
2 + µ(9n− 3)

(3n + 1)(6n + 1)
<

4

(3n + 1)(6n + 1)

show that the point P is located in the outside of L1. Therefore, P 6∈ Cx.
The curve Cy is irreducible. It is easy to see that the log pair (X, 2

3n+1Cy) is log canonical.
Therefore, we may assume that the support of D does not contain the curve Cy. Note that
P1, P2 ∈ Cy. The inequality

3D · Cy =
4

6n + 1
6 1

shows that neither P1 not P2 can be the point P .
Hence P is a smooth point of X \ Cx. Applying Lemma 1.3.9, we get an absurd inequality

1 < multP (D) 6
2(18n + 6)(18n + 3)

3(3n + 1)(6n + 1)(9n + 3)
6 1

since H0(P,OP(18n + 3)) contains x6n+1, x3ny3 and z3. The obtained contradiction completes
the proof. �

Lemma 2.2.3. Let X be a quasismooth hypersurface of degree 18n+3 in P(3, 3n+1, 6n+1, 9n)
for a natural number n > 1. Then lct(X) = 1.

Proof. The singularities of X are a singular point Oy of index 3n + 1, a singular point Ot of
index 9n, and two singular points Q1, Q2 of index 3 on Lyz.

The curve Cx is reduced and irreducible and has the only singularity at Ot. It is easy to see
that lct(X, 2

3Cx) = 1, and hence lct(X) 6 1. The curve Cy is quasismooth. Therefore, the log

pair (X, 2
3n+1Cy) is log canonical.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X. By Lemma 1.3.6 we may assume that
neither Cx nor Cy is contained in Supp (D).

The inequalities

Cx ·D < (3n + 1)Cx ·D =
2

3n
< 1,

multOt(D) =
multOt(Cx)multOt(D)

3
6

9nCx ·D

3
=

2

3n+ 1
< 1

show that the point P must be located in the outside of Cx.
Also, the inequality

3Cy ·D =
2

3n
< 1

implies that neither Q1 not Q2 can be the point P . Hence P is a smooth point of X \ Cx. We
see that H0(P,OP(9n+ 3)) contains x3n+1, y3 and xt. Also, the projection of X from the point
Oz has only finite fibers. Therefore, Lemma 1.3.9 implies a contradictory inequality

1 < multP (D) 6
2(18n + 3)(9n + 3)

3(3n + 1)(6n + 1) · 9n
=

2

3n
< 1.

The obtained contradiction completes the proof. �
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Lemma 2.2.4. Let X be a quasismooth hypersurface of degree 12 in P(3, 3, 4, 4). Then lct(X) =
1.

Proof. The surface X can be defined by the quasihomogeneous equation

4
∏

i=1

(αix+ βiy) =

3
∏

j=1

(γjz + δjt),

where [αi : βi] define four distinct points and [γj : δj ] define three distinct points in P1.
Let Pi be the point in X given by z = t = αix + βiy = 0. These are singular point of X of

type 1
3 (1, 1). Let Qj be the point in X that is given by x = y = γjz + δjt = 0. Then each of

them is a singular point of X of type 1
4 (1, 1).

Let Lij be the curve in X defined by αix + βiy = γjz + δjt = 0, where i = 1, . . . , 4 and
j = 1, . . . , 3.

The divisor Ci cut out by the equation αix + βiy = 0 consists of three smooth curves Li1,
Li2, Li3. These divisors Ci, i = 1, 2, 3, 4, are the only reducible members in the linear system
|OX(3)|. Meanwhile, the divisor Bj cut out by γjz+ δjt = 0 consists of four smooth curves L1j,
L2j , L3j, L4j. Note that Li1 ∩ Li2 ∩ Li3 = {Pi} and L1j ∩ L2j ∩ L3j ∩ L4j = {Qj}. We have

Lij · Lik = 1
3 and Lji · Lki = 1

4 if k 6= j. But L2
ij = − 5

12 .

Since lct
(

X, 2
3Ci

)

= lct
(

X, 2
4Bj

)

= 1, we have lct(X) 6 1.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X,D) is not log canonical at some point P . For every i = 1, . . . , 4, we may assume that
the support of the divisor D does not contain at least one curve among Li1, Li2, Li3. Suppose
Lik 6⊂ Supp (D). Then the inequality

multPi
(D) 6 3D · Lik =

1

2

implies that none of the points Pi can be the point P . For every j = 1, 2, 3, we may also assume
that the support of the divisor D does not contain at least one curve among L1j , L2j , L3j , L4j .
Suppose Llj 6⊂ Supp (D). Then the inequality

multQj
(D) 6 4D · Llj =

2

3

implies that none of the points Qj can be the point P . Therefore, the point must be a smooth
point of X.

Write D = µLij + Ω, where Ω is an effective Q-divisor whose support does not contain Lij.
If µ > 0, then we have µLij · Lik 6 D · Lik, and hence µ 6 1

2 . Since

Ω · Lij =
2 + 5µ

12
< 1,

Lemma 1.3.4 implies the point P cannot be on the curve Lij. Consequently,

P 6∈
4
⋃

i=1

3
⋃

j=1

Lij.
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There is a unique curve C ⊂ X cut out by λx+ µy = 0, where [λ : µ] ∈ P1, passing through
the point P . Then the curve C is irreducible and quasismooth. Thus, we may assume that C is
not contained in the support of D. Then

1 < multP (D) 6 D · C =
1

2
.

This is a contradiction. �

Lemma 2.2.5. Let X be a quasismooth hypersurface of degree 9n+3 in P(3, 3n, 3n+1, 3n+1)
for n > 2. Then lct(X) = 1.

Proof. We may assume that the surface X is defined by the equation

xy(y − axn)(y − bxn) + zt(z − ct) = 0,

where a, b, c are non-zero constants and b 6= c. The point Oy is a singular point of of index 3n
on X. The three points Ox, Pa = [1 : a : 0 : 0], Pb = [1 : b : 0 : 0] are singular points of index 3
on X. Also, X has three singular points Oz, Ot, Pc = [0 : 0 : c : 1] of index 3n + 1 on Lxy.

The curve Cx consists of three irreducible components Lxz, Lxt and Lc = {x = z − ct = 0}.
These three components intersect each other at Oy. It is easy to check lct(X, 2

3Cx) = 1. Thus,
lct(X) 6 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X.

By Lemma 1.3.6 we may assume that at least one of the components of Cx is not contained
in Supp (D). Then, the inequality

3nLxz ·D = 3nLxt ·D = 3nLc ·D =
2

3n+ 1
< 1

implies that the point P cannot be the point Oy.
Put D = µLxz + Ω, where Ω is an effective Q-divisor whose support does not contain the

curve Lxz. We claim that

µ 6
2

3n+ 1
.

Indeed, if the inequality fails, one of the curves Lxt and Lc is not contained in Supp (D). Then
either

µ

3n
= µLxz · Lxt 6 D · Lxt =

2

3n(3n+ 1)
, or

µ

3n
= µLxz · Lc 6 D · Lc =

2

3n(3n+ 1)

holds. This is a contradiction. Note that

L2
xz = −

6n − 1

3n(3n + 1)
.

The inequality

Ω · Lxz =
2 + (6n − 1)µ

3n(3n + 1)
<

1

3n + 1

holds for all n > 2. Therefore, Lemma 1.3.8 implies the point P cannot belong to Lxz. By the
same way, we can show that P 6∈ Lxt ∪ Lc.
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Let C be the curve on X cut out by the equation z − αt = 0, where α is non-zero constant
different from c. Then the curve C is quasismooth and hence lct(X, 2

3n+1C) > 1. Therefore, we
may assume that the support of D does not contain the curve C. Then

multOx(D), multPa(D), multPb
(D) 6 3D · C =

2

n
6 1

for n > 2. Therefore, P cannot be a singular point of X. Hence P is a smooth point of X \Cx.
Applying Lemma 1.3.9, we get an absurd inequality

1 < multP (D) 6
2(9n + 3)2

3 · 3n(3n + 1)(3n + 1)
6 1

for n > 2 since H0(P,OP(9n + 3)) contains x3n+1, xy3 and z3. The obtained contradiction
completes the proof. �

Lemma 2.2.6. LetX be a quasismooth hypersurface of degree 9n+6 in P(3, 3n+1, 3n+2, 3n+2)
for n > 1. Then lct(X) = 1.

Proof. The only singularities of X are a singular point Oy of index 3n + 1, and three singular
points Pi, i = 1, 2, 3, of index 3n+ 2 on Lxy.

The divisor Cx consists of three distinct irreducible and reduced curves L1, L2, L3, where each
Li contains the singular point Pi. Then L1∩L2∩L3 = {Oy}. It is obvious that lct(X, 2

3Cx) = 1,
and hence lct(X) 6 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X. By Lemma 1.3.6 we may assume that L1

is not contained in Supp (D).
Since

L1 ·D < (3n+ 1)L1 ·D =
2

3n+ 2
< 1

for all n > 1, we see that P 6∈ L1. In particular, we see that P 6= Oy.
Put D = µL2 + Ω, where Ω is an effective Q-divisor such that L2 6⊂ Supp (Ω). Then the

inequality
µ

3n+ 1
= µL1 · L2 6 D · L1 =

2

(3n+ 1)(3n + 2)
,

implies that µ 6 2
3n+2 . The intersection number

L2
1 = −

6n+ 1

(3n + 1)(3n + 2)

shows

(3n + 2)Ω · L2 = (3n + 2)(D − µL2) · L2 =
2 + µ(6n+ 1)

(3n + 1)
6

6

(3n + 2)

for all n > 1. Therefore, Lemma 1.3.8 excludes all the smooth point on L2 in the case where
n > 1 and the singular point P2 in the case where n > 2. For the case n = 1, let C2 be the unique
curve in the pencil |OX(5)| that passes through the point P2. Then the divisor C2 consists of
two distinct irreducible and reduced curve L2 and R2. The curve R2 is singular at the point
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P2. Moreover, the log pair (X, 2
5C2) is log canonical at the point P2. By Lemma 1.3.6, we may

assume that R2 6⊂ Supp (D). Then the inequality

2multP2
(D) 6 multP2

(D)multP2
(R2) 6 5D ·R2 = 2

excludes the point P2 in the case where n = 1. By the same method, we can show P 6∈ L3.
Hence the point P must be a smooth point in X \ Cx. For the case n > 2, we can use

Lemma 1.3.9 to get a contradiction

1 < multP (D) 6
2(9n + 6)2

3(3n + 1)(3n + 2)(3n + 2)
=

6

3n + 1
< 1,

since H0(P,OP(9n + 6)) contains x3n+2, y3x and z3. For the case n = 1, let RP be the unique
curve in the pencil |OX(5)| that passes through the point P . The log pair (X, 2

5RP ) is log
canonical at the point P . By Lemma 1.3.6, we may assume that Supp (D) does not contain at
least one irreducible component of RP . Note that either RP is irreducible or Pk ∈ RP for some
k = 1, 2, 3. If RP is irreducible, then we can obtain a contradiction

1 < multP (D) 6 D ·RP =
1

2
.

Thus, Pk ∈ RP . Then RP consists of two distinct irreducible curves Lk and Z. Since we already
showed that P is located in the outside of Lk, the point P must belong to the curve Z. We have

L2
k = −

7

20
, Lk · Z =

3

5
, Z2 =

2

5
.

Put D = mZ + ∆, where ∆ is an effective Q-divisor such that Z 6⊂ Supp (∆). If m > 0, then

3m

5
= mZ · Lk 6 D · Lk =

1

10
,

and hence µ 6 1
6 . Then Lemma 1.3.8 gives us a contradiction

1 < ∆ · Z =
2 − 2m

5
< 1.

�

Lemma 2.2.7. Let X be a quasismooth hypersurface of degree 12n + 6 in P(4, 2n + 1, 4n +
2, 6n + 1) for n > 1. Then lct(X) = 1.

Proof. We may assume that the surface X is defined by the equation

xt2 + x2n+1z + ax2n+1y2 − (z − a1y
2)(z − a2y

2)(z − a3y
2) = 0,

where a1, a2, a3 are distinct constants and a is a constant.
The only singularities of X are a singular point Ox of index 4, a singular point Ot of index

6n+1, a singular point Q = [1 : 0 : 1 : 0] of index 2, and three singular points P1 = [0 : 1 : a1 : 0],
P2 = [0 : 1 : a2 : 0], P3 = [0 : 1 : a3 : 0] of index 2n+ 1.

The divisor Cx consists of three distinct irreducible curves Li = {x = z−aiy
2 = 0}, i = 1, 2, 3.

Note that each Li passes through the point Pi and L1 ∩ L2 ∩ L3 = {Ot}. We can easily check
lct(X, 1

2Cx) = 1, and hence lct(X) 6 1.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X,D) is not log canonical at some point P ∈ X.
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By Lemma 1.3.6 we may assume that L1 is not contained in Supp (D). Since

(6n+ 1)L1 ·D =
2

2n+ 1
< 1

the point P is located in the outside of L1.
Put D = µL2 + Ω, where Ω is an effective Q-divisor such that L2 6⊂ Supp (Ω). Then

2µ

6n+ 1
= µL1 · L2 6 D · L2 =

2

(2n+ 1)(6n + 1)
,

and hence µ 6 1
2n+1 . Since

L2
2 = −

8n

(2n + 1)(6n + 1)

we have

(2n+ 1)Ω · L2 = (2n+ 1)(D − µL2) · L2 =
2 + 8nµ

6n + 1
6

2

2n+ 1
< 1

for all n > 1. Then Lemma 1.3.8 excludes all the points on L2. Furthermore, the same method
works for L3.

The curve Cy is quasismooth. Thus the log pair (X, 2
2n+1Cy) is log canonical. By Lemma 1.3.6

we may assume that Cy is not contained in Supp (D). Then the inequality

4Cy ·D =
6

6n + 1
< 1

implies that the point P is neither Ox nor Q. Hence P is a smooth point of X \ Cx. However,
Lemma 1.3.9 gives us

multP (D) 6
144n(2n + 1)

8(2n + 1)2(6n + 1)
< 1

since H0(P,OP(12n)) contains x3n, y4xn−1 and z2xn−1. This is a contradiction. �

2.3. Infinite series with I = 4

Lemma 2.3.1. Let X be a quasismooth hypersurface of degree 18n + 15 in P(6, 6n + 3, 6n +
5, 6n + 5) for n > 1. Then lct(X) = 1.

Proof. We may assume that the surface X is defined by the equation

(z − a1t)(z − a2t)(z − a3t) + xy(y2 − x2n+1) = 0,

where a1, a2, a3 are distinct constants. The only singularities of X are a singular point Ox of
index 6, a singular point Oy of index 6n + 3, a singular point Q = [1 : 1 : 0 : 0] of index 3, and
three singular points Pi = [0 : 0 : ai : 1], i = 1, 2, 3, of index 6n + 5.

The divisor Cx consists of three distinct irreducible curves Li = {x = z− ait = 0}, i = 1, 2, 3.
Note that each Li passes through the point Pi and L1 ∩ L2 ∩ L3 = {Oy}. We can easily check
lct(X, 2

3Cx) = 1, and hence lct(X) 6 1.
The divisor Cy consists of three distinct irreducible curves L′

i = {y = z − ait = 0}, i = 1, 2, 3.
Each L′

i passes through the point Pi and L′

1 ∩ L
′

2 ∩L
′

3 = {Ox}. The log pair (X, 4
6n+3Cy) is log

canonical.
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Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X.

For a general member C in |OX(6n + 5)|, we have

multQ(D) 6 3D · C =
6

6n+ 3
< 1.

Therefore the point P cannot be the point Q.
By Lemma 1.3.6 we may assume that L1 and L′

1 are not contained in Supp (D). The two
inequalities (6n+ 5)D ·L1 = 4

6n+3 < 1 and 6D ·L′

1 = 4
6n+5 < 1 show that the point P is located

in the outside of L1 ∪ L
′

1.
Write D = µL2 + Ω, where Ω is an effective Q-divisor such that L2 6⊂ Supp (Ω). Then

µ

6n+ 3
= µL1 · L2 6 D · L1 =

4

(6n+ 3)(6n + 5)
,

and hence µ 6 4
6n+5 . Note that

L2
2 = −

12n+ 4

(6n+ 3)(6n + 5)
.

Therefore, we have

(6n + 5)Ω · L2 = (6n + 5)(D − µL2) · L2 =
4 + (12n + 4)µ

6n+ 3
6

12

6n+ 5
.

Therefore, Lemma 1.3.8 excludes all the smooth point on L2 in the case where n > 1 and the
singular point P2 in the case where n > 2. For the case n = 1, let C2 be the unique curve in the
pencil |OX(11)| that passes through the point P2. Then the divisor C2 consists of three distinct
irreducible and reduced curve L2, L

′

2 and R2. The log pair (X, 4
11C2) is log canonical at the

point P2. If µ = 0, then the inequality above immediately excludes the point P2 for the case
n = 1. Therefore we may assume that either L′

2 6⊂ Supp (D) or R2 6⊂ Supp (D). In the former
case, the intersection number

D · L′

2 =
2

33
shows that the point P cannot be P2. In the latter case, the intersection number

D ·R2 =
1

11

excludes the point P2. By the same method, we can show P 6∈ L3.
Hence the point P must be a smooth point in X \ Cx. For the case n > 2, we can use

Lemma 1.3.9 to get a contradiction

1 < multP (D) 6
4(18n + 15) · 6(6n + 5)

6(6n + 3)(6n + 5)(6n + 5)
=

4

2n + 1
< 1,

since H0(P,OP(6(6n+5)) contains x6n+5, y6x2 and z6. For the case n = 1, let RP be the unique
curve in the pencil |OX(11)| that passes through the point P . The log pair (X, 4

11RP ) is log
canonical at the point P . By Lemma 1.3.6, we may assume that Supp (D) does not contain at
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least one irreducible component of RP . Note that either RP is irreducible or Pk ∈ RP for some
k = 1, 2, 3. However, if RP is irreducible, then we can obtain a contradiction

1 < multP (D) 6 D ·RP =
2

9
.

Thus, Pk ∈ RP . Then RP consists of three distinct irreducible curves Lk, L
′

k and Z. We have

D · L′

k =
2

33
, D · Z =

4

33
, L′2

k = −
13

66
, Z2 = −

4

33
.

Put D = m1Z + m2L
′

k + ∆, where ∆ is an effective Q-divisor whose support contains neither
Z nor L′

k. Since the pair (X,D) is log canonical at the point Pk, we have m1,m2 6 1. Since we
already showed that P is located in the outside of Lk, the point P must belong to either L′

k or
Z. However, Lemma 1.3.8 shows that the pair (X,D) is log canonical at the point P since

(D −m1Z) · Z =
4 + 4m1

33
< 1, (D −m2L

′

k) · L
′

k =
4 + 13m2

66
< 1.

This is a contradiction. �

Lemma 2.3.2. Let X be a quasismooth hypersurface of degree 36n + 24 in P(6, 6n + 5, 12n +
8, 18n + 9) for n > 1. Then lct(X) = 1.

Proof. We may assume that the surface X is defined by the equation

z3 + y3t+ xt2 − x6n+4 + ax2n+1y2z = 0,

where a is a constant. The only singularities of X are a singular point Oy of index 6n + 5, a
singular point Ot of index 18n + 9, a singular point Q = [1 : 0 : 0 : 1] of index 3, and a singular
point Q′ = [1 : 0 : 1 : 0] of index 2.

The curve Cx is reduced and irreducible with multOt(Cx) = 3. Clearly, lct(X, 2
3Cx) = 1,

and hence lct(X) 6 1. The curve Cy is quasismooth, and hence the log pair (X, 4
6n+5Cy) is log

canonical.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X,D) is not log canonical at some point P ∈ X.
Since H0(P,OP(36n + 30)) contains x6n+5, y6 and z3x, Lemma 1.3.9 implies

multP (D) 6
4(36n + 24)(36n + 30)

6(6n + 5)(12n + 8)(18n + 9)
< 1.

Therefore, the point P cannot be a smooth point in the outside of Cx.
By Lemma 1.3.6 we may assume that neither Cx nor Cy is contained in Supp (D). Then the

inequality

3D · Cy =
2

6n + 3
6 1

implies that the point P is neither Q nor Q′. One the other hand, the inequality

(6n+ 5)D · Cx =
4

6n+ 3
< 1



EXCEPTIONAL DEL PEZZO HYPERSURFACES 27

shows that the point P can be neither a smooth point on Cx nor the point Oy. Therefore, it
must be Ot. However, this is a contradiction since

multOt(D) =
multOt(D)multOt(Cx)

3
6

18n + 9

3
D · Cx =

4

6n+ 5
< 1.

The obtained contradiction completes the proof. �

Lemma 2.3.3. Let X be a quasismooth hypersurface of degree 36n + 30 in P(6, 6n + 5, 12n +
8, 18n + 15) for n > 1. Then lct(X) = 1.

Proof. We may assume that the surface X is defined by the equation

(t− a1y
3)(t− a2y

3) + xz3 − x6n+5 + ax2n+1y2z = 0,

where a1 6= a2 and a are constants. The only singularities of X are a singular point Oz of index
12n+8, a singular point Q = [1 : 0 : 1 : 0] of index 2, a singular point Q′ = [1 : 0 : 0 : 1] of index
3, and two singular points P1 = [0 : 1 : 0 : a1], P2 = [0 : 1 : 0 : a2] of index 6n+ 5.

The curve Cx consists of two distinct irreducible curves Li = {x = t − aiy
3 = 0}, i = 1, 2.

Each Li passes through the point Pi. These two curves meet each other at the point Oz. It is
easy to see lct(X, 2

3Cx) = 1.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X,D) is not log canonical at some point P ∈ X.
By Lemma 1.3.6 we may assume that L1 is not contained in Supp (D). Then the inequality

(12n + 8)D · L1 =
4

6n + 5
< 1

shows that the point P must be located in the outside of L1.
Write D = µL2 + Ω, where Ω is an effective Q-divisor such that L2 6⊂ Supp (Ω). Then, the

inequality
3µ

12n + 8
= µL2 · L1 6 D · L1 =

1

(3n+ 2)(6n + 5)
,

implies

µ 6
4

3(6n + 5)
.

Note that

L2
2 = −

18n+ 9

(12n + 8)(6n + 5)
.

Since

(6n+ 5)Ω · L2 =
4 + (18n + 9)µ

12n+ 8
<

4

6n+ 5
,

Lemma 1.3.8 excludes all the points of L2 \ {Oz}. Consequently, the point P is in the outside
of Cx.

Meanwhile, the curve Cy is quasismooth, and hence the log pair (X, 4
6n+5Cy) is log canonical.

Lemma 1.3.6 enables us to assume that Cy is not contained in Supp (D). Then the inequality

3Cy ·D =
1

3n+ 2
6 1,

excludes the singular points Q and Q′.
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Hence P is a smooth point of X \ Cx. Applying Lemma 1.3.9, we see that

1 < multP (D) 6
4(36n + 30)(3(12n + 8) + 6)

6(6n + 5)(12n + 8)(18n + 15)
< 1,

because H0(P,OP(3(12n + 8) + 6)) contains x6n+5, y6 and z3x. The obtained contradiction
completes the proof. �

2.4. Infinite series with I = 6

Lemma 2.4.1. Let X be a quasismooth hypersurface of degree 12n + 23 in P(8, 4n + 5, 4n +
7, 4n + 9) for n > 3. Then lct(X) = 1.

Proof. The surface X can be given by the equation

z2t+ yt2 + xy3 + xn+2z = 0.

The surface X is singular only at Ox, Oy, Oz and Ot.
The curve Cx (resp. Cy, Cz, Ct) consists of the irreducible curve Lxt (resp. Lyz, Lyz, Lxt) and a

residual curve Rx = {x = z2+yt = 0} (resp. Ry = {y = xn+2+zt = 0}, Rz = {z = t2+xy2 = 0},
Rt = {t = y3 + xn+1z = 0}) . These two curves intersect each other at Oy (resp. Ot, Ox, Oz).

We can easily see that

lct(X,
3

4
Cx) = 1, lct(X,

6

4n+ 5
Cy) =

(n + 3)(4n + 5)

12(n + 2)
,

lct(X,
6

4n+ 7
Cz) =

4n+ 7

9
, lct(X,

6

4n+ 9
Ct) =

(4n+ 9)(n + 4)

6(3n + 6)
.

Therefore, lct(X) 6 1.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X,D) is not log canonical at some point P ∈ X.
We have the following intersection numbers:

Lxt ·D =
6

(4n+ 5)(4n + 7)
, Lyz ·D =

6

8(4n + 9)
, Rx ·D =

12

(4n + 5)(4n + 9)
,

Ry ·D =
6(n + 2)

(4n + 7)(4n + 9)
, Rz ·D =

12

8(4n + 5)
, Rt ·D =

18

8(4n + 7)
,

Lxt ·Rx =
2

4n+ 5
, Lxt ·Rt =

3

4n+ 7
, Lyz · Ry =

n+ 2

4n+ 9
, Lyz · Rz =

1

4
,

L2
xt = −

8n+ 6

(4n + 5)(4n + 7)
, L2

yz = −
4n+ 11

8(4n+ 9)
, R2

x = −
8n+ 2

(4n+ 5)(4n + 9)
,

R2
y = −

2n+ 4

(4n + 7)(4n + 9)
, R2

z =
1

2(4n + 5)
, R2

t =
12n + 3

8(4n + 7)
.

By Lemma 1.3.6 we may assume that either Lxt 6⊂ Supp (D) or Rx 6⊂ Supp (D). Then at least
one of the inequalities

multOy(D) 6 (4n+ 5)Lxt ·D =
6

4n+ 7
, multOy(D) 6 (4n+ 5)Rx ·D =

12

4n + 9
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holds. Therefore, the point P cannot be the point Oy. We also may assume that either Lyz 6⊂
Supp (D) or Rz 6⊂ Supp (D). Then at least one of the inequalities

multOx(D) 6 8Lyz ·D =
6

4n+ 9
, multOx(D) 6

8

2
Rz ·D =

6

4n+ 5

holds. Note that the curve Rz is singular at the point Ox. Therefore, the point P cannot be the
point Ox. We also may assume that either Lxt 6⊂ Supp (D) or Rt 6⊂ Supp (D). Then at least
one of the inequalities

multOz(D) 6 (4n+ 7)Lxt ·D =
6

4n+ 5
, multOz(D) 6

4n+ 7

3
Rt ·D =

3

4

holds. Note that the curve Rt has multiplicity 3 at the point Oz if n > 2. Therefore, the point
P cannot be the point Oz.

Write D = m1Lxt + m2Lyz + m3Rx + m4Ry + m5Rz + m6Rt + Ω, where Ω is an effective
Q-divisor whose support contains none of Lxt, Lyz, Rx, Ry, Rz, Rt.

If m1 > 0, then m3 = 0. Therefore, the inequality

2m1

4n+ 5
= m1Lxt · Rx 6 D ·Rx =

12

(4n + 5)(4n + 9)

shows 0 6 m1 6 6
4n+9 . By Lemma 1.3.8 the inequality

(D −m1Lxt) · Lxt =
6 +m1(8n + 6)

(4n + 5)(4n + 7)
6

18

(4n + 7)(4n + 9)
< 1

implies that the point P cannot be a smooth point on Lxt.
If m2 > 0, then Rz 6⊂ Supp (D). Therefore, the inequality

m2

4
= m2Lyz · Rz 6 D ·Rz =

3

2(4n + 5)

shows 0 6 m2 6 6
4n+5 . By Lemma 1.3.8 the inequality

(D −m2Lyz) · Lyz =
6 +m2(4n+ 11)

8(4n + 9)
6

6(n + 2)

(4n+ 5)(4n + 9)
< 1

implies that the point P cannot be a smooth point on Lyz.
If m3 > 0, then m1 = 0, and hence

2m3

4n+ 5
= m3Lxt · Rx 6 D · Lxt =

6

(4n+ 5)(4n + 7)
.

Therefore, 0 6 m3 6 3
4n+7 . The inequality

(D −m3Rx) ·Rx =
12 +m3(8n + 2)

(4n + 5)(4n + 9)
6

18

(4n+ 7)(4n + 9)
< 1

implies that the point P cannot be a smooth point on Rx. Moreover, this inequality shows that
the point P cannot be the point Ot since n > 3.

If m4 > 0, then we may assume that m2 = 0. We then obtain

m4(n+ 2)

4n + 9
= m4Ry · Lyz 6 D · Lyz =

3

4(4n + 9)
.
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Therefore, 0 6 m4 6 3
4(n+2) . The inequality

(D −m4Ry) · Ry =
6(n + 2) + 2m4(n + 2)

(4n+ 7)(4n + 9)
6

3

2(4n + 7)
< 1

implies that the point P cannot be a smooth point on Ry.
Since the pair (X,D) is log canonical at the point Ox and the curve Rz contains the point

Ox, we have m5 6 1. By Lemma 1.3.8, the inequality

(D −m5Rz) ·Rz 6 D ·Rz =
3

2(4n + 5)
< 1

shows that the point P cannot be a smooth point on Rz.
The pair (X,D) is log canonical at the point Ox and the curve Rt contains the point Ox.

Thus m6 6 1. By Lemma 1.3.8, the inequality

(D −m6Rt) ·Rt 6 D ·Rt =
9

4(4n + 7)
< 1

implies that the point P cannot be a smooth point of Rt.
Consider the pencil L defined by the equations λxy2 + µt2 = 0, [λ : µ] ∈ P1. Note that

the curve Lxt is the only base component of the pencil L. There is a unique divisor Cα in L
passing through the point P . This divisor must be defined an equation xy2 + αt2 = 0, where α
is a non-zero constant, since the point P is located in the outside of Cx ∪ Cy ∪ Cz ∪ Ct. Note
that the curve Cy does not contain any component of Cα. Therefore, to see all the irreducible
components of Cα, it is enough to see the affine curve

{

x+ αt2 = 0

z2t+ t2 + x+ xn+2z = 0

}

⊂ C3 ∼= Spec
(

C
[

x, z, t
]

)

.

This is isomorphic to the plane affine curve defined by the equation

t{z2 + (1 − α)t2 + (−α)n+2t2n+1z} = 0 ⊂ C2 ∼= Spec
(

C
[

z, t
]

)

.

Thus, if α 6= 1, then the divisor Cα consists of two reduced and irreducible curves Lxt and Zα.
If α = 1, then it consists of three reduced and irreducible curves Lxt, Rz, R. Moreover, Zα and
R contain the point P and they are smooth at the point P .

Suppose that α 6= 1. It is easy to check

D · Zα =
3(12n + 19)

2(4n + 5)(4n + 7)
.

We also see that

Z2
α = Cα · Zα − Lxt · Zα > Cα · Zα − (Lxt +Rx) · Zα =

4n+ 5

3
D · Zα > 0

since Zα is different from the curve Rx. Put D = ǫZα + Ξ, where Ξ is an effective Q-divisor
such that Zα 6⊂ Supp(Ξ). Since the pair (X,D) is log canonical at the point Oy and the curve
Zα passes through the point Oy, we have ǫ 6 1. But

(D − ǫZα) · Zα 6 D · Zα =
3(12n + 19)

2(4n + 5)(4n + 7)
< 1



EXCEPTIONAL DEL PEZZO HYPERSURFACES 31

and hence Lemma 1.3.8 implies that the point P cannot belong to the curve Zα.
Suppose that α = 1. Then we have

D ·R =
6(2n + 3)

(4n + 5)(4n + 7)
.

Since R is different from Lyz and Rx,

R2 = Cα ·R− Lxt · R−Rz ·R > Cα ·R− (Lxt +Rx) · R− (Lyz +Rz) · R >
4n+ 3

6
D · R > 0

Put D = ǫ1R+Ξ′, where Ξ′ is an effective Q-divisor such that R 6⊂ Supp(Ξ′). Since the curve
R passes through the point Oy at which the pair (X,D) is log canonical, we have ǫ1 6 1. Since

(D − ǫ1R) · R 6 D · R =
6(2n + 3)

(4n+ 5)(4n + 7)
< 1.

Lemma 1.3.8 implies that the point P cannot belong to R. �

Lemma 2.4.2. Let X be a quasismooth hypersurface of degree 47 in P(8, 13, 15, 17). Then
lct(X) = 1.

Proof. If we exclude the point Ot, then the proof of Lemma 2.4.1 works for this case. Thus we
suppose that P = Ot. Then Lyz 6⊂ Supp(D); otherwise we would have a contradictory inequality

3

4 · 17
= D · Lyz > multP (D) >

1

17
.

By Lemma 1.3.6, we may assume that Ry 6⊂ Supp(D). Put

D = mLyz + cRx + Ω,

where m > 0 and c > 0, and Ω is an effective Q-divisor whose support contains neither Lyz nor
Rx. Then

24

15 · 17
= D ·Ry =

(

mLyz + cRx + Ω
)

· Ry >
4m

17
+

multOt(D) −m

17
>

3m+ 1

17
,

and hence

m <
1

5
.

Then it follows from Lemma 1.3.8 that

6 + 19m

8 · 17
= (D −mLyz) · Lyz >

1

17
,

and hence
2

19
< m.

On the other hand, if c > 0, then

6

13 · 15
= D · Lxt > cRx · Lxt =

2c

13
.

Therefore, 0 6 c 6 1
5 .
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Let π : X̄ → X be the weighted blow up at the point Ot with weights (6, 7). Let E be the
exceptional curve of π. Also we let Ω̄, L̄yz and R̄x be the proper transforms of Ω, Lyz and Rx,
respectively. Then

KX̄ ∼Q π∗(KX) −
4

17
E, L̄yz ∼Q π∗(Lyz) −

7

17
E, R̄x ∼Q π∗(Rx) −

6

17
E, Ω̄ ∼Q π∗(Ω) −

a

17
E,

where a is a non-negative rational number.
The curve E contains two singular points Q7 and Q6 of X̄. The point Q7 is a singular point of

type 1
7(1, 3) and the point Q6 is a singular point of type 1

6 (1, 1). Then the point Q7 is contained

in R̄x but not in L̄yz, on the other hand, Q6 is contained in L̄yz but not in R̄x. We also see that
L̄yz ∩ R̄x = ∅. The log pull back of the log pair (X,D) is the log pair

(

X̄, Ω̄ +mL̄yz + cR̄x +
4 + a+ 7m+ 6c

17
E

)

.

This pair must have non-log canonical singularity at some point Q ∈ E. Then

0 6 R̄x · Ω̄ = Rx · Ω +
6a

172
E2 =

12 − 13m+ 18c

13 · 17
−

a

7 · 17
,

0 6 L̄yz · Ω̄ = Lyz · Ω +
7a

172
E2 =

6 + 19m− 8c

8 · 17
−

a

6 · 17
,

and hence 0 6 84 − 13a + 126c − 91m and 0 6 18 − 4a− 24c + 57m. In particular, we see that
a 6 259

40 . Then 4 + a+ 7m+ 6c < 17 since m1
5 and c 6 1

5 .
Suppose that the point Q is neither Q6 nor Q7. Then the point Q must be located in the

outside of L̄yz and R̄x. By Lemma 1.3.8, we have
a

42
= −

a

17
E2 = Ω̄ · E > 1,

and hence a > 42. This is a contradiction since a < 259
40 . Therefore, either Q = Q6 or Q = Q7.

Suppose that Q = Q7. Then Q 6∈ L̄yz. Hence, it follows from Lemma 1.3.8 that

1

7
6

(

Ω̄ +mL̄yx +
4 + a+ 7m+ 6c

17
E

)

· R̄x =
136 + 204c

7 · 13 · 17
,

and hence c > 5
12 . But c 6 1

5 . This is a contradiction.

Finally, we suppose that Q = Q6. Then Q 6∈ R̄x. It follows from Lemma 1.3.8 that

1

6
6

(

Ω̄ + cR̄x +
4 + a+ 7m+ 6c

17
E

)

· L̄yz =
34 + 85m

3 · 8 · 17
,

and hence m > 2
5 . This contradiction completes the proof. �

Lemma 2.4.3. Let X be a quasismooth hypersurface of degree 35 in P(8, 9, 11, 13). Then
lct(X) = 1.

Proof. If we exclude the points Oz and Ot, then the proof of Lemma 2.4.1 works also for this
case.

Suppose that P = Oz. Then Lxt ⊂ Supp(D), since otherwise we would have an absurd
inequality

6

9 · 11
= D · Lxt >

1

11
.
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We may assume that Mt 6⊂ Supp(D) by Lemma 1.3.6. Put

D = mLxt + cMy + Ω,

where m > 0 and c > 0, and Ω is an effective Q-divisor whose support contains neither Lxt nor
Ry. Then

18

8 · 11
= D ·Rt =

(

mLxt + cRy + Ω
)

· Rt >
3m

11
+

2(multOz(D) −m)

11
>
m+ 2

11
,

and hence m < 1
4 . Note that multOz(Rt) = 2. It follows from Lemma 1.3.8 that

6 + 14m

9 · 11
=
(

D −mLxt

)

· Lxt >
1

11
.

Therefore, 3
14 < m < 1

4 . On the other hand, if c > 0, then

6

8 · 13
= D · Lyz > cRy · Lyz =

3c

13
,

and hence c 6 1
4 .

Let π : X̄ → X be the weighted blow up at the point Oz with weights (3, 2). Let E be
the exceptional curve of π and let Ω̄, L̄xt and R̄y be the proper transforms of Ω, Lxt and Ry,
respectively. Then

KX̄ ∼Q π∗(KX) −
6

11
E, L̄xt ∼Q π∗(Lxt) −

3

11
E, R̄y ∼Q π∗(Ry) −

2

11
E, Ω̄ ∼Q π∗(Ω) −

a

11
E.

where a is a non-negative rational number.
The curve E contains two singular points Q2 and Q3 of X̄. The point Q2 is a singular point of

type 1
2(1, 1). It is contained in L̄xt but not in R̄y. On the other hand, the point Q3 is a singular

point of type 1
3 (2, 1). It is contained in R̄y but not in L̄xt. But L̄xt ∩ R̄y = ∅.

The log pull back of the log pair (X,D) is the log pair
(

X̄, Ω̄ +mL̄xt + cR̄y +
6 + a+ 3m+ 2c

11
E

)

,

which must have non-log canonical singularity at some point Q ∈ E. We have

0 6 Ω̄ · R̄y =
18 + 6c

11 · 13
−
m

11
−

a

33
,

0 6 Ω̄ · L̄xt =
6 + 14m

9 · 11
−

c

11
−

a

22
.

Then, a 6 12+28m
9 < 19

9 since m < 1
4 . Also, we obtain 6 + a+ 3m+ 2c < 11 since c 6 1

4 .

Suppose that the point Q is neither Q2 nor Q3. Then Q 6∈ L̄xt ∪ R̄y. By Lemma 1.3.4, we
have

a

2 · 3
= −

a

11
E2 = Ω̄ ·E > 1,

and hence a > 6. This contradicts to the inequality a < 19
9 . Therefore, we see that either

Q = Q2 or Q = Q3.
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Suppose that Q = Q2. Then Q 6∈ R̄y. Lemma 1.3.8 shows that

1

2
<

(

Ω̄ + cR̄y +
6 + a+ 3m+ 2c

11
E

)

· L̄xt =
66 + 55m

2 · 9 · 11

and hence m > 3
5 . But m < 1

4 . This is a contradiction.

Thus, the point Q must be Q3. Then Q 6∈ L̄xt. It follows from Lemma 1.3.8 that

1

3
<

(

Ω̄ +mL̄xt +
6 + a+ 3m+ 2c

11
E

)

· R̄y =
132 + 44c

13 · 33
.

Therefore, c > 1
4 . But we have seen c 6 1

4 . The obtained contradiction shows that P 6= Oz. The
point P must be the point Ot. Then Lyz 6⊂ Supp(D) since otherwise we would have

6

8 · 13
= D · Lyz >

1

13
.

By Lemma 1.3.6, we may assume that Ry 6⊂ Supp(D). Put

D = mLyz + cRx + Ω,

where m > 0 and c > 0, and Ω is an effective Q-divisor whose support contains neither Lyz nor
Rx. Then

18

11 · 13
= D ·Ry =

(

mLyz + cRx + Ω
)

· Ry >
3m

13
+

multOt(D) −m

13
>

2m+ 1

13
,

and hence m < 7
22 . On the other hand, Lemma 1.3.8 implies

6 + 15m

8 · 13
=
(

D −mLyz

)

· Lyz >
1

13
,

and hence 2
15 < m < 7

22 . If c > 0, then

6

9 · 11
= D · Lxt = cRx · Lxt >

2c

9
.

Therefore, c 6 3
11 .

Let π : X̄ → X be the weighted blow up at the point Ot with weights (5, 2). Let E be
the exceptional curve of π. Let Ω̄, L̄yz and R̄x be the proper transforms of Ω, Lyz and Rx,
respectively. Then

KX̄ ∼Q π∗(KX) −
6

13
E, L̄yz ∼Q π∗(Lyz) −

2

13
E, R̄x ∼Q π∗(Rx) −

5

13
E, Ω̄ ∼Q π∗(Ω) −

a

13
E,

where a is a non-negative rational number.
The curve E contains two singular points Q5 and Q2 of X̄ . The point Q5 is a singular point

of type 1
5(1, 1). It belongs to L̄yz but not to R̄x. The point Q2 is a singular point of type 1

2(1, 1).

It belongs to R̄x but not to L̄yz. Note that L̄yz ∩ R̄x = ∅.
The log pull back of the log pair (X,D) is the log pair

(

X̄, Ω̄ +mL̄yz + cR̄x +
6 + a+ 2m+ 5c

13
E

)

.
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It must have non-log canonical singularity at some point Q ∈ E. We have

0 6 Ω̄ · R̄x =
12 + 10c

9 · 13
−
m

13
−

a

26
,

0 6 Ω̄ · L̄yz =
6 + 15m

8 · 13
−

c

13
−

a

65
.

Therefore, 30 + 75m > 40c + 8a and 24 + 20c > 18m + 9a. In particular, we see that a 6 240
77 .

Then 6 + a+ 2m+ 5c < 13 since c 6 3
11 and m 6 7

22 .

Suppose that Q 6= Q2 and Q 6= Q5. Then Q 6∈ L̄yz ∪ R̄x. By Lemma 1.3.8, we have

a

10
= −

a

13
E2 = Ω̄ · E > 1,

and hence a > 10. This is a contradiction since a < 240
77 . Therefore, the point Q is either the

point Q2 or the point Q5.
Suppose that Q = Q2. Then Q 6∈ L̄yz. It follows from Lemma 1.3.8 that

1

2
<

(

Ω̄ +mL̄yz +
6 + a+ 2m+ 5c

13
E

)

· R̄x =
78 + 65c

9 · 26
,

and hence c > 3
5 . However, c 6 3

11 . Thus, the point Q must be Q5. Then Q 6∈ R̄x. Again,
Lemma 1.3.8 shows that

1

5
<

(

Ω̄ + cR̄x +
6 + a+ 2m+ 5c

13
E

)

· L̄yz =
78 + 91m

5 · 8 · 13
,

1

5
<
(

Ω̄ +mL̄yz

)

·E =
a

10
+
m

5
.

Therefore, m > 2
7 and a+ 2m > 2. In particular, 2

7 < m < 7
22 .

Let ψ : X̃ → X̄ be the weighted blow up at the point Q5 with weights (1, 1). Let G be the

exceptional curve of ψ and let Ω̃, L̃yz, R̃x and Ẽ be the proper transforms of Ω, Lyz, Rx and E,
respectively. Then

KX̃ ∼Q ψ∗(KX̄) −
3

5
G, L̃yz ∼Q ψ∗(L̄yz) −

1

5
G, Ẽ ∼Q ψ∗(E) −

1

5
G, Ω̃ ∼Q ψ∗(Ω̄) −

b

5
G,

where b is a non-negative rational number.
The surface is smooth along G. The log pull back of (X,D) is the log pair

(

X̃, Ω̃ +mL̃yz + cR̃x +
6 + a+ 2m+ 5c

13
Ẽ + θG

)

,

where

θ =
15m+ 45 + a+ 13b+ 5c

65
.

Then the log pair is not log canonical at some point O ∈ G. We have

0 6 Ẽ · Ω̃ =
a

10
−
b

5
,

0 6 L̃yz · Ω̃ =
6 + 15m

8 · 13
−

c

13
−

a

65
−
b

5
,
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and hence 30 + 75m > 8(a+ 13b+ 5c) and a > 2b. In particular, we obtain

θ =
15m+ 45 + a+ 13b+ 5c

65
6

195m + 390

8 · 65
6

195 · 7 + 390 · 22

8 · 22 · 65
< 1

since m 6 7
22 .

Suppose that O 6∈ Ẽ ∪ L̃yz. Then it follows from Lemma 1.3.8 that

b = −
b

5
G2 = Ω̃ ·G > 1.

However, this gives an absurd inequality 104 < 104b 6 30 + 75m − 8a− 40c 6 30 + 75m < 104
since m 6 7

22 . Therefore, O ∈ Ẽ ∪ L̃yz. Note that Ẽ ∩ L̃yz = ∅.

Suppose that O ∈ L̃yz. Then it follows from Lemma 1.3.8 that

1 <
(

Ω̃ + cR̃x +
6 + a+ 2m+ 5c

13
Ẽ + θG

)

· L̃yz =
(

Ω̃ + θG
)

· L̃yz =
3m+ 6

8
,

and hence m > 2
3 . But m 6 7

22 . Thus, we see that O ∈ Ẽ. Lemma 1.3.8 implies that

1 <

(

Ω̃ +
6 + a+ 2m+ 5c

13
Ẽ

)

·G = b+
6 + a+ 2m+ 5c

13
,

1 <
(

Ω̃ + θG
)

· Ẽ =
a

10
−
b

5
+ θ.

Therefore, we obtain 13b+ a+ 2m+ 5c > 7 and 3a+ 2c+ 6m > 8.
Let φ : X̂ → X̃ be the blow up at the point O. Let F be the exceptional curve of φ. Let Ω̂,

L̂yz, R̂x, Ê and Ĝ be the proper transforms of Ω, Lyz, Rx, E and G, respectively. Then

K
X̂

∼Q φ∗(KX̃) + F, Ĝ ∼Q φ∗(G) − F, Ê ∼Q φ∗(Ẽ) − F, Ω̂ ∼Q φ∗(Ω̃) − dF,

where d is a non-negative rational number. The log pull back of (X,D) is the log pair

(

X̂, Ω̂ +mL̂yz + cR̂x +
6 + a+ 2m+ 5c

13
Ê + θĜ+ νF

)

,

where

ν =
65d+ 25m+ 6a+ 13b+ 30c + 10

65
.

It is not log canonical at some point A ∈ F . We have

0 6 Ê · Ω̂ =
a

10
−
b

5
− d,

0 6 Ĝ · Ω̂ = b− d,
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and hence b > d and a > 2b+ 10d. In particular,

ν =
65d+ 25m+ 6a+ 13b+ 30c + 10

65
=

=
13(5d + b) + 25m+ 6a+ 30c+ 10

65
6

6
5a+ 10m+ 12c+ 4

26
6

6
6 + 8c

9
< 1

since we have 24 + 20c > 18m+ 9a and c 6 3
11 .

Suppose that A 6∈ Ê ∪ Ĝ. Then Lemma 1.3.8 shows that d = Ω̂ · F > 1. This is impossible
since

10d 6 a− 2b 6 a 6
240

77
.

Thus, we see that A ∈ Ê ∪ Ĝ. Note that Ê ∩ Ĝ = ∅.
Suppose that A ∈ Ê. Then it follows from Lemma 1.3.8 that

a

10
−
b

5
− d+ ν =

(

Ω̂ + νF
)

· Ê > 1,

which implies that 5a + 10m + 12c > 22. However, this inequality with 24 + 20c > 18m + 9a
gives

9

5
(22 − 12c) <

9

5
(5a+ 10m) 6 24 + 20c,

and hence 3
8 < c. But c 6 3

11 . Thus, the point A cannot belong to Ê. Then A ∈ Ĝ. By
Lemma 1.3.8, we see that

b− d+ ν =
(

Ω̂ + νF
)

· Ĝ > 1,

and hence 6a+ 25m+ 30c+ 78b > 55. But

55 < 25m+ 6a+ 78b+ 3c = 25m+
3

4
(8a+ 104b + 40c) 6 25m+

3

4
(30 + 75m) < 55

since 8a + 104b + 40c 6 30 + 75m and m 6 7
22 . The obtained contradiction completes the

proof. �

Lemma 2.4.4. Let X be a quasismooth hypersurface of degree 12n + 35 in P(9, 3n + 8, 3n +
11, 6n + 13) for n > 1. Then lct(X) = 1.

Proof. The surface X can be defined by the equation

z2t+ y3z + xt2 + xn+3y = 0.

It is singular only at the points Ox, Oy, Oz and Ot.
The curve Cx (resp. Cy, Cz, Ct) consists of two irreducible and reduced curves Lxz (resp. Lyt,

Lxz, Lyt) and Rx = {x = zt+y3 = 0} (resp. Ry = {y = z2+xt = 0}, Rz = {z = t2+xn+2y = 0},
Rt = {t = y2z + xn+3 = 0}). These two curves intersect at the point Ot (resp. Ox, Oy, Oz).
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It is easy to see that lct(X, 2
3Cx) = 1 is less than each of the numbers

lct(X,
6

3n+ 8
Cy), lct(X,

6

3n + 11
Cz), lct(X,

6

6n+ 13
Ct).

We have the following intersection numbers.

−Lxz ·KX =
6

(3n+ 8)(6n + 13)
, −Lyt ·KX =

2

3(3n + 11)
, −Rx ·KX =

18

(3n+ 11)(6n + 13)
,

−Ry ·KX =
4

3(6n + 13)
, −Rz ·KX =

4

3(3n + 8)
, −Rt ·KX =

6(n + 3)

(3n + 8)(3n + 11)
,

Lxz ·Rx =
3

6n+ 13
, Lyt · Ry =

2

9
, Lxz ·Rz =

2

3n+ 8
, Lyt ·Rt =

n+ 3

3n + 11
,

L2
xz = −

9n+ 15

(3n+ 8)(6n + 13)
, L2

yt = −
3n+ 14

9(3n + 11)
, R2

x = −
9n+ 6

(3n + 11)(6n + 13)
,

R2
y = −

6n + 10

9(6n+ 13)
, R2

z =
6n+ 4

9(3n + 8)
, R2

t =
(n+ 3)(3n + 5)

(3n + 8)(3n + 11)
.

Now we suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that
the log pair (X,D) is not log canonical at some point P ∈ X.

By Lemma 1.3.6 we may assume that Supp (D) does not contain either the curve Lyt or the
curve Ry. Since these two curves intersect at the point Ox, the inequalities

Lyt ·D =
2

3(3n + 11)
<

1

9
,

Ry ·D =
4

3(6n + 13)
<

1

9

show that the point P cannot be the point Ox.
By Lemma 1.3.6 we may assume that Supp (D) does not contain either the curve Lxz or the

curve Rz. Therefore, one of the following inequalities must hold:

multOy(D) 6 (3n+ 8)Lxz ·D =
6

6n+ 13
< 1,

multOy(D) 6
3n+ 8

2
Rz ·D =

2

3
.

Therefore, the point P cannot be the point Oy.
Suppose that P = Oz. If Lyt 6⊂ Supp (D), then we get an absurd inequality

6

9(3n + 11)
= Lyt ·D >

1

3n + 11
.

Therefore Supp (D) must contain the curve Lyt. By Lemma 1.3.6 we may assume that Mt 6⊂
Supp (D). Put D = µLyt + Ω, where Ω is an effective Q-divisor whose support does not contain
the curve Lyt. Then

6(n + 3)

(3n + 8)(3n + 11)
= D · Rt > µLyt · Rt +

(multP (D) − µ)multP (Rt)

3n+ 11
>
µ(n+ 3)

3n + 11
+

2(1 − µ)

3n+ 11
,
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and hence

µ <
2

(3n+ 8)(n + 1)
.

On the other hand, Theorem 1.3.3 shows

1

3n+ 11
< Ω · Lyt = D · Lyt − µL2

yt =
6 + µ(3n+ 14)

9(3n + 11)
.

It implies 3
3n+14 < µ. Consequently, the point P cannot be the point Oz .

Suppose that P = Ot. Since Lxz ·D < 1
6n+13 , the curve Lxz must be contained in Supp (D).

Then, we may assume that Rx 6⊂ Supp (D). Put D = µLxz +Ω, where Ω is an effective Q-divisor
whose support does not contain the curve Lxz. Then

18

(3n+ 11)(6n + 13)
= D · Rx > µLxz · Rx +

multP (D) − µ

6n+ 13
>

1 + 2µ

6n + 13
,

and hence

µ <
7 − 3n

6n+ 22
.

However, Theorem 1.3.3 implies

1

6n+ 13
< Ω · Lxz = D · Lxz − µL2

xz =
6 + (9n+ 15)µ

(3n + 8)(6n + 13)
,

and hence 3n+2
9n+15 < µ. This is a contradiction. Therefore, the point P cannot be the point Ot.

Write D = aLxz + bRx + ∆, where ∆ is an effective Q-divisor whose support contains neither
Lxz nor Rx. Since the log pair (X,D) is log canonical at the point Ot, we have 0 6 a, b 6 1.
Then by Theorem 1.3.3 the following two inequalities

(bRx + ∆) · Lxz = (D − aLxz) · Lxz =
6 + a(9n + 15)

(3n + 8)(6n + 13)
< 1,

(aLxz + ∆) ·Rx = (D − bRx) · Rx =
18 + b(9n + 6)

(3n+ 11)(6n + 13)
< 1

show that the point P cannot belong to the curve Cx. By the same way, we can show P 6∈
Cy ∪Cz ∪ Ct.

Consider the pencil L defined by the equations λxt + µz2 = 0, [λ : µ] ∈ P1. Note that the
curve Lxz is the only base component of the pencil L. There is a unique divisor Cα in L passing
through the point P . This divisor must be defined an equation xt + αz2 = 0, where α is a
non-zero constant, since the point P is located in the outside of Cx ∪ Cz ∪ Ct. Note that the
curve Ct does not contain any component of Cα. Therefore, to see all the irreducible components
of Cα, it is enough to see the affine curve

{

x+ αz2 = 0

z2 + y3z + x+ xn+3y = 0

}

⊂ C3 ∼= Spec
(

C
[

x, y, z
]

)

.

This is isomorphic to the plane affine curve defined by the equation

z{(1 − α)z + y3 + (−α)n+3yz2n+5} = 0 ⊂ C2 ∼= Spec
(

C
[

y, z
]

)

.
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Thus, if α 6= 1, then the divisor Cα consists of two reduced and irreducible curves Lxz and Zα.
If α = 1, then it consists of three reduced and irreducible curves Lxz, Ry, R. Moreover, Zα and
R are smooth at the point P .

Suppose that α 6= 1. Then we have

D · Zα =
2(24n + 61)

3(3n + 8)(6n + 13)
.

Since Zα is different from Rx,

Z2
α = Cα · Zα − Lxz · Zα > Cα · Zα − (Lxz +Rx) · Zα =

6n+ 13

6
D · Zα > 0.

Put D = ǫZα + Ξ, where Ξ is an effective Q-divisor such that Zα 6⊂ Supp(Ξ). Since the pair
(X,D) is log canonical at the point Ot and the curve Zα passes through the point Ot, we have
ǫ 6 1. But

(D − ǫZα) · Zα 6 D · Zα =
2(24n + 61)

3(3n + 8)(6n + 13)
< 1

and hence Lemma 1.3.8 implies that the point P cannot belong to the curve Zα.
Suppose that α = 1. We have

D ·R =
6(2n + 5)

(3n + 8)(6n + 13)
.

Since R is different from Rx and Lyt,

R2 = Cα · R− Lxz · R−Ry · R > Cα · R− (Lxz +Rx) ·R− (Lyt +Ry) · R =
3n+ 5

6
D ·D > 0.

Put D = ǫ1R + Ξ′, where Ξ′ is an effective Q-divisor such that R 6⊂ Supp(Ξ′). Since the curve
R passes through the point Ot at which the pair (X,D) is log canonical, ǫ1 6 1. Since

(D − ǫ1R) · R 6 D ·R =
6(2n + 5)

(3n + 8)(6n + 13)
< 1,

Lemma 1.3.8 implies that the point P cannot belong to R. �

Part 3. Sporadic cases

3.1. Sporadic cases with I = 1

Lemma 3.1.1. Let X be a quasismooth hypersurface of degree 10 in P(1, 2, 3, 5). Then

lct
(

X
)

=







1 if Cx has an ordinary double point,

7

10
if Cx has a non-ordinary double point.

Proof. The surface X is singular only at the point Oz. The curve Cx is reduced and irreducible.
Moreover, we have

lct
(

X,Cx

)

=







1 if the curve Cx has an ordinary double point at the point Oz,

7

10
if the curve Cx has a non-ordinary double point at the point Oz .
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Suppose that lct
(

X
)

< lct
(

X,Cx

)

. Then there is an effective Q-divisor D ∼Q −KX such that
the log pair (X,D) is not log canonical at some point P ∈ X. By Lemma 1.3.6 we may assume
that the support of D does not contain the curve Cx. Also Lemma 1.3.9 shows that P ∈ Cx.
However, we obtain absurd inequalities

1

3
= D · Cx >







multP

(

D
)

> 1 if P 6= Oz,

multP

(

D
)

3
>

1

3
if P = Oz.

Therefore, lct
(

X
)

= lct
(

X,Cx

)

. �

Lemma 3.1.2. Let X be the quasismooth hypersurface defined by a quasihomogeneous poly-
nomial f(x, y, z, t) of degree 15 in P(1, 3, 5, 7). Then

lct
(

X
)

=







1 if f(x, y, z, t) contains yzt,

8

15
if f(x, y, z, t) does not contain yzt.

Proof. The surface X is singular only at the point Ot. The curve Cx is reduced and irreducible.
It is easy to check

lct
(

X,Cx

)

=







1 if f(x, y, z, t) contains yzt,

8

15
if f(x, y, z, t) does not contain yzt.

The proof is exactly the same as the proof of Lemma 3.1.1. The contradictory inequalities

1

7
= D · Cx >







multP

(

D
)

> 1 if P 6= Ot,

multP

(

D
)

7
>

1

7
if P = Ot.

complete the proof. �

Lemma 3.1.3. Let X be a quasismooth hypersurface of degree 16 in P(1, 3, 5, 8). Then lct(X) =
1.

Proof. The surface X is singular only at the points Oy and Oz. The former is a singular point
of type 1

3(1, 1) and the latter is of type 1
5(1, 1).

The curve Cx consists of two distinct irreducible curves L1 and L2. It is easy to see that
lct(X,Cx) = 1.

Suppose that lct
(

X
)

< 1. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X,D) is not log canonical at some point P ∈ X. By Lemma 1.3.6 we may assume that the
support of D does not contain the curve L1 without loss of generality. Moreover, Lemma 1.3.9
implies P ∈ Cx.

We have

D · L1 = D · L2 =
1

15
,

and L1 ∩ L2 = {Oy, Oz}. We also have

L2
1 = L2

2 = −
7

15
, L1 · L2 =

8

15
.
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Since 5D ·L1 = 1
3 , the point P cannot belong to L1. Therefore, the point P is a smooth point

on L2. Put
D = mL2 + Ω,

where Ω is an effective Q-divisor such that L2 6⊂ Supp(Ω). Since the log pair (X,D) is log
canonical at Oy, we must have m 6 1. Then it follows from Lemma 1.3.8 that

1 < Ω · L2 =
(

D −mL2

)

· L2 =
1 + 7m

15
.

This gives us m > 2. This is a contradiction. Consequently, lct(X) = 1. �

Lemma 3.1.4. Let X be a quasismooth hypersurface of degree 18 in P(2, 3, 5, 9). Then

lct
(

X
)

=







2 if Cy has a tacnodal point,

11

6
if Cy has no tacnodal points.

Proof. The surface X is singular at the point Oz. This is a singular point of type 1
5 (1, 2). The

surface X also has two singular points O1 and O2 that are cut out by the equations x = z = 0.
These are of type 1

3(1, 1) on the surface X.
The curves Cx and Cy are reduced and irreducible. The curve Cy is always singular at the

point Oz. We can see lct(X,Cx) = 1 and

lct
(

X,Cy

)

=











3

4
if Cy has a tacnodal singularity at the point Oz ,

11

18
if Cy has a non-tacnodal singularity at the point Oz.

Therefore, if Cy has a tacnodal singularity at the point Oz, then

2 = lct

(

X,
1

2
Cx

)

< lct

(

X,
1

3
Cy

)

=
9

4
.

If Cy has a non-tacnodal singularity at the point Oz, then

2 = lct

(

X,
1

2
Cx

)

> lct

(

X,
1

3
Cy

)

=
11

6
.

Let ǫ = min
{

lct
(

X, 1
2Cx

)

, lct
(

X, 1
3Cy

)}

. Then lct(X) 6 ǫ.
Suppose that lct(X) < ǫ. Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X, ǫD) is not log canonical at some point P ∈ X. By Lemma 1.3.6, we may assume that
the support of the divisor D contains neither the curve Cx nor the curve Cy.

The inequalities

multOz(ǫD) 6
ǫ

2
multOz(D)multOz(Cy) 6 5D · Cy = 1

imply that the point P cannot be the point Oz. If the point P is a smooth point on Cy, then
we have obtain a contradictory inequalities

1

5
= D · Cy > multP (D) >

1

ǫ
>

1

2
.

Therefore, the point P is located in the outside of the curve Cy.



EXCEPTIONAL DEL PEZZO HYPERSURFACES 43

Suppose that P ∈ Cx. Then we obtain the following contradictory inequalities

2

15
= D · Cx >















multP
(

D
)

>
1

2
if P ∈ X \ Sing(X),

multP
(

D
)

3
>

1

6
if P = O1 or P = O2.

Therefore, P 6∈ Cx ∪ Cy. Then P is a smooth point. There is a unique curve C in the pencil
| − 5KX | passing through the point P . The curve C is a hypersurface in P(1, 2, 3) of degree 6
such that the natural projection

C −→ P(1, 2) ∼= P1

is a double cover. Thus, we have multP (C) 6 2. In particular, the log pair (X, ǫ
5C) is log

canonical. Thus, it follows from Lemma 1.3.6 that we may assume that the support of the
divisor D does not contain one of the irreducible components of the curve C. Then

1

3
= D · C > multP

(

D
)

>
1

2

in the case when C is irreducible (but possibly non-reduced). Therefore, the curve C must be
reducible and reduced. Then

C = C1 + C2,

where C1 and C2 are irreducible and reduced smooth rational curves such that

C2
1 = C2

2 = −
2

3
, C1 · C2 =

3

2
.

Without loss of generality we may assume that P ∈ C1. Put

D = mC1 + Ω,

where Ω is an effective Q-divisor such that C1 6⊂ Supp(Ω). If m 6= 0, then C2 6⊂ Supp(Ω) and

1

6
= D · C2 =

(

mC1 + Ω
)

· C2 > mC1 · C2 =
3m

2
,

and hence m 6 1
9 . Thus, it follows from Lemma 1.3.8 that

1 + 4m

6
=
(

D −mC1

)

· C1 = Ω · C1 >
1

ǫ
>

1

2
.

Therefore, m > 1
2 . But m 6 1

9 . Consequently, lct(X) = ǫ.
�

Lemma 3.1.5. Let X be a quasismooth hypersurface of degree 15 in P(3, 3, 5, 5). Then lct(X) =
2.

Proof. The surface X has five singular points O1, . . . , O5 of type 1
3(1, 1). They are cut out by

the equations z = t = 0. The surface also has three singular points Q1, Q2, Q3 of type 1
5(1, 1).

These three points are cut out by the equations x = y = 0.
Let Ci be the curve in the pencil | − 3KX | passing through the point Oi, where i = 1, . . . , 5.

The curve Ci consists of three reduced and irreducible smooth rational curves

Ci = Li
1 + Li

2 + Li
3.
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The curve Li
j contains the point Qj. Furthermore, Li

1 ∩ L
i
2 ∩ L

i
3 = {Oi}. We see that

−KX · Li
j =

1

15
,
(

Li
j

)2
= −

7

15
, Li

j · L
i
k =

1

3
where j 6= k.

Note that lct(X,Ci) = 2
3 . Thus lct(X) 6 2.

Suppose that lct(X) < 2. Then there is an effective Q-divisor D ∼Q −KX such that the log
pair (X, 2D) is not log canonical at some point P ∈ X. Then, multP (D) > 1

2 .
Suppose that P 6∈ C1 ∪C2 ∪C3 ∪C4 ∪C5. Then P is a smooth point of X. There is a unique

curve C ∈ |−3KX | passing through point P . Then C is different from the curves C1, . . . , C5 and
hence C is irreducible. Furthermore, the log pair (X,C) is log canonical. Thus, it follows from
Lemma 1.3.6 that we may assume that C 6⊂ Supp(D). Then we obtain an absurd inequality

1

5
= D · C > multP

(

D
)

>
1

2
,

since the log pair (X, 2D) is not log canonical at the point P . Therefore, P ∈ C1∪C2∪C3∪C4∪C5.
However, we may assume that P ∈ C1 without loss of generality. Furthermore, by Lemma 1.3.6,
we may assume that L1

i 6⊂ Supp(D) for some i = 1, 2, 3.
Since

1

5
= 3D · L1

i > multO1

(

D
)

,

the point P cannot be the point O1.
Without loss of generality, we may assume that P ∈ L1

1.
Let Z be the curve in the pencil | − 5KX | passing through the point Q1. Then

Z = Z1 + Z2 + Z3 + Z4 + Z5,

where Zi is a reduced and irreducible smooth rational curve. The curve Zi contains the point
Oi. Moreover, Z1∩Z2∩Z3∩Z4∩Z5 = {Q1}. It is easy to check lct(X,Z) = 2

5 . By Lemma 1.3.6,
we may assume that Zk 6⊂ Supp(D) for some k = 1, . . . , 5. Then

1

3
= 5D · Zk > multQ1

(

D
)

,

and hence the point P cannot be the point Q1.
Thus, the point P is a smooth point on L1

1. Put

D = mL1
1 + Ω,

where Ω is an effective Q-divisor such that L1
1 6⊂ Supp(Ω). If m 6= 0, then

1

15
= D · L1

i =
(

mL1
1 + Ω

)

· L1
i > mL1

1 · L
1
i =

m

3
,

and hence m 6 1
5 . Then it follows from Lemma 1.3.8 that

1 + 7m

15
=
(

D −mL1
1

)

· L1
1 = Ω · L1

1 >
1

2
.

This implies that m > 13
14 . But m 6 1

5 . The obtained contradiction completes the proof. �

Lemma 3.1.6. Let X be a quasismooth hypersurface of degree 25 in P(3, 5, 7, 11). Then
lct(X) = 21

10 .



EXCEPTIONAL DEL PEZZO HYPERSURFACES 45

Proof. The curve Cx is irreducible and reduced. It is easy to see that lct(X, 1
3Cx) = 21

10 . There-

fore, lct(X) 6 21
10 .

Suppose that lct(X) < 21
10 . Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X, 21
10D) is not log canonical at some point P ∈ X. We may assume that the support of D

does not contain the curve Cx by Lemma 1.3.6.
Since H0(P,OP(21)) contains x7, x2y3, z3, by Lemma 1.3.9 we have

multP (D) 6
21 · 25

3 · 5 · 7 · 11
<

10

21
if P is a smooth point in the outside of the curve Cx. Thus, either P = Ox or P ∈ Cx.

If P ∈ Cx, then we obtain a contradictory inequalities

5

77
= D · Cx >



























multP (D)multP (Cx) = multP (D) >
10

21
if P ∈ X \ Sing(X),

multP (D)multP (Cx)

7
=

multP (D)

7
>

10

147
if P = Oz,

multP (D)multP (Cx)

11
=

2multP (D)

11
>

20

231
if P = Ot.

Therefore, we see that P = Ox.
Since the curve Cy is irreducible and the log pair (X, 1

5Cy) is log canonical at the point Ox,
we may assume that the support of D does not contain the curve Cy. Then

10

63
<

multOx(D)

3
6 D · Cy =

25

231
<

10

63
.

This is a contradiction. �

Lemma 3.1.7. Let X be a quasismooth hypersurface of degree 28 in P(3, 5, 7, 14). Then
lct(X) = 9

4 .

Proof. The surface X is singular at the point Ox and the point Oy. The former is a singular
point of type 1

3(1, 1) and the latter is of type 1
5(1, 2). Let O1 and O2 be the two points cut out

on X by the equations x = y = 0. The points O1 and O2 are singular points of type 1
7(3, 5) on

the surface X.
The curve Cx consists of two reduced and irreducible smooth rational curves L1 and L2. These

two curves intersect each other only at the point Oy. Each curve Li contains the singular point
Oi. We have

−KX · Li =
1

35
, L1 · L2 =

2

5
, L2

1 = L2
2 = −

11

35
.

Since lct(X,Cx) = 3
4 , lct(X) 6 9

4 .

Suppose that lct(X) < 9
4 . Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X, 9
4D) is not log canonical at some point P ∈ X.

If P is a smooth point in the outside of Cx, then

multP
(

D
)

6
588

1470
<

4

9

by Lemma 1.3.9 since H0(P,OP(21)) contains x7, z3, x2y3. Therefore, either P belongs to the
curve Cx or P = Ox.



46 IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

By Lemma 1.3.6, we may assume that Li 6⊂ Supp(D) for some i = 1, 2. Similarly, we may
assume that Cy 6⊂ Supp(D) since (X,Cy) is log canonical and the curve Cy is irreducible.

The inequalities

multOx(D) 6 3D · Cy =
2

7
<

4

9
show that the point P cannot be the point Ox. Therefore, the point P belongs to the curve Cx.

The inequalities

multOy(D) 6 5D · Li =
1

7
<

4

9
show that the point P cannot be the point Oy.

Without loss of generality, we may assume that P ∈ L1. Put D = mL1 + Ω, where Ω is an
effective Q-divisor such that L1 6⊂ Supp(Ω). If m 6= 0, then

1

35
= D · L2 =

(

mL1 + Ω
)

· L2 > mL1 · L2 =
2m

5
,

and hence m 6 1
14 . Then Lemma 1.3.8 implies an absurd inequality

5

98
>

1 + 11m

35
=
(

D −mL1

)

· L1 = Ω · L1 >











4

9
if P 6= O1,

4

63
if P = O1.

The obtained contradiction completes the proof. �

Lemma 3.1.8. Let X be a quasismooth hypersurface of degree 36 in P(3, 5, 11, 18). Then
lct(X) = 21

10 .

Proof. The surface X is singular at the points Oy and Oz. It is also singular at two points P1

and P2 on the curve Lyz. These two points P1 and P2 are contained in Cy.

The curve Cx is irreducible and reduced. It is easy to see that lct(X, 1
3Cx) = 21

10 . Also, the

curve Cy is always irreducible and the pair (X, 21
5·10Cy) is log canonical. We see that lct(X) 6 21

10 .

Suppose that lct(X) < 21
10 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 21
10D) is not log canonical at some point P ∈ X. By Lemma 1.3.6, we may assume that

the support of D contains neither the curve Cx nor Cy.
Then the following inequalities

multOy(D) 6 5D · Cx =
5 · 3 · 36

3 · 5 · 11 · 18
<

10

21
,

multOz(D) 6 11D · Cx =
11 · 3 · 36

3 · 5 · 11 · 18
<

10

21
,

multPi
(D) 6 3D · Cy =

3 · 5 · 36

3 · 5 · 11 · 18
<

10

21
,

show that the point P is a smooth point P on X. Furthermore, the first two inequalities also
show that the point P cannot belong to the curve Cx. Therefore, the point P is a smooth point
in the outside of the curve Cx.

However, since H0(P,OP(39)) contains x13, x3y6, x2z3, by Lemma 1.3.9 we have

10

21
< multP (D) 6

36 · 39

3 · 5 · 11 · 18
<

10

21
.
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The obtained contradiction completes the proof. �

Lemma 3.1.9. Let X be a quasismooth hypersurface of degree 56 in P(5, 14, 17, 21). Then
lct(X) = 25

8 .

Proof. The surface X is singular at the points Ox, Oz and Ot. The first point is a singular point
of type 1

5(2, 1), the second of type 1
17 (7, 2), the last of type 1

21 (5, 17). There is one more singular

point O of type 1
7(5, 3) on Lxz that is different from the singular point Ot.

The curve Cx (resp. Cy) consists of two reduced and irreducible curves Lxy and Rx (resp.
Ry). The curve Lxy intersects the curve Rx at the point Oz . The curve Rx is singular at the
point Oz. On the other hand, it intersects the curve Ry at the point Ot. The curve Ry is singular
at Ot. We have

L2
xy = −

37

357
, Lxy · Rx =

2

17
, R2

x = −
9

119
, Lxy · Ry =

1

7
, R2

y =
9

35
.

It is easy to check lct(X,Cx) = 5
8 and lct(X,Cy) = 3

7 , and hence lct(X) 6 25
8 .

Suppose that lct(X) < 25
8 . Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X, 25
8 D) is not log canonical at some point P ∈ X. By Lemma 1.3.6 we may assume that

either the support of the divisor D does not contain the curve Lxy or it contains neither Rx nor
Ry.

Suppose that P 6∈ Cx ∪ Cy. Then P is a smooth point and

multP
(

D
)

6
4

21
<

8

25

by Lemma 1.3.9 since the natural projection X 99K P(5, 14, 17) is a finite morphism outside
of the curve Cy and H0(P,OP(85)) contains monomials x17, z5, x3y5. This is a contradiction.
Thus, the point P must belong to Cx ∪Cy.

The curve Cz is irreducible and the log pair (X, 25
8·17Cz) is log canonical. By Lemma 1.3.6 we

may assume that Cz 6⊂ Supp(D). Then

8

25
>

4

21
= 5D · Cz > multOx

(

D
)

,

and hence the point P cannot be Ox.
Suppose that P ∈ Lxy. Put D = mLxy + Ω, where Ω is an effective Q-divisor such that

Lxy 6⊂ Supp(Ω). If m 6= 0, then

1

119
= D ·Rx =

(

mLxy + Ω
)

·Rx > mLxy · Rx =
2m

17
,

and hence m 6 1
14 . Then it follows from Lemma 1.3.8 that

1 + 37m

357
=
(

D −mLxy

)

· Lxy = Ω · Lxy >



























8

525
if P = Ot,

8

425
if P = Oz,

8

25
if P 6= Oz and P 6= Ot.

This implies m > 3
25 . But m 6 1

14 . The obtained contradiction implies that P 6∈ Lxy.
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Suppose that P ∈ Rx. Put D = aRx + Υ, where Υ is an effective Q-divisor such that
Rx 6⊂ Supp(Υ). If a 6= 0, then

1

357
= D · Lxy =

(

aRx + Υ
)

· Lxy > aLxy ·Rx =
2a

17
,

and hence a 6 1
42 . Then it follows from Lemma 1.3.8 that

1 + 9a

119
=
(

D − aRx

)

· Rx = Υ ·Rx >











8

175
if P = O,

8

25
if P 6= O.

This is impossible because a 6 1
42 . Thus, we see that P 6∈ Cx.

We see that P ∈ Ry and P ∈ X \ Sing(X). Put D = bRy + ∆, where ∆ is an effective
Q-divisor such that Ry 6⊂ Supp(∆). If b 6= 0, then

1

357
= D · Lxy =

(

bRy + ∆
)

· Lxy > bLxy · Ry =
b

7
,

and hence b 6 1
51 . Then it follows from Lemma 1.3.8 that

1 + 9b

35
=
(

D − bRy

)

·Ry = ∆ ·Ry >
8

25
.

This is impossible because b 6 1
51 . The obtained contradiction completes the proof. �

Lemma 3.1.10. Let X be a quasismooth hypersurface of degree 81 in P(5, 19, 27, 31). Then
lct(X) = 25

6 .

Proof. The curve Cx is irreducible and reduced. Moreover, the curve Cx is smooth outside of
the singular locus of the surface X. It is easy to see that lct(X, 1

5Cx) = 25
6 . Hence, we have

lct(X) 6 25
6 . The curve Cy is irreducible and reduced. The log pair (X, 1

19Cy) is log canonical.

Suppose that lct(X) < 25
6 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 25
6 D) is not log canonical at some point P ∈ X. We may assume that the support of D

contains neither Cx nor Cy by Lemma 1.3.6.
The inequality

31D · Cx =
3

19
<

6

25
shows that the point P cannot be on the curve Cx. On the other hand, the inequality

5D · Cy =
3

31
<

6

25

shows that the point P cannot be on the curve Cy. In particular, the point P cannot be the
point Ox.

Therefore, the point P must be a smooth point in the outside of Cx. However, Lemma 1.3.9
implies

multP (D) 6
190 · 81

5 · 19 · 27 · 31
<

6

25
since H0(P,OP(190)) contains x38, x11z, y10. This is a contradiction. �
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Lemma 3.1.11. Let X be a quasismooth hypersurface of degree 100 in P(5, 19, 27, 50). Then
lct(X) = 25

6 .

Proof. The surface X is singular at the points Oy and Oz. Also, it is singular at two points P1

and P2 on Lyz. The point Oy is a singular point of type 1
19(2, 3) on X. The point Oz is of type

1
27(5, 23). The last two points are of type 1

5 (2, 1).

The curve Cx is irreducible and reduced. It is easy to see that lct(X, 1
5Cx) = 25

6 . Therefore,

lct(X) 6 25
6 . The curve Cz is irreducible and reduced. The log pair (X, 25

6·27Cz) is log canonical.

Suppose that lct(X) < 25
6 . Then it follows from Lemma 1.3.6 that there is an effective Q-

divisor D ∼Q −KX such that Cx, Cz 6⊂ Supp(D) and the pair (X, 25
6 D) is not log canonical at

some point P ∈ X.
The inequality

27D · Cx =
2

19
<

6

25
shows that the point P cannot be on the curve Cx. On the other hand, the inequality

5D · Cz =
2

19
<

6

25

shows that the point P cannot be on the curve Cz. In particular, the point P can be neither
the point P1 nor the point P2.

Consequently, the point P must be a smooth point in the outside of Cx. However,
H0(P,OP(270)) contains x54, x16y10, z10. Then, Lemma 1.3.9 implies a contradictory inequality

6

25
< multP (D) 6

270 · 100

5 · 19 · 27 · 50
<

6

25
.

�

Lemma 3.1.12. Let X be a quasismooth hypersurface of degree 81 in P(7, 11, 27, 37). Then
lct(X) = 49

12 .

Proof. The surface X is singular only at the points Ox, Oy and Ot.

The curve Cx is irreducible and reduced. It is easy to see that lct(X, 1
7Cx) = 49

12 , and hence

lct(X) 6 49
12 . The curve Cy is irreducible and reduced. Moreover, the log pair (X, 49

11·12Cy) is log
canonical.

Suppose that lct(X) < 49
12 . By Lemma 1.3.6, there is an effective Q-divisor D ∼Q −KX such

that the support of D contains neither the curve Cx nor the curve Cy, and the log pair (X, 49
12D)

is not log canonical at some point P ∈ X.
The three inequalities

11D · Cx =
3

37
<

12

49
,

7D · Cy =
3

37
<

12

49
,

multOt(D) =
multOt(D)multOt(Cx)

3
6

37

3
D · Cx =

1

11
<

12

49
show that the point P is a smooth point in the outside of Cx.
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However, since H0(P,OP(189)) contains x27, x16y7, z7, Lemma 1.3.9 implies an absurd in-
equalities

12

49
< multP (D) 6

189 · 81

7 · 11 · 27 · 37
<

12

49
.

Therefore, lct(X) = 49
12 . �

Lemma 3.1.13. Let X be a quasismooth hypersurface of degree 88 in P(7, 11, 27, 44). Then
lct(X) = 35

8 .

Proof. The surface X is singular at the points Ox and Oz. The former is a singular point of
type 1

7(3, 1) and the latter is of type 1
27 (11, 17). The surface is also singular at the points O1

and O2 on Lxz. They are of type 1
11(7, 5).

The curve Cx consists of two smooth rational curves L1 and L2. Each curve Li contains the
singular point Oi. The curves L1 and L2 intersects each other only at the point Oz. We have

L2
1 = L2

2 = −
37

297
, L1 · L2 =

4

27
.

It is easy to check lct(X, 1
7Cx) = 35

8 . Meanwhile, the curve Cy is irreducible and reduced. Also,

the log pair (X, 35
88Cy) is log canonical.

Suppose that lct(X) < 35
8 . Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X, 35
8 D) is not log canonical at some point P ∈ X. By Lemma 1.3.6 we may assume that

the support of D contains neither Cy nor L2 without loss of generality.
The inequality

27D · L2 =
1

11
<

8

35
shows that the point P is located in the outside of L2. The inequality

7D · Cy =
2

27
<

8

35

implies that the point P cannot be Ox. Write

D = mL1 + Ω,

where Ω is an effective Q-divisor such that L1 6⊂ Supp(Ω). If m 6= 0, then

1

297
= D · L2 =

(

mL1 + Ω
)

· L2 > mL1 · L2 =
4m

27
,

and hence m 6 1
44 . Then

(D −mL1) · L1 =
1 + 37m

297
6

3

484
<

8

35 · 11
,

and hence Lemma 1.3.8 implies that the point P cannot be on the curve L1. Therefore, the
point P is a smooth point in the outside of Cx. However, Lemma 1.3.9 shows

multP
(

D
)

6
2

11
<

8

35

since H0(P,OP(189)) contains monomials x27, z7, x16y7. This is a contradiction. �
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Lemma 3.1.14. Let X be a quasismooth hypersurface of degree 60 in P(9, 15, 17, 20). Then
lct(X) = 21

4 .

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

xz3 + x5y − y4 + t3 = 0.

Note that the surfaceX is singular at Ox and Oz. It is also singular at the point P1 = [1 : 1 : 0 : 0]
and the point P2 = [0 : 1 : 0 : 1].

The curves Cx, Cy, and Cz are irreducible and reduced. We have

lct(X,
1

9
Cx) =

21

4
, lct(X,

1

15
Cy) = 10, lct(X,

1

17
Cz) = 17.

The curve Cx is singular at the point Oz with multiplicity 3.
Suppose that lct(X) < 21

4 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 21
4 D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of D contains none of the curves Cx, Cy, Cz.
The three inequalities

17

3
D · Cx =

17 · 9 · 60

3 · 9 · 15 · 17 · 20
<

4

21
,

9D · Cy =
9 · 15 · 60

9 · 15 · 17 · 20
<

4

21
,

3D · Cz =
3 · 17 · 60

9 · 15 · 17 · 20
<

4

21
imply that the point P is located in the outside of Cx ∪ Cy ∪Cz.

Let L be the pencil on X that is cut out by the equations

λz3 + µx4y = 0,

where [λ : µ] ∈ P1. Then the base locus of the pencil L consists of the points P2 and Ox. Let
C be the unique curve in L that passes through the point P . Then C is cut out on X by an
equation

x4y = αz3,

where α is a non-zero constant, since the point P is located in the outside of Cx ∪ Cy ∪ Cz.
The curve C is smooth outside of the points P2 and Ox by the Bertini theorem because C is
isomorphic to a general curve in the pencil L unless α = −1. In the case when α = −1, the
curve C is smooth outside the points P2 and Ox as well.

We claim that the curve C is irreducible. If so, then we may assume that the support of D
does not contain the curve C and hence we obtain a contradiction

4

21
< multQ(D) 6 D · C =

51 · 60

9 · 15 · 17 · 20
<

4

21
.

For the irreducibility of the curve C, we may consider the curve C as a surface in C4 defined
by the equations t3 + y4 + (1 + α)xz3 = 0 and x4y = αz3. This surface is isomorphic to the
surface in C4 defined by the equations t3 +y4 +βxz3 = 0 and x4y = z3, where β = 1 or 0. Then,
we consider the surface in P4 defined by the equations t3w + y4 + βxz3 = 0 and x4y = z3w2.
We take the affine piece defined by t 6= 1. This affine piece is isomorphic to the surface defined
by the equation x4y + z3(y4 + βxz3)2 = 0 in C3. If β = 1, the surface is irreducible. If β = 0,
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then it has an extra component defined by y = 0. However, this component originates from the
hyperplane w = 0 in P4. Therefore, the surface in C4 defined by the equations t3 + y4 = 0 and
x4y = z3 is also irreducible. �

Lemma 3.1.15. Let X be a quasismooth hypersurface of degree 69 in P(9, 15, 23, 23). Then
lct(X) = 6.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

zt(z − t) + xy(y3 − x5) = 0.

The surface X is singular at three distinct points Ox, Oy, P1 = [1 : 1 : 0 : 0]. Also, it is singular
at three distinct points Oz, Ot, Q1 = [0 : 0 : 1 : 1].

The curve Cx consists of three distinct curves Lxz, Lxt and Rx = {x = z − t = 0} that
intersect altogether at the point Oy. Similarly, the curve Cy consists of three curves Lyz, Lyt

and Ry = {y = z − t = 0} that intersect altogether at the point Ox. The curve Cz consists of
Lxz, Lyz, and Rz = {z = y3−x5 = 0}. The curve Rz is singular at the point Ot with multiplicity
3. The curve Ct consists of Lxt, Lyt and Rt = {t = y3 − x5 = 0}. The curve Rt is singular at
the point Oz with multiplicity 3.

Note that lct(X, 1
9Cx) = 6. The log pairs (X, 6

15Cy), (X, 6
23Cz) and (X, 6

23Ct) are log canonical.
Suppose that lct(X) < 6. Then there is an effective Q-divisor D ∼Q −KX such that the pair

(X, 6D) is not log canonical at some point P ∈ X. Lemma 1.3.6 implies that we may assume
that the support of D contains neither Rx nor Ry by a linear coordinate change. Furthermore,
we may assume that the support of D does not contain at least one component of Cz. Also, it
may be assumed not to contain at least one component of Ct.

The inequalities

15D ·Rx =
15 · 23 · 9

9 · 15 · 23 · 23
=

1

23
<

1

6
,

23D ·Ry =
23 · 23 · 15

9 · 15 · 23 · 23
=

1

9
<

1

6
show that the point P is located in the outside of Rx ∪Ry.

Then the inequalities

23D · Lxz =
1

15
<

1

6
, 23D · Lyz =

1

9
<

1

6
,

23

3
D ·Rz =

1

9
<

1

6

show that multOt(D) < 1
6 , and hence the point P cannot be the point Ot. By the same way, we

can show that P 6= Oz.
Write D = mRz +Ω, where Ω is an effective Q-divisor such that Rz 6⊂ Supp(Ω). Then m 6 1

6
since (X, 6D) is log canonical at Ot. We have

Rz · (Lxz + Lyz) =
8

23
, Rz ·D =

1

69
,

and hence R2
z = − 1

69 . Then

Ω · Rz = D ·Rz −mR2
z =

1 +m

3 · 23
6

7

6 · 3 · 23
<

1

3 · 6
.

Lemma 1.3.8 implies that the point P cannot belong to Rz. In particular, the point P cannot
be the point P1.
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Write D = aLxz + ∆, where ∆ is an effective Q-divisor whose support does not contain the
curve Lxz. Then a 6 1

6 . Then

Ω · Lxz = 6(D · Lxz − aL2
xz) =

6 · (1 + 37a)

345
6

6 + 37

345
=

43

345
< 1,

because L2
xz = − 37

345 . Thus, we see that P 6∈ Lxz. Similarly, we can show that P 6∈ Lyz. Thus,
we see that P 6∈ Cz. In the same way, we can see that P is not contained in the curves Ct and
{z − t = 0}.

Therefore, the point P is a smooth point in the outside of Cz ∪ Ct ∪ {z − t = 0}. Let E be
the unique curve on X such that E is given by the equation z = λt and P ∈ E, where λ is a
non-zero constant different from 1. Then E is quasismooth and hence irreducible. Therefore,
we may assume that the support of D does not contain the curve E. Then

multP (D) 6 D · E =
23 · 69

9 · 15 · 23 · 23
<

1

6
.

This is a contradiction. �

Lemma 3.1.16. Let X be a quasismooth hypersurface of degree 127 in P(11, 29, 39, 49). Then
lct(X) = 33

4 .

Proof. We may assume that the hypersurface X is defined by the equation

z2t+ yt2 + xy4 + x8z = 0.

The singularities of X consist of a singular point of type 1
11 (7, 5) at Ox, a singular point of type

1
29(1, 2) at Oy, a singular point of type 1

39 (11, 29) at Oz, and a singular point of type 1
49 (11, 39)

at Ot.
The curve Cx (resp. Cy, Cz, Ct) consists of two irreducible curves Lxt (resp. Lyz, Lyz, Lxt)

and Rx = {x = z2 + yt = 0} (resp. Ry = {y = x8 + zt = 0}, Rz = {z = t2 + xy3 = 0},
Rt = {t = y4 + x7z = 0}). We can see that

Lxt ∩Rx = {Oy}, Lyz ∩Ry = {Ot}, Lyz ∩Rz = {Ox}, Lxt ∩Rt = {Oz}.

It is easy to check lct(X, 1
11Cx) = 33

4 . The log pairs (X, 33
4·29Cy), (X, 33

4·39Cz) and (X, 33
4·49Ct)

are log canonical.
Suppose that lct(X) < 33

4 . Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X, 33
4 D) is not log canonical at some point P ∈ X.

By Lemma 1.3.6, we may assume that the support of D does not contain Lxt or Rx. Then
one of the following two inequalities must hold:

4

33
>

1

39
= 29Lxt ·D > multOy(D),

4

33
>

2

49
= 29Rx ·D > multOy(D).

Therefore, the point P cannot be the point Oy. For the same reason, one of two inequalities

4

33
>

1

49
= 11Lyz ·D > multOx(D),

4

33
>

2

29
= 11Rz ·D > multOx(D)



54 IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

must hold, and hence the point P cannot be the point Ox. Since Rt is singular at the point Oz

with multiplicity 4, we can apply the same method to Ct, i.e., one of the following inequalities
must be satisfied:

4

33
>

1

29
= 39Lxt ·D > multOz(D),

4

33
>

1

11
=

39

4
Rt ·D >

1

4
multOz(D)multOz(Rt) = multOz(D).

Thus, the point P cannot be Oz.
Write D = µRx + Ω, where Ω is an effective Q-divisor such that Rx 6⊂ Supp (Ω). If µ > 0,

then Lxt is not contained in the support of D. Thus,

2

29
µ = µRx · Lxt 6 D · Lxt =

1

29 · 39
,

and hence µ 6 1
78 . We have

49Ω ·Rx = 49(D · Rx − µR2
x) =

2 + 76µ

29
<

4

33
.

Then Lemma 1.3.8 shows that the point P cannot belong to Rx. In particular, the point P
cannot be Ot.

PutD = ǫLxt+∆, where ∆ is an effective Q-divisor such that Lxt 6⊂ Supp (∆). Since (X, 33
4 D)

is log canonical at the point Oy, ǫ 6 4
33 and hence

∆ · Lxt = D · Lxt − ǫL2
xt =

1 + 67ǫ

29 · 39
<

4

33
.

Then Lemma 1.3.8 implies that the point P cannot belong to Lxt.
Consequently, the point P must be a smooth point in the outside of Cx. Then an absurd

inequality
4

33
< multP (D) 6

539 · 127

11 · 29 · 39 · 49
<

4

33

follows from Lemma 1.3.9 since H0(P,OP(539)) contains x20y11, x49, x10z11 and t11. The ob-
tained contradiction completes the proof. �

Lemma 3.1.17. Let X be a quasismooth hypersurface of degree 256 in P(11, 49, 69, 128). Then
lct(X) = 55

6 .

Proof. The curve Cx is irreducible and reduced. Moreover, it is easy to see lct(X, 1
11Cx) = 55

6 .

The curve Cy is also irreducible and reduced and the log pair (X, 1
49Cy) is log canonical.

Suppose that lct(X) < 55
6 . By Lemma 1.3.6, there is an effective Q-divisor D ∼Q −KX such

that Cx, Cy 6⊂ Supp(D) and the log pair (X, 55
6 D) is not log canonical at some point P ∈ X.

The inequalities

69D · Cx =
69 · 11 · 256

11 · 49 · 69 · 128
<

6

55
,

11D · Cy =
11 · 49 · 256

11 · 49 · 69 · 128
<

6

55
,
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imply that the point P is a smooth point in the outside of Cx. However, since H0(P,OP(759))
contains x69, x20y11, z11, we obtain

multP (D) 6
759 · 256

11 · 49 · 69 · 128
<

6

55

from Lemma 1.3.9. This is a contradiction. �

Lemma 3.1.18. Let X be a quasismooth hypersurface of degree 127 in P(13, 23, 35, 57). Then
lct(X) = 65

8 .

Proof. We may assume that the hypersurface X is given by the equation

z2t+ y4z + xt2 + x8y = 0.

The only singularities of X are a singular point of type 1
13 (9, 5) at Ox, a singular point of type

1
23(13, 11) at Oy, a singular point of type 1

35 (13, 23) at Oz, and a singular point of type 1
57 (23, 35)

at Ot.
The curve Cx (resp. Cy, Cz, Ct) consists of two irreducible curves Lxz (resp. Lyt, Lxz, Lyt)

and Rx = {x = y4 + zt = 0} (resp. Ry = {y = z2 + xt = 0}, Rz = {z = t2 + x7y = 0},
Rt = {t = y3z + x8 = 0}). We can see that

Lxt ∩Rx = {Ot}, Lyz ∩Ry = {Ox}, Lyz ∩Rz = {Oy}, Lxt ∩Rt = {Oz}.

It is easy to check lct(X, 1
13Cx) = 65

8 . The log pairs (X, 65
8·23Cy), (X, 65

8·35Cz) and (X, 65
8·57Ct)

are log canonical.
Suppose that lct(X) < 65

8 . Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X, 65
8 D) is not log canonical at some point P ∈ X.

By Lemma 1.3.6, we may assume that the support of D does not contain Lxz or Rx. Then
one of the following two inequalities must hold:

8

65
>

1

23
= 57Lxz ·D > multOt(D),

8

65
>

4

35
= 57Rx ·D > multOt(D).

Therefore, the point P cannot be the point Ot. For the same reason, one of two inequalities

8

65
>

1

35
= 13Lyt ·D > multOx(D),

8

65
>

2

57
= 13Ry ·D > multOx(D)

must hold, and hence the point P cannot be the point Ox.
To apply the same method to Cz and Ct, we note that Rz is singular at Oy with multiplicity

2 and Rt is singular at Oz with multiplicity 3. Then we can see that one inequality from each
of the pairs

8

65
>

1

13
= 35Lyt ·D > multOz(D),

8

65
>

8

23 · 3
=

35

3
Rt ·D >

1

3
multOz(D)multOz(Rt) = multOz(D);
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8

65
>

1

57
= 23Lxz ·D > multOy(D),

8

65
>

1

13
=

23

2
Rz ·D >

1

2
multOy(D)multOy(Rz) = multOy(D)

must be satisfied. Therefore, the point P can be neither Oy nor Oz.
To apply Lemma 1.3.8 to Lxz and Rx, we compute

L2
xz = −

79

23 · 57
, R2

x = −
88

35 · 57
.

Put D = aLxz + bRx + Ω, where Ω is an effective Q-divisor such that Lxz, Rx 6⊂ Supp (Ω). Then
a, b 6 8

65 since the log pair (X, 65
8 D) is log canonical at the point Ot. Therefore,

D · Lxz − aL2
xz =

1 + 79a

23 · 57
<

8

65
,

D ·Rx − bR2
x =

4 + 88b

35 · 57
<

8

65
.

Then, Lemma 1.3.8 implies that the point P is a smooth point in the outside of Cx.
Applying Lemma 1.3.9, we see that

8

65
< multP (D) 6

741 · 127

13 · 23 · 35 · 57
<

8

65
,

since H0(P,OP(455)) contains x35, x12y13, z13 and the point P is in the outside of Lxz. The
obtained contradiction completes the proof. �

Lemma 3.1.19. Let X be a quasismooth hypersurface of degree 256 in P(13, 35, 81, 128). Then
lct(X) = 91

10 .

Proof. We may assume that the surface X is given by the equation

t2 + y5z + xz3 + x17y = 0.

It has a singular point of type 1
13(3, 11) at Ox, a singular point of type 1

35 (13, 23) at Oy, and a

singular point of type 1
81(35, 47) at Oz .

The curve Cx is reduced and irreducible. The curve is singular at the point Oz. It is easy
to check that lct(X,Cx) = 7

10 . Therefore, lct(X) 6 91
10 . The curve Cy is also reduced and

irreducible. The curve Cy is singular only at Ox. Moreover, the log pair (X, 91
10·35Cy) is log

canonical.
Suppose that lct(X) < 91

10 . Then there is an effective Q-divisor D ∼Q −KX such that the

log pair (X, 91
10D) is not log canonical at some point P ∈ X. By Lemma 1.3.6 we may assume

neither Cx nor Cy is contained in Supp (D).
The following two inequalities show that the point P is located in the outside of Cx ∪ Cy:

81

2
Cx ·D =

1

35
<

10

91
,

13

2
Cx ·D =

1

81
<

10

91
.
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However, applying Lemma 1.3.9, we can obtain

multP (D) 6
1053 · 256

13 · 35 · 81 · 128
<

10

91
,

since H0(P,OP(1053)) contains x81, x11y26 and z13. This is a contradiction. �

3.2. Sporadic cases with I = 2

Lemma 3.2.1. Let X be the quasismooth hypersurface defined by a quasihomogeneous poly-
nomial f(x, y, z, t) of degree 12 in P(2, 3, 4, 5). Then

lct
(

X
)

=







1 if f(x, y, z, t) contains the term yzt,

7

12
if f(x, y, z, t) does not contain the term yzt.

Proof. We may assume

f(x, y, z, t) = z(z − x2)(z − ǫx2) + y4 + xt2 + ayzt+ bxy2z + cx2yt+ dx3y2,

where ǫ (6= 0, 1), a, b, c, d are constants. Note that X is singular at the point Ot and three
points Q1 = [1 : 0 : 0 : 0], Q2 = [1 : 0 : 1 : 0], Q3 = [1 : 0 : ǫ : 0]. The curve Cx always is
irreducible and reduced. We can easily check that

lct
(

X,Cx

)

=







1 if a 6= 0,

7

12
if a = 0.

Suppose that lct(X) < λ := lct(X,Cx). Then there is an effective Q-divisor D ∼Q −KX such
that the log pair (X,λD) is not log canonical at some point P ∈ X. We may assume that the
curve Cx is not contained in the support of D.

First, we consider the case where a = 0. Since H0(P,OP(6)) contains x3, y2, and xz,
Lemma 1.3.9 implies that for a smooth point O ∈ X \ Cx

multO(D) <
2 · 12 · 6

2 · 3 · 4 · 5
<

12

7
.

Therefore, the point P cannot be a smooth point in X \Cx. Since the curve Cx is not contained
in the support of D and it is singular at Ot with multiplicity 3, the inequality

5

3
D · Cx =

5 · 2 · 2 · 12

3 · 2 · 3 · 4 · 5
<

12

7
implies that the point P is located in the outside of Cx. Thus, the point P must be one of the
point Q1, Q2, Q3. The curve Cy is quasismooth. Therefore, we may assume that the support of
D does not contain the curve Cy. Then the inequality

multQi
(D) 6 2D · Cy =

2 · 2 · 3 · 12

2 · 3 · 4 · 5
<

12

7
gives us a contradiction.

From now we consider the case where a 6= 0. Note that the curve Cx is not contained in the
support of D and it is singular at Ot with multiplicity 2. Since

5

2
D · Cx =

5 · 2 · 2 · 12

2 · 2 · 3 · 4 · 5
= 1
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the point P is located in the outside of Cx.
The curve Cz is irreducible and the log pair (X, 1

2Cz) is log canonical. Therefore, we may
assume that the support of D does not contain the curve Cz. The curve Cz is singular at the
point Q1. The inequality

multQ1
(D) 6 D · Cz =

2 · 4 · 12

2 · 3 · 4 · 5
< 1

implies that P cannot be the point Q1. We consider the curves Cz−x2 defined by z = x2 and
Cz−ǫx2 defined by z = ǫx2. Then by coordinate changes we can see that they have the same
properties as that of Cz. Moreover, we can see that the point P can be neither Q2 nor Q3.
Therefore, the point P must be located in the outside of Cx ∪ Cz ∪ Cz−x2 ∪ Cz−ǫx2.

Let L be the pencil on X defined by λx2 + µz = 0, where [λ : µ] ∈ P1. Let C the curve in L
that passes through the point P . Then it is cut out by z = αx2, where α 6= 0, 1, ǫ. The curve C
is isomorphic to the curve in P(2, 3, 5) defined by

x6 + y4 + xt2 + βx2yt+ γx3y2 = 0,

where β and γ are constants. We can easily see that the curve C is irreducible. Moreover, we
can check multP (C) 6 2 and hence the log pair (X, 1

2C) is log canonical. Therefore, we may
assume that the support of D does not contain the curve C. Then, the inequality

multP (D) 6 D · C =
2 · 4 · 12

2 · 3 · 4 · 5
< 1

gives us a contradiction. �

Lemma 3.2.2. Let X be a quasismooth hypersurface of degree 14 in P(2, 3, 4, 7). Then lct(X) =
1.

Proof. We may assume that X is defined by the quasihomogeneous equation

t2 − y2z2 + x(z − β1x
2)(z − β2x

2)(z − β3x
2) + ǫxy2(y2 − γx3)

where ǫ 6= 0, β1, β2, β3, γ are constants. Note that X is singular at the points Oy, Oz and three
points Q1 = [1 : 0 : β1 : 0], Q2 = [1 : 0 : β2 : 0], Q3 = [1 : 0 : β3 : 0]. The constants β1, β2 and β3

are distinct since X is quasismooth. The curve Cx consists of two irreducible reduced curves C−

and C+. However, the curves Cy and Cz are irreducible. We can easily see that lct(X,Cx) = 1,

lct(X, 2
3Cy) = 3

2 and lct(X, 1
2Cz) > 1.

Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the
log pair (X,D) is not log canonical at some point P ∈ X. Since H0(P,OP(6)) contains x3, y2

and xz, Lemma 1.3.9 implies that the point P is either a singular point of X or a point of Cx.
Furthermore, Cy is irreducible and hence we may assume that the support of D does not contain
the curve Cy. Hence the equality

2Cy ·D =
2 · 3 · 2 · 14

2 · 3 · 4 · 5
= 1

implies that P 6= Qi for each i = 1, 2, 3. In particular, the point P must belong to Cx.
We have the following intersection numbers:

Cx · C− = Cx · C+ =
1

6
, C− · C+ =

7

12
, C2

−
= C2

+ = −
5

12
.
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We may assume that the support of D cannot contain either C− or C+. If D does not contain
the curve C+, then we obtain

multOy(D) 6 4D · C+ =
2

3
< 1,

multOz(D) 6 4D · C+ =
2

3
< 1.

On the other hand, if D does not contain the curve C−, then we obtain

multOy(D) 6 4D · C− =
2

3
< 1,

multOz(D) 6 4D · C− =
2

3
< 1.

Therefore, the point P must be in Cx \ Sing(X).
We write D = mC+ +Ω, where the support of Ω does not contain the curve C+. Then m > 2

7

since D ·C− > mC+ ·C−. Then we see C+ ·D−mC2
+ < 1. By the same method, we also obtain

C− ·D −mC2
−
< 1. Then Lemma 1.3.8 completes the proof. �

Lemma 3.2.3. Let X be a quasismooth hypersurface of degree 20 in P(3, 4, 5, 10). Then
lct(X) = 3

2 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 = y5 + z4 + x5z + ǫ1xy
3z + ǫ2x

2yz2 + ǫ3x
4y2,

where ǫi ∈ C. Note that the surface X is singular only at the point Ox, O = [0 : 1 : 0 : 1],
P1 = [0 : 0 : 1 : 1] and P2 = [0 : 0 : 1 : −1].

The curves Cx, Cy and Cz are irreducible. Moreover, we have

3

2
= lct(X,

2

3
Cx) < lct(X,

2

4
Cy) = 2,

and hence lct(X) 6 3
2 . We also see that lct(X, 2

5Cz) >
3
2 .

Suppose that lct(X) < 3
2 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 3
2D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D does not contain the curves Cx, Cy and Cz.
Suppose that P 6∈ Cx∪Cy ∪Cz. Then we consider the pencil L on X cut out by the equations

λy2 + µxz = 0, [λ : µ] ∈ P1. There is a unique member Z in the pencil L with P ∈ Z. The
curve Z is cut out by an equation of the form αy2 + xz, where α is a non-zero constant. There
is a natural double cover ω : Z → C, where C is the curve in P(3, 4, 5) given by the equation
αy2 + xz. The curve C is quasismooth and ω(P ) is a smooth point of P(3, 4, 5). Thus, we see
that multP (Z) 6 2, the curve Z consists of at most 2 components, each component of Z is a
smooth rational curve. In particular, (X, 3

8Z) is log canonical. Therefore, we may assume that
Supp (D) does not contain at least one irreducible component of Z. Thus, if Z is irreducible,
then we obtain an absurd inequality

8

15
= D · Z > multP (D) >

2

3
.
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So, we see that Z = Z1 + Z2, where Z1 and Z2 are smooth irreducible rational curves. Then

Z2
1 = Z2

2 = −
4

15
, Z1 · Z2 =

4

3
.

Without loss of generality we may assume that P ∈ Z1. Put D = mZ1 + Ω, where Ω is an
effective Q-divisor such that Z1 6⊂ Supp(Ω). If m 6= 0, then

4

15
= D · Z2 > mZ1 · Z2 =

4m

3
,

and hence m 6 1
5 . On the other hand, Lemma 1.3.8 shows that

4 + 4m

15
=
(

D −mZ1

)

· Z1 = Ω · Z1 >
2

3
,

and hence m > 3
2 . This is a contradiction. Therefore, P ∈ Cx ∪ Cy ∪Cz.

The inequalities

D · Cx =
1

5
<

2

3
, D · Cy =

4

15
<

2

3
, D · Cz =

1

3
<

2

3

imply that the point P must be a singular point of X.
The curve Cz is singular at the point Ox. Thus, we have

1

2
=

3

2
D · Cz >

multOx(D)multOx(Cz)

2
= multOx(D).

Therefore, the point P cannot be Ox.
Also, we have

2

5
= 2D · Cx > multO(D).

This inequality shows that the point P cannot be the point O. Consequently, the point P must
be either P1 or P2.

Without loss of generality we may assume that P = P1. Note that Cx ∩ Cy = {P1, P2}.
Let π : X̄ → X be the weighted blow up at the point P1 with weights (3, 4). Let E be

the exceptional curve of π and let D̄, C̄x and C̄y be the proper transforms of D, Cx and Cy,
respectively. Then

KX̄ ∼Q π∗(KX) +
2

5
E, C̄x ∼Q π∗(Cx) −

3

5
E, C̄y ∼Q π∗(Cy) −

4

5
E, D̄ ∼Q π∗(D) −

a

5
E,

where a is a non-negative rational number. The curve E contains one singular point Q3 of type
1
3(1, 1) and one singular point of Q4 of type 1

4(1, 1) on the surface X̄ . The point Q3 is contained

in C̄y but not in C̄x. On the other hand, the point Q4 is contained in C̄x but not in C̄y. The
intersection C̄x ∩ C̄y consists of a single point that dominates the point P2.

The log pull back of the log pair (X, 3
2D) is the log pair

(

X̄,
3

2
D̄ +

3a− 4

10
E

)

.

This is not log canonical at some point Q ∈ E. We see that

0 6 C̄x · D̄ = Cx ·D +
3a

25
E2 =

1

5
−

a

20
,
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and hence a 6 4. In particular,
3a− 4

10
< 1.

This implies that the log pull back of the log pair (X, 3
2D) is log canonical in a punctured

neighborhood of the point Q.
If a 6 4

3 , then the log pair (X̄, 3
2D̄) is not log canonical at Q as well. We then obtain

a

12
= D̄ · E >



























2

3
if Q 6= Q3 and Q 6= Q4,

2

3
·
1

3
if Q = Q3,

2

3
·
1

4
if Q = Q4.

In particular, we have a > 2. This contradicts the assumption a 6 4
3 . Therefore, a > 4

3 and the

log pull back of the log pair (X, 3
2D) is effective. Then

multQ(D̄) >
2

3

(

1 −
3a− 4

10

)

=
14 − 3a

15
.

Since D̄·E = a
12 6 2

3 , Lemma 1.3.8 implies that the pointQ cannot be a smooth point. Therefore,
the point Q is either Q3 or Q4. However, two inequalities

4

5
−
a

5
= 4D̄ · C̄x > multQ4

(D̄) >
14 − 3a

15
,

4

5
−
a

5
= 3D̄ · C̄y > multQ3

(D̄) >
14 − 3a

15
give us a contradiction. �

Lemma 3.2.4. Let X be a quasismooth hypersurface of degree 30 in P(3, 4, 10, 15). Then
lct(X) = 3

2 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 = z3 − y5z − x10 + ǫ1x
2yz2 + ǫ2x

2y6 + ǫ3x
4y2z + ǫ4x

6y3,

where ǫi ∈ C. The surface X is singular at the points Oy, O2 = [0 : 1 : 1 : 0], O5 = [0 : 0 : 1 : 1],
P1 = [1 : 0 : 0 : 1] and P2 = [1 : 0 : 0 : −1].

The curves Cx and Cy are irreducible. Moreover, we have

3

2
= lct

(

X,
2

3
Cx

)

< lct

(

X,
2

4
Cy

)

= 2.

Suppose that lct(X) < 3
2 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 3
2D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains neither Cx nor Cy.
Since H0(P,OP(20)) contains the monomials y5, y2x4, z2, it follows from Lemma 1.3.9 that

the point P is either a singular point of X or a smooth point in Cy. However, the point P
cannot belong to Cy since 2

3 = 5D · Cy. Therefore, the point P must be either the point Oy or
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O2. On the other hand, we have 4D ·Cx = 2
5 . This means that the pair (X, 3

2D) is log canonical

at the points Oy and O2. Consequently, lct(X) = 3
2 . �

Lemma 3.2.5. Let X be a quasismooth hypersurface of degree 57 in P(5, 13, 19, 22). Then
lct(X) = 25

12 .

Proof. The surface X can be defined by the quasihomogeneous equation

z3 + yt2 + xy4 + x7t+ ǫx5yz = 0,

where ǫ ∈ C. The surface X is singular only at the points Ox, Oy and Ot.
The curves Cx and Cy are irreducible. Moreover, we have

25

12
= lct

(

X,
2

5
Cx

)

< lct

(

X,
2

13
Cy

)

=
65

21
.

Suppose that lct(X) < 25
12 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 25
12D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains neither Cx nor Cy.
Since H0(P,OP(110)) contains the monomials x9y5, x22 and t5, it follows from Lemma 1.3.9

that the point P is either a singular point of X or a smooth point on Cx. However, this is
impossible since 22D · Cx = 6

13 <
12
25 and 5D · Cy = 3

11 <
12
25 . �

Lemma 3.2.6. Let X be a quasismooth hypersurface of degree 70 in P(5, 13, 19, 35). Then
lct(X) = 25

12 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + xy5 − x14 + ǫx5y2z = 0,

where ǫ ∈ C. The surface X is singular at the points Oy and Oz. It is also singular at two points
P1 = [1 : 0 : 0 : 1] and P2 = [1 : 0 : 0 : −1].

The curves Cx is irreducible. On the other hand, the curve Cy consists of two smooth curves
C1 = {y = x7 − t = 0} and C2 = {y = x7 + t = 0}. Moreover, we have

25

12
= lct

(

X,
2

5
Cx

)

< lct

(

X,
2

13
Cy

)

=
26

7
.

Suppose that lct(X) < 25
12 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 25
12D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D dose not contains Cx. Also, we may assume that the support of D does
not contain either C1 or C2.

Since 19D · Cx = 4
13 <

12
25 , the point P cannot belong to Cx.

We put m1C1 +m2C2 + Ω, where Ω is an effective Q-divisor whose support contains neither
C1 nor C2. Since the pair (X, 25

12D) is log canonical at the point Oz, we see that mi 6 12
25 . Since

5(D −miCi) · Ci =
2 −mi

19
<

12

25

for each i, Lemma 1.3.8 implies that the point P can be neither P1 nor P2. Therefore, the
point P is a smooth point of X in the outside of Cx. However, since H0(P,OP(95)) contains the
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monomials x6y5, x19 and z5, it follows from Lemma 1.3.9 that the point P is either a singular
point of X or a smooth point on Cx. This is a contradiction. �

Lemma 3.2.7. Let X be a quasismooth hypersurface of degree 36 in P(6, 9, 10, 13). Then
lct(X) = 25

12 .

Proof. The surface X can be defined by the quasihomogeneous equation

zt2 + y4 + xz3 + x6 + ǫx3y2 = 0,

where ǫ is a constant different from ±2. The surface X is singular at the points Oz and Ot. It
is also singular at two points P1 and P2 on Lzt. The surface X is also singular at one point Q
on Lyt.

The curves Cx and Cy are irreducible and reduced. However, the curve Cz consists of two
irreducible and reduced curves C1 and C2. The curve C1 contains the point P1 but not P2. On
the other hand, C2 contains the point P2 but not P1. We also see

C2
1 = C2

2 = −
8

39
, C1 · C2 =

6

13
.

It is easy to check

25

12
= lct

(

X,
2

10
Cz

)

<
9

4
= lct

(

X,
2

6
Cx

)

<
9

2
= lct

(

X,
2

9
Cy

)

.

Suppose that lct(X) < 25
12 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 25
12D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains neither Cx nor Cy. In addition, we may assume that it cannot
contain either C1 or C2.

Since H0(P,OP(30)) contains the monomials x2y2, x5 and z3, it follows from Lemma 1.3.9
that P ∈ Sing(X) ∪ Cx ∪ Cz. However, 2D · Cy = 12

65 < 12
25 and hence the point P cannot be

the point Q. Note that the curve Cx passes through the point Oz with multiplicity 2. Then the
inequality 5D · Cx = 4

13 <
12
25 shows that the point P cannot be a point on Cx \ {Ot}.

Put D = mC1 +Ω, where Ω is an effective Q-divisor such that C1 6⊂ Supp(Ω). If m 6= 0, then

2

39
= D · C2 =

(

mC1 + Ω
)

· C2 > mC1 · C2 =
6m

13
,

and hence m 6 1
9 . Then

3
(

D −mC1

)

· C1 =
2 + 8m

13
6

12

25
.

Therefore, it follows from Lemma 1.3.8 that the point P cannot be a point on C1 \ {Ot}. By
the same method, we can show that the point P cannot be a point on C2 \ {Ot}. Therefore, the
point P must be the point Ot.

Let π : X̄ → X be the weighted blow up at the point Ot with weights (2, 3). Let E be
the exceptional curve of π and let D̄, C̄x and C̄y be the proper transforms of D, Cx and Cy,
respectively. Then

KX̄ ∼Q π∗(KX) −
8

13
E, C̄x ∼Q π∗(Cx) −

2

13
E, C̄y ∼Q π∗(Cy) −

3

13
E, D̄ ∼Q π∗(D) −

a

13
E,
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where a is a non-negative rational number. The curve E contains one singular point Q3 of type
1
3(1, 1) and one singular point of Q2 of type 1

2(1, 1) on the surface X̄ . The point Q2 is contained

in C̄y but not in C̄x. On the other hand, the point Q3 is contained in C̄x but not in C̄y.
The log pull back of the log pair (X, 25

12D) is the log pair
(

X̄,
25

12
D̄ +

25a+ 96

12 · 13
E

)

.

This is not log canonical at some point Q ∈ E. We see that

0 6 C̄y · D̄ = Cy ·D +
3a

169
E2 =

6

5 · 13
−

a

2 · 13
,

and hence a 6 12
5 . In particular,

25a+ 96

12 · 13
6 1.

This implies that the log pull back of the log pair (X, 25
12D) is log canonical in a punctured

neighborhood of the point Q. Then

multQ(D̄) >
12

25

(

1 −
25a+ 96

12 · 13

)

=
12

5 · 13
−

a

13
.

Since D̄ · E = a
6 6 12

25 , Lemma 1.3.8 implies that the point Q cannot be a smooth point.
Therefore, the point Q is either Q2 or Q3. However, two inequalities

12

5 · 13
−

a

13
= 3D̄ · C̄x > multQ3

(D̄) >
12

5 · 13
−

a

13
,

12

5 · 13
−

a

13
= 2D̄ · C̄y > multQ2

(D̄) >
12

5 · 13
−

a

13
give us a contradiction. �

Lemma 3.2.8. Let X be a quasismooth hypersurface of degree 57 in P(7, 8, 19, 25). Then
lct(X) = 49

24 .

Proof. The surface X can be defined by the quasihomogeneous equation

z3 + y4t+ xt2 + x7y + ǫx2y3z = 0,

where ǫ ∈ C. The surface X is singular at the points Ox, Oy and Ot. The curves Cx, Cy and
Cz are irreducible. We have

49

24
= lct

(

X,
2

7
Cx

)

< lct

(

X,
2

8
Cy

)

=
10

3
< lct

(

X,
2

19
Cz

)

=
19

2
.

Thus, lct(X) 6 49
24 .

Suppose that lct(X) < 49
24 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 49
24D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains none of the curves Cx, Cy and Cz. The curve Cx is singular
at the point Ot. Since 25

2 D · Cx = 3
8 <

24
49 , 7D · Cy = 6

25 <
24
49 and D · Cz = 57

700 <
24
49 , the point

P cannot belong to the set Cx ∪ Cy ∪ Cz.
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Consider the pencil L on X defined by the equations λy2z+µx5 = 0, [µ, λ] ∈ P1. Then there
is a unique curve Z in the pencil L passing through the point P . Then the curve Z is defined
by an equation of the form y2z − αx5 = 0, where α is a non-zero constant.

We see that Cy 6⊂ Supp(Z). But the open subset Z \ Cy of the curve Z is a Z8-quotient of
the affine curve

z − αx5 = z3 + t+ xt2 + x7 + ǫx2z = 0 ⊂ C3 ∼= Spec
(

C
[

x, z, t
]

)

that is isomorphic to the plane affine curve defined by the equation

α3x15 + t+ xt2 + x7 + ǫαx7 = 0 ⊂ C2 ∼= Spec
(

C
[

x, t
]

)

.

This curve is irreducible and hence the curve Z is also irreducible. Thus multP (Z) 6 14. We
may assume that Supp(D) does not contain the curve Z by Lemma 1.3.6. Then we obtain an
absurd inequality

3

20
= D · Z > multP

(

D
)

>
24

49
.

�

Lemma 3.2.9. Let X be a quasismooth hypersurface of degree 64 in P(7, 8, 19, 32). Then
lct(X) = 35

16 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 − y8 + xz3 + x8y + ǫx3y3z,

where ǫ ∈ C. Note that X is singular at the points Ox and Oz. The surface X also has two
singular points P1 = [0 : 1 : 0 : 1] and P2 = [0 : 1 : 0 : −1] of type 1

8(7, 3).
The curve Cx is reducible. We have Cx = C1 + C2, where C1 and C2 are irreducible and

reduced curves. The curve C1 contains the point P1 but not the point P2. On the other hand,
the curve C2 contains the point P2 but not the point P1. However, these two curves meet each
other only at the point Oz. We also have

C2
1 = C2

2 = −
25

8 · 19
, C1 · C2 =

4

19
.

The curve Cy is irreducible. It is easy to check

lct

(

X,
2

7
Cx

)

=
35

16
< lct

(

X,
2

8
Cy

)

=
10

3
.

Therefore, lct(X) 6 35
16 .

Suppose that lct(X) < 35
16 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 35
16D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of D does not contain the curve Cy. Moreover, we may assume that the support of D
does not contain either the curve C1 or the curve C2.

Since Ci 6⊂ Supp(D) for either i = 1 or 2, we have

multOz(D) 6 19D · Ci =
1

4
<

16

35
,
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and hence P 6= Oz. Meanwhile, the inequality 7D · Cy = 4
19 < 16

25 implies that the point P
cannot belong to Cy.

Suppose that P ∈ C1. Then we write D = mC1 + Ω, where Ω is an effective Q-divisor such
that C1 6⊂ Supp(Ω). If m 6= 0, then

1

4 · 19
= D · C2 =

(

mC1 + Ω
)

· C2 > mC1 · C2 =
4m

19
,

and hence m 6 1
16 . Then it follows from Lemma 1.3.8 that

2 + 25m

8 · 19
=
(

D −mC1

)

· C1 = Ω · C1 >











16

35
if P 6= P1,

16

35
·
1

8
if P = P1.

This is impossible since m 6 1
16 . Thus, P 6∈ C1. Similarly, we can show that P 6∈ C2.

Consequently, the point P is located in the outside of Cx ∪ Cy. In particular, it is a smooth
point of X. But H0(P,OP(64)) contains monomials y8, x8y, y4t and t2. This is impossible by
Lemma 1.3.9. The obtained contradiction completes the proof. �

Lemma 3.2.10. Let X be a quasismooth hypersurface of degree 48 in P(9, 12, 13, 16). Then
lct(X) = 63

24 .

Proof. The surface X can be defined by the quasihomogeneous equation

t3 − y4 + xz3 + x4y = 0.

The surface X is singular at the points Ox, Oz, Q4 = [0 : 1 : 0 : 1] and Q3 = [1 : 1 : 0 : 0].
The curves Cx, Cy, Cz and Ct are irreducible and reduced. We have

63

24
= lct

(

X,
2

9
Cx

)

< lct

(

X,
2

12
Cy

)

= 4 < lct

(

X,
2

13
Cz

)

=
13

2
< lct

(

X,
2

16
Ct

)

=
16

2
.

Therefore, lct(X) 6 63
24 .

Suppose that lct(X) < 63
24 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 63
24D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains none of the curves Cx, Cy, Cz and Ct.
Note that the curve Cx is singular at Oz with multiplicity 3 and the curve Cy is singular at

Ox with multiplicity 3. Then the inequalities

13

3
D · Cx =

1

6
<

24

63
,

9

3
D · Cy =

2

13
<

24

63
, 3D · Cz =

1

6
<

24

63
, D · Ct =

8

9 · 13
<

24

63

show that the point P must be located in the outside of Cx ∪ Cy ∪ Cz ∪ Ct.
Consider the pencil L on X defined by the equations λxt+µyz = 0, [µ, λ] ∈ P1. Then there is

a unique curve Z in the pencil L passing through the point P . Then the curve Z is defined by an
equation of the form xt−αyz = 0, where α is a non-zero constant. We see that Cx 6⊂ Supp(Z).
But the open subset Z \ Cx of the curve Z is a Z9-quotient of the affine curve

t− αyz = t3 + y4 + z3 + y = 0 ⊂ C3 ∼= Spec
(

C
[

y, z, t
]

)

,
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which is isomorphic to the plane affine curve given by the equation

α3y3z3 + y4 + z3 + y = 0 ⊂ C2 ∼= Spec
(

C
[

y, z
]

)

.

Then, it is easy to see that the curve Z is irreducible and multP (Z) 6 4. Thus, we may assume
that Supp(D) does not contain the curve Z by Lemma 1.3.6. However,

25

18 · 13
= D · Z > multP

(

D
)

>
24

63
.

Consequently, lct(X) = 63
24 . �

Lemma 3.2.11. Let X be a quasismooth hypersurface of degree 57 in P(9, 12, 19, 19). Then
lct(X) = 3.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

zt(z − t) − xy4 + x5y = 0.

The surface X is singular at three distinct points Ox, Oy, Q3 = [1 : 1 : 0 : 0] . Also, it is singular
at three distinct points Oz, Ot, Q19 = [0 : 0 : 1 : 1].

The curve Cx consists of three distinct curves Lxz, Lxt and Rx = {x = z − t = 0} that
intersect altogether at the point Oy. Similarly, the curve Cy consists of three curves Lyz, Lyt

and Ry = {y = z − t = 0} that intersect altogether at the point Ox. The curve Cz consists
of three distinct curves Lxz, Lyz and Rz = {z = x4 − y3 = 0} that intersect altogether at the
point Ot. The curve Ct consists of three distinct curves Lxt, Lyt and Rt = {t = x4 − y3 = 0}
that intersect altogether at the point Oz. Let Cz−t be the curve cut out on X by the equation
z = t. Then Cz−t consists of three distinct curves Rx, Ry and Rz−t = {z − t = x4 − y3 = 0}
that intersect altogether at the point Q19.

We have the following intersection numbers:

L2
xz = L2

xt = R2
x = −

29

19 · 12
, L2

yz = L2
yt = R2

y = −
26

19 · 9
, R2

z = R2
t = R2

z−t = −
2

19 · 3

−KX · Lxz = −KX · Lxt = −KX ·Rx =
1

19 · 6
, −KX · Lyz = −KX · Lyt = −KX ·Ry =

2

19 · 9
,

−KX · Rz = −KX · Rt = −KX ·Rz−t =
2

19 · 3
.

Since lct(X, 2
9Cx) = 3, we have lct(X) 6 3. Suppose that lct(X) < 3. Then there is an

effective Q-divisor D ∼Q −KX such that the pair (X, 3D) is not log canonical at some point
P ∈ X.

The pairs (X, 6
9Cx) and (X, 6

12Cy) are log canonical. By Lemma 1.3.6, we may assume that
the support of D does not contain at least one component of Cx. Then one of the inequalities

multOy(D) 6 12D · Lxz =
6

57
<

1

3
,

multOy(D) 6 12D · Lxt =
6

57
<

1

3
,

multOy(D) 6 12D · Rx =
6

57
<

1

3
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must hold, and hence the point P cannot be the point Oy. Also, we may assume that the
support of D does not contain at least one component of Cy. By the same reason, the point P
cannot be the point Ox.

We have

lct

(

X,
2

19
Cz

)

= lct

(

X,
2

19
Ct

)

= lct

(

X,
2

19
C1

)

=
7

2
.

By Lemma 1.3.6, we may assume that the support of D does not contain at least one component
of each curve Cz, Ct and Cz−t. Since the curve Rz is singular at the point Ot with multiplicity
3, Then one of the inequalities

multOt(D) 6 19D · Lxz =
1

6
<

1

3
,

multOt(D) 6 19D · Lyz =
2

9
<

1

3
,

multOt(D) 6
19

3
D · Rz =

2

9
<

1

3
must hold, and hence the point P cannot be the point Ot. By applying the same method to Ct

and Cz−t, we see that the point P can neither Oz not Q19.
The three curves Rz, Rt, and Rz−t intersects only at the point Q3. The log pair

(

X,
3

18

(

Rz +Rt +Rz−t

)

)

is log canonical at Q3, and Rz + Rt + Rz−t ∼ −18KX . By Lemma 1.3.6, we may assume that
the support of D does not contain at least one curve among Rz, Rt and Rz−t. Without loss of
generality, we may assume that the support of D does not contain the curve Rz. Then

multQ3
(D) 6 3D ·Rz =

2

19
<

1

3
,

and hence the point P cannot be Q3.
Write D = m1Lxz + m2Lyz + m3Rz + ∆, where ∆ is an effective Q-divisor whose support

contains none of the curves Lxz, Lyz, Rz. Since the pair (X, 3D) is log canonical at the point
Ot, we have mi 6 1

3 for each i = 1, 2, 3. By Lemma 1.3.8, the inequalities

(D −m1Lxz) · Lxz =
2 + 29m1

12 · 19
<

1

3
,

(D −m2Lyz) · Lyz =
2 + 26m2

9 · 19
<

1

3
,

(D −m3Rz) · Rz =
2 + 2m3

3 · 19
<

1

3
show that the point P cannot belong to Cz. By the same way, we can show that the point P is
not contained in Ct ∪Cz−t. Therefore, the point P is a smooth point of X in the outside of the
set Cz ∪Ct∪Cz−t. Then there is a unique quasismooth irreducible curve E ⊂ X passing through
the point P and defined by the equation z = λt, where λ is a non-zero constant different from 1.
By Lemma 1.3.6, we may assume that the support of D does not contain the curve E. Then

1

3
< multP (D) 6 D ·E =

1

18
.
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This is a contradiction. �

Lemma 3.2.12. Let X be a quasismooth hypersurface of degree 81 in P(9, 19, 24, 31). Then
lct(X) = 3.

Proof. The surface X can be defined by the quasihomogeneous equation

yt2 + y3z + xz3 − x9 = 0.

It is singular at the point Oy, Oz and Ot. The surface X is also singular at the point Q3 = [1 :
0 : 1 : 0].

The curve Cx (resp. Cy) consists of two irreducible curves Lxy and Rx = {x = t2 + y2z = 0}
(resp. Ry = {y = z3 − x8 = 0}). The curve Lxy intersects Rx (resp. Ry) only at the point Oz

(resp. Ot). We have the following intersection numbers:

−KX · Lxy =
1

12 · 31
, −KX ·Rx =

1

6 · 19
, −KX ·Ry =

2

3 · 31
, Lxy · Rx =

1

12
,

Lxy ·Ry =
3

31
, L2

xy = −
53

24 · 31
, R2

x = −
5

6 · 19
, R2

y =
10

3 · 31
.

Meanwhile, the curve Cz is irreducible. We see that lct(X) 6 3 since

3 = lct

(

X,
2

9
Cx

)

< lct

(

X,
2

19
Cy

)

=
209

54
< lct

(

X,
2

24
Cz

)

=
22

3
.

Suppose that lct(X) < 3. Then there is an effective Q-divisor D ∼Q −KX such that the pair
(X, 3D) is not log canonical at some point P . We may assume that the support of D does not
contain at least one component of each of Cx and Cy by Lemma 1.3.6. One of the inequalities

multOzD 6 24D · Lxy =
2

31
<

1

3
, multOzD 6 24D · Rx =

4

19
<

1

3
must hold, and hence the point P cannot be the point Oz. Since the curve Ry is singular at the
point Ot with multiplicity 3, one of the inequalities

multOtD 6 31D · Lxy =
1

12
<

1

3
, multOtD 6

31

3
D · Ry =

2

9
<

1

3
must hold, and hence the point P cannot be the point Ot.

By Lemma 1.3.6, we may also assume that the curve Cz is not contained in the support of
D. The curve Cz is singular at the point Oy. Then the inequality

19

2
D · Cz =

9

31
<

1

3
shows that the point P cannot be the point Oy.

Write D = m0Lxy + m1Rx + m2Ry + Ω, where Ω is an effective Q-divisor whose support
contains none of Lxy, Rx, Ry. If m0 6= 0, then we obtain

1

6 · 19
= D · Rx > m0Lxy · Rx =

m0

12
,

and hence m0 6 2
19 . Similarly, we see that m1 6 1

31 and m2 6 1
36 . Since we have

(D −m0Lxy) · Lxy =
2 + 53m0

24 · 31
<

1

3
,
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(D −m1Rx) · Rx =
1 + 5m1

6 · 19
<

1

3
,

3(D −m2Ry) · Ry =
2 − 10m2

31
<

1

3
,

it follows from Lemma 1.3.8 that the point P is located in the outside of Cx and Cy. Therefore,
the point P is a smooth point in the outside of Cx and Cy. However, since H0(P,OP(171))
contains the monomials y9, x19, x3z6 and x11z3, it follows from Lemma 1.3.9 that the point P
must be either a singular point of X or a point in Cx ∪ Cy. This is a contradiction. �

Lemma 3.2.13. Let X be a quasismooth hypersurface of degree 105 in P(10, 19, 35, 43). Then
lct(X) = 57

14 .

Proof. The surface X can be defined by the quasihomogeneous equation

z3 + yt2 + xy5 − x7z = 0.

The surface X is singular at the points Ox, Oy, Ot and Q5 = [1 : 0 : 1 : 0].
The curve Cx is irreducible. However, the curve Cy consists of two irreducible curves Lyz and

Ry = {y = z2 − x7 = 0}. The curve Lyz intersects Ry at the point Ot. We have

L2
yz = −

51

10 · 43
, R2

y = −
16

5 · 43
, Lyz ·Ry =

7

43
.

We also have lct(X) 6 57
14 since

57

14
= lct

(

X,
2

19
Cy

)

< lct

(

X,
2

10
Cx

)

=
25

6
.

Suppose that lct(X) < 57
14 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 57
14D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D does not contain the curve Cx. Similarly, we may assume that the
support of the divisor D does not contain either Lyz or Ry.

Since the support of the divisor D does not contain either Lyz or Ry and the curve Ry is
singular at the point Ot, one of the inequalities

multOt(D) 6 43D · Lyz =
1

5
<

14

57
, multOt(D) 6

43

2
D ·Ry =

1

5
<

14

57

must hold, and hence the point P cannot be Ot.
We write D = m0Lyz +m1Ry + Ω, where Ω is an effective Q-divisor whose support contains

neither Lyz nor Ry. If m0 6= 0, then m1 = 0 and hence

2

5 · 43
= D · Ry > m0Lyz ·Ry =

7m0

43
.

Therefore, m0 6 2
35 . Similarly, we have m1 6 1

35 . Since

10(D −m0Lyz) · Lyz =
2 + 51m0

43
<

14

57
,

5(D −m1Ry) ·Ry =
2 + 16m1

43
<

14

57
,

it follows from Lemma 1.3.8 that the point P is located in the outside of Cy.
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Since the divisor D does not contain the curve Cx, multOy(D) 6 19D · Cx = 6
43 <

14
57 , and

hence the point P cannot belong to the curve Cx. Therefore, the point P is a smooth point
in the outside of Cx ∪ Cy. However, since H0(P,OP(190)) contains x19, y10, x5z4 and x12z2, it
follows from Lemma 1.3.9 that the point P must be either a singular point of X or a point in
Cx ∪ Cy. This is a contradiction. �

Lemma 3.2.14. Let X be a quasismooth hypersurface of degree 105 in P(11, 21, 28, 47). Then
lct(X) = 77

30 .

Proof. The surface X can be defined by the quasihomogeneous equation

yz3 − y5 + xt2 + x7z = 0.

The surface X is singular at the point Ox, Oz, Ot and Q7 = [0 : 1 : 1 : 0].
The curve Cx (resp. Cy) consists of two irreducible curves Lxy and Rx = {x = z3 − y4 = 0}

(resp. Ry = {y = t2 + x6z = 0}. The curve Lxy intersects Rx (resp. Ry) only at the point Ot

(resp. Oz). We have the following intersection numbers:

−KX · Lxy =
1

14 · 47
, −KX ·Rx =

2

7 · 47
, −KX ·Ry =

1

7 · 11
, Lxy · Rx =

3

47
,

Lxy ·Ry =
1

14
, L2

xy = −
73

28 · 47
, R2

x = −
10

7 · 47
, R2

y =
5

7 · 11
.

We see that lct(X) 6 77
30 since

77

30
= lct

(

X,
2

11
Cx

)

< lct

(

X,
2

21
Cy

)

= 6.

Suppose that lct(X) < 77
30 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 77
30D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of D does not contain at least one component of each of Cx and Cy. Note that the curve
Rx is singular at the point Ot with multiplicity 3 and the curve Ry is singular at the point Oz.
Then one of two inequalities

multOt(D) 6 47D · Lxy =
1

14
<

30

77
, multOt(D) 6

47

3
D ·Rx =

2

21
<

30

77
must hold, and hence the point P cannot be Ot. Applying the same method to Cy, we show
that the point P cannot be the point Oz.

Write D = m0Lxy + m1Rx + m2Ry + Ω, where Ω is an effective Q-divisor whose support
contains none of Lxy, Rx, Ry. If m0 6= 0, then we obtain

2

7 · 47
= D ·Rx > m0Lxy ·Rx =

3m0

47
,

and hence m0 6 2
21 . Similarly, we see that m1 6 1

42 and m2 6 1
47 . Since we have

(D −m0Lxy) · Lxy =
2 + 73m0

28 · 47
<

30

77
,

7(D −m1Rx) ·Rx =
2 + 10m1

47
<

30

77
,

11(D −m2Ry) · Ry =
1 − 5m2

7
<

30

77
,
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it follows from Lemma 1.3.8 that the point P is located in the outside of Cx and Cy. Therefore,
the point P is a smooth point in the outside of Cx. However, since H0(P,OP(517)) contains
x5y22, x26y11, x47, x19z11, x47, t11, it follows from Lemma 1.3.9 that the point P must be either
a singular point of X or a point in Cx. This is a contradiction. �

Lemma 3.2.15. Let X be a quasismooth hypersurface of degree 107 in P(11, 25, 32, 41). Then
lct(X) = 11

3 .

Proof. The surface X can be defined by the quasihomogeneous equation

yt2 + y3z + xz3 + x6t = 0.

The surface X is singular at the points Ox, Oy, Oz , Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxy (resp. Lxy, Lzt, Lzt) and Rx = {x = t2 + y2z = 0} (resp. Ry = {y = z3 + x5t = 0},
Rz = {z = x6 + yt = 0}, Rt = {t = y3 + xz2 = 0}). Also, we see that

Lxy ∩Rx = {Oz}, Lxy ∩Ry = {Ot}, Lzt ∩Rz = {Oy}, Lzt ∩Rt = {Ox}.

We have the following intersection numbers:

−KX · Lxy =
1

16 · 41
, −KX · Lzt =

2

11 · 25
, −KX · Rx =

1

8 · 25
, −KX · Ry =

6

11 · 41
,

−KX ·Rz =
12

25 · 41
, −KX · Rt =

3

11 · 16
, Lxy · Rx =

1

16
, Lxy ·Ry =

3

41
, Lzt ·Rz =

6

25

L2
xy = −

71

32 · 41
, L2

zt = −
34

11 · 25
, R2

x = −
7

8 · 25
, R2

y =
42

11 · 41

We see lct(X) 6 11
3 since

11

3
= lct

(

X,
2

11
Cx

)

<
50

9
= lct

(

X,
2

25
Cy

)

<
28

3
= lct

(

X,
2

32
Cz

)

<
205

18
= lct

(

X,
2

41
Ct

)

.

Suppose that lct(X) < 11
3 . Then there is an effective Q-divisor D ∼Q −KX such that the pair

(X, 11
3 D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that either

Supp(D) does not contain at least one irreducible component of each of Cx, Cy, Cz and Ct.
Since the curve Ry is singular at the point Ot with multiplicity 3, one of the inequalities

multOt(D) 6 41D · Lxy =
1

16
<

3

11
, multOt(D) 6

41

3
D · Ry =

2

11
<

3

11

must hold, and hence the point P cannot be the point Ot. Applying the same method to each
of Cx and Ct, we can show that the point P can be neither Oz nor Ox.

Since H0(P,OP(352)) contains the monomials x7y11, x32 and z11, it follows from Lemma 1.3.9
that the point P is either the point Ot or a smooth point on Cx.

Write D = m0Lxy + m1Rx + m2Lzt + Ω, where Ω is an effective Q-divisor whose support
contains none of Lxy, Rx, Rz. If m0 6= 0, then m1 = 0 and hence we obtain

1

8 · 25
= D · Rx > m0Lxy · Rx =

m0

16
.
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Therefore, m0 6 2
25 . Similarly, we get m1 6 1

41 . Since we have

(D −m0Lxy) · Lxy =
2 + 71m0

32 · 41
<

3

11
,

(D −m1Rx) · Rx =
1 + 7m1

8 · 25
<

3

11
it follows from Lemma 1.3.8 that the point P must be the point Oy.

Suppose that m2 = 0. Then the inequality

multOy(D) 6 25D · Lzt =
2

11
<

3

11

gives us a contradiction. Therefore, m2 6= 0 and hence the curve Rz is not contained in the
support of D. Then

12

25 · 41
= D · Rz > m2Lzt · Rz +

multOy(D) −m2

25
>

5m2

25
+

3

11 · 25
,

and hence m2 <
9

5·11·41 . Since

25(D −m2Lzt) · Lzt =
2 + 34m2

11
<

3

11

the pair (X, 11
3 D) is log canonical at the point Oy by Lemma 1.3.8. This is a contradiction. �

Lemma 3.2.16. Let X be a quasismooth hypersurface of degree 111 in P(11, 25, 34, 43). Then
lct(X) = 33

8 .

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + tz2 + xy4 + x7z = 0.

The surface X is singular at the points Ox, Oy, Oz , Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxt (resp. Lyz, Lyz, Lxt) and Rx = {x = yt + z2 = 0} (resp. Ry = {y = zt + x7 = 0},
Rz = {z = xy3 + t2 = 0}, Rt = {t = y4 + x6z = 0}). Also, we see that

Lxt ∩Rx = {Oy}, Lyz ∩Ry = {Ot}, Lyz ∩Rz = {Ox}, Lxt ∩Rt = {Oz}.

The intersection numbers among the divisors D, Lxt, Lyz, Rx, Ry, Rz, Rt are as follows:

−KX · Lxt =
1

17 · 25
, −KX ·Rx =

4

25 · 43
, −KX · Ry =

7

17 · 43
,

−KX · Lyz =
2

11 · 43
, −KX ·Rz =

4

11 · 25
, −KX ·Rt =

4

11 · 17
,

Lxt · Rx =
2

25
, Lyz ·Ry =

7

43
, Lyz ·Rz =

2

11
, Lxt · Rt =

2

17
,

L2
xt = −

57

34 · 25
, R2

x = −
64

25 · 43
, R2

y = −
63

34 · 43
,

L2
yz = −

52

11 · 43
, R2

z =
18

11 · 25
, R2

t =
64

11 · 17
.
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We can easily see that lct(X, 2
11Cx) = 33

8 is less than each of the numbers lct(X, 2
25Cy),

lct(X, 2
34Cz) and lct(X, 2

43Ct). Therefore, lct(X) 6 33
8 .

Suppose that lct(X) < 33
8 . Then there is an effective Q-divisor D ∼Q −KX such that the log

pair (X, 33
8 D) is not log canonical at some point P ∈ X.

By Lemma 1.3.6 we may assume that the support ofD does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. The inequalities

25D · Lxt =
1

17
<

8

33
, 25D · Rx =

4

43
<

8

33
imply that P 6= Oy. The inequalities

11D · Lyz =
2

43
<

8

33
, 11D · Rz =

4

25
<

8

33
imply that P 6= Ox. Since the curve Rt is singular at the point Oz, the inequalities

34D · Lxt =
34

17 · 25
<

8

33
,

34

4
D ·Rt =

2

11
<

8

33
imply that P 6= Oz.

We write D = a1Lxt + a2Lyz + a3Rx + a4Ry + a5Rz + a6Rt + Ω, where Ω is an effective
divisor whose support contains none of the curves Lxt, Lyz, Rx, Ry, Rz, Rt. Since the pair
(X, 33

8 D) is log canonical at the points Ox, Oy, Oz, the numbers ai are at most 8
33 . Then by

Lemma 1.3.8 the following inequalities enable us to conclude that either the point P is in the
outside of Cx ∪ Cy ∪Cz ∪ Ct or P = Ot:

33

8
D · Lxt − L2

xt =
261

8 · 17 · 25
< 1,

33

8
D · Lyz − L2

xt =
241

4 · 11 · 43
< 1,

33

8
D · Rx −R2

x =
161

2 · 25 · 43
< 1,

33

8
D · Ry −R2

y =
483

4 · 34 · 43
< 1,

33

8
D ·Rz −R2

z 6
33

8
D · Rz =

3

2 · 25
< 1,

33

8
D · Rt −R2

t 6
33

8
D ·Rt =

3

34
< 1.

Suppose that P 6= Ot. Then we consider the pencil L defined by λyt + µz2 = 0, [λ : µ] ∈ P1.
The base locus of the pencil consists of the curve Lyz and the point Oy. Let E be the unique
divisor in L that passes through the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the divisor E is
defined by the equation z2 = αyt, where α 6= 0.

Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
yt = z2 and t2y + xy4 + x7z = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
z(z3 + xz7 + x7) = 0. Therefore, the divisor E consists of two irreducible and reduced curves
Lyz and C. We have

D · C = D ·E −D · Lyz =
394

11 · 25 · 43
.

Also, we see

C2 = E · C − C · Lyz > E · C − (Lyz +Ry) · C =
43

2
D · C > 0.

By Lemma 1.3.8 the inequality D · C < 8
33 gives us a contradiction.
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Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lyz,
Rx, and M . Note that the curve M is different from the curves Ry and Lxt. Also, it is smooth
at the point P . We have

D ·M = D ·E −D · Lyz −D · Rx =
14

11 · 43
,

M2 = E ·M − Lyz ·M −Rx ·M > E ·M − Cy ·M − Cx ·M > 0.

By Lemma 1.3.8 the inequality D ·M < 8
33 gives us a contradiction. Therefore, P = Ot.

Put D = bRx + ∆, where ∆ is an effective divisor whose support does not contain Rx. By
Lemma 1.3.6, we may assume that Rx 6⊆ Supp(∆) if b > 0. Thus, if b > 0, then

2

25 · 34
= D · Lxt > bRx · Lxt =

2b

25
,

and hence b 6 1
34 . On the other hand, it follows from Lemma 1.3.8 that

4 + 64b

25 · 43
= ∆ · Rx >

8

33 · 43
.

Therefore, b > 17
528 . Since 17

528 >
1
34 , this is a contradiction. �

Lemma 3.2.17. Let X be a quasismooth hypersurface of degree 226 in P(11, 43, 61, 113). Then
lct(X) = 55

12 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + xy5 + x15z = 0.

The surface X is singular at the points Ox, Oy and Oz. The curves Cx and Cy are irreducible.
We have

55

12
= lct

(

X,
2

11
Cx

)

< lct

(

X,
2

43
Cy

)

=
17 · 43

60
.

Therefore, lct(X) 6 55
12 .

Suppose that lct(X) < 55
12 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 55
12D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains neither Cx nor Cy. Then the inequalities

61D · Cx =
4

43
<

12

55
, 11D · Cy =

4

61
<

12

55

show that the point P must be a smooth point of X in the outside of Cx. However, since
H0(P,OP(671)) contains the monomials x18y11, x61 and z11, it follows from Lemma 1.3.9 that
the point P is either a singular point of X or a point on Cx. This is a contradiction. �

Lemma 3.2.18. Let X be a quasismooth hypersurface of degree 135 in P(13, 18, 45, 61). Then
lct(X) = 91

30 .

Proof. The surface X can be defined by the quasihomogeneous equation

z3 − y5z + xt2 + x9y = 0.

The surface X is singular at the points Ox, Oy, Ot, Q9 = [0 : 1 : 1 : 0].



76 IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

The curve Cx consists of two irreducible and reduced curves Lxz and Rx = {x = z2−y5 = 0}.
The curve Lxz intersects Rx at the point Ot. It is easy to check

L2
xz = −

77

18 · 61
, R2

x = −
32

9 · 61
, Lxz · Rx =

5

61
.

Meanwhile, the curve Cy is irreducible. We have

91

30
= lct

(

X,
2

13
Cx

)

< lct

(

X,
2

18
Cy

)

=
15

2
.

Therefore, lct(X) 6 91
30 .

Suppose that lct(X) < 91
30 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 91
30D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
Lxz 6⊂ Supp(D) or Rx 6⊂ Supp(D).

Since the support of D cannot contain either Lxz or Rx one of the inequalities

multOt(D) 6 61D · Lxz =
1

9
<

30

91
, multOt(D) 6 61D · Rx =

2

9
<

30

91

must hold, and hence the point P cannot be Ot. Also, the inequality

13D · Cy =
6

61
<

30

91

implies that the point P cannot be Ox.
We write D = m0Lxz +m1Rx + Ω, where Ω is an effective Q-divisor whose support contains

neither Lxz nor Rx. If m0 6= 0, then we obtain

2

9 · 61
= D ·Rx > m0Lxz · Rx =

5m0

61

and hence m0 6 2
45 . By the same way, we get m1 6 1

45 . Since

18(D −m0Lxz) · Lxz =
2 + 77m0

61
<

30

91
, 9(D −m1Rx) ·Rx =

2 + 32m0

61
<

30

91

it follows from Lemma 1.3.8 that the point P is a smooth point in the outside of Cx. However,
since H0(P,OP(585)) contains x45, x27y13, z13, this is impossible by Lemma 1.3.9. �

Lemma 3.2.19. Let X be a quasismooth hypersurface of degree 107 in P(13, 20, 29, 47). Then
lct(X) = 65

18 .

Proof. The surface X can be defined by the quasihomogeneous equation

yz3 + y3t+ xt2 + x6z = 0.

The surface X is singular at the points Ox, Oy, Oz and Ot. Each of the divisors Cx, Cy, Cz,
and Ct consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct)
consists of Lxy (resp. Lxy, Lzt, Lzt) and Rx = {x = z3+y2t = 0} (resp. Ry = {y = t2+x5z = 0},
Rz = {z = y3 + xt = 0}, Rt = {t = x6 + yz2 = 0}). The curve Lxy intersects Rx (resp. Ry)
only at the point Ot (resp. Oz). Also, the curve Lzt intersects Rz (resp. Rt) only at the point
Ox (resp. Oy). It is easy to check



EXCEPTIONAL DEL PEZZO HYPERSURFACES 77

−KX · Lxy =
2

29 · 47
, −KX · Lzt =

1

13 · 10
, −KX ·Rx =

3

10 · 47
,

−KX · Ry =
4

13 · 29
, −KX · Rz =

6

13 · 47
, −KX · Rt =

3

5 · 29
,

L2
xy = −

74

29 · 47
, R2

x = −
21

20 · 47
, Lxy ·Rx =

3

47
.

We see lct(X) 6 65
18 since

65

18
= lct

(

X,
2

13
Cx

)

<
70

12
= lct

(

X,
2

20
Cy

)

<
29

3
= lct

(

X,
2

29
Cz

)

<
94

9
= lct

(

X,
2

47
Ct

)

.

Suppose that lct(X) < 65
18 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 65
18D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of D does not contain at least one irreducible component of each of the curves Cx, Cy,
Cz and Ct. The curve Rx (resp. Ry, Rt) is singular at the point Ot (resp. Oz , Oy). Then in
each of the following pairs of inequalities, at least one of two must hold:

multOt(D) 6 47D · Lxy =
2

29
<

18

65
, multOt(D) 6

47

2
D · Rx =

3

20
<

18

65
;

multOz(D) 6 29D · Lxy =
2

47
<

18

65
, multOz(D) 6

29

2
D · Ry =

2

13
<

18

65
;

multOx(D) 6 13D · Lzt =
1

10
<

18

65
, multOx(D) 6 13D · Rz =

6

47
<

18

65
;

multOy(D) 6 20D · Lzt =
2

13
<

18

65
, multOy(D) 6

20

2
D ·Rt =

6

29
<

18

65
.

Therefore, the point P must be a smooth point of X.
We write D = m0Lxy +m1Rx + Ω, where Ω is an effective Q-divisor whose support contains

none of Lxy, Rx. If m0 6= 0, then m1 = 0 and hence we obtain

3

10 · 47
= D · Rx > m0Lxy · Rx =

3m0

47
.

Therefore, m0 6 1
10 . Similarly, we get m1 6 2

87 . Since

(D −m0Lxy) · Lxy =
2 + 74m0

29 · 47
<

18

65
,

(D −m1Rx) ·Rx =
6 + 21m1

20 · 47
<

18

65
it follows from Lemma 1.3.8 that the point P is a smooth point in the outside of Cx. How-
ever, since H0(P,OP(377)) contains the monomials x9y13, x29 and z13, this is impossible by
Lemma 1.3.9. �

Lemma 3.2.20. Let X be a quasismooth hypersurface of degree 111 in P(13, 20, 31, 49). Then
lct(X) = 65

16 .
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Proof. The surface X can be defined by the quasihomogeneous equation

z2t+ y4z + xt2 + x7y = 0.

It is singular at the point Ox, Oy, Oz and Ot. Each of the divisors Cx, Cy, Cz, and Ct consists
of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists of
Lxz (resp. Lyt, Lxz, Lyt) and Rx = {x = y4 + zt = 0} (resp. Ry = {y = z2 + xt = 0},
Rz = {z = t2 + x6y = 0}, Rt = {t = x7 + y3z = 0}). The curve Lxz intersects Rx (resp. Rz)
only at the point Ot (resp. Oy). Also, the curve Lyt intersects Ry (resp. Rt) only at the point
Ox (resp. Oz). It is easy to check

−KX · Lxz =
1

10 · 49
, −KX · Lyt =

2

13 · 31
, −KX ·Rx =

8

31 · 49
,

−KX · Ry =
4

13 · 49
, −KX · Rz =

1

5 · 13
, −KX ·Rt =

7

10 · 31
,

L2
xz = −

67

20 · 49
, R2

x = −
72

31 · 49
, Lxz ·Rx =

4

49
.

We have lct(X) 6 65
16 since

65

16
= lct

(

X,
2

13
Cx

)

<
30

4
= lct

(

X,
2

20
Cy

)

<
245

28
= lct

(

X,
2

49
Ct

)

<
62

7
= lct

(

X,
2

31
Cz

)

.

Suppose that lct(X) < 65
16 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 65
16D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of D does not contain at least one irreducible component of each of the curves Cx, Cy,
Cz and Ct. The curve Rz is singular at the point Oy. The curve Rt is singular at Oz with
multiplicity 3. Then in each of the following pairs of inequalities, at least one of two must hold:

multOx(D) 6 13D · Lyt =
2

31
<

16

65
, multOx(D) 6 13D · Ry =

4

49
<

16

65
;

multOy(D) 6 20D · Lxz =
2

49
<

16

65
, multOy(D) 6

20

2
D ·Rz =

2

13
<

16

65
;

multOz(D) 6 31D · Lyt =
2

13
<

16

65
, multOz(D) 6

31

3
D · Rt =

7

30
<

16

65
.

Therefore, the point P can be none of Ox, Oy, Oz.
SinceH0(P,OP(403)) contains the monomials x11y13, x31 and z13, it follows from Lemma 1.3.9

that the point P is either the point Ot or a smooth point of X in Cx.
Write D = m0Lxz +m1Rx +Ω, where Ω is an effective Q-divisor whose support contains none

of Lxz, Rx. If m0 6= 0, then m1 = 0 and hence we obtain

8

31 · 49
= D · Rx > m0Lxz ·Rx =

4m0

49
.

Therefore, m0 6 2
31 . Similarly, we get m1 6 1

40 . Since we have

(D −m0Lxz) · Lxz =
2 + 67m0

20 · 49
<

16

65
,

(D −m1Rx) ·Rx =
8 + 72m1

31 · 49
<

16

65
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it follows from Lemma 1.3.8 that the point P must be the point Ot.
Suppose that m0 = 0. Then the inequality

multOt(D) 6 49D · Lxz =
1

10
<

16

65
gives us a contradiction. Therefore, m0 6= 0 and hence the curve Rx is not contained in the
support of D. Then

8

31 · 49
= D ·Rx > m0Lxz · Rx +

multOt(D) −m0

49
>

3m0

49
+

16

65 · 49
,

and hence m0 <
8

31·65 . Since

49(D −m0Lxz) · Lxz =
2 + 67m0

20
<

16

65

the pair (X, 65
16D) is log canonical at the point Ot by Lemma 1.3.8. This is a contradiction. �

Lemma 3.2.21. Let X be a quasismooth hypersurface of degree 226 in P(13, 31, 71, 113). Then
lct(X) = 91

20 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y5z + xz3 + x15y = 0.

It is singular at the points Ox, Oy and Oz. The curves Cx and Cy are irreducible. We have

91

20
= lct

(

X,
2

13
Cx

)

< lct

(

X,
2

31
Cy

)

=
155

12
.

Therefore, lct(X) 6 91
20 .

Suppose that lct(X) < 91
20 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 91
20D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains neither Cx nor Cy. Then the inequalities

71D · Cx =
4

31
<

20

91
, 13D · Cy =

4

71
<

20

91

show that the point P is a smooth point in the outside of Cx. However, since H0(P,OP(923))
contains x71, y26x9, y13x40 and z13, it follows from Lemma 1.3.9 that the point P is either a
singular point of X or a point on Cx. This is a contradiction. �

Lemma 3.2.22. Let X be a quasismooth hypersurface of degree 99 in P(14, 17, 29, 41). Then
lct(X) = 51

10 .

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + tz2 + xy5 + x5z = 0.

The surface X is singular at the points Ox, Oy, Oz , Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxt (resp. Lyz, Lyz, Lxt) and Rx = {x = yt + z2 = 0} (resp. Ry = {y = zt + x5 = 0} ,
Rz = {z = xy4 + t2 = 0} , Rt = {t = y5 + x4z = 0} ). Also, we see that

Lxt ∩Rx = {Oy}, Lyz ∩Ry = {Ot}, Lyz ∩Rz = {Ox}, Lxt ∩Rt = {Oz}.
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We can easily check that lct(X, 2
17Cy) = 51

10 is less than each of the numbers lct(X, 2
14Cy),

lct(X, 2
29Cz) and lct(X, 2

41Ct). Therefore, lct(X) 6 51
10 . Suppose lct(X) < 51

10 . Then, there is

an effective Q-divisor D ∼Q −KX such that the log pair (X, 51
10D) is not log canonical at some

point P ∈ X.
The intersection numbers among the divisors D, Lxt, Lyz, Rx, Ry, Rz, Rt are as follows:

D · Lxt =
2

17 · 29
, D ·Rx =

4

17 · 41
, D ·Ry =

10

29 · 41
,

D · Lyz =
1

7 · 41
, D ·Rz =

2

7 · 17
, D ·Rt =

5

7 · 29
,

Lxt ·Rx =
2

17
, Lyz · Ry =

5

41
, Lyz · Rz =

1

7
, Lxt ·Rt =

5

29
,

L2
xt = −

44

17 · 29
, R2

x = −
54

17 · 41
, R2

y = −
60

29 · 41
,

L2
yz = −

53

14 · 41
, R2

z =
12

7 · 17
, R2

t =
135

14 · 29
.

By Lemma 1.3.6 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. The inequalities

17D · Lxt =
2

29
<

10

51
, 17D · Rx =

4

41
<

10

51
imply that P 6= Oy. The inequalities

14D · Lyz =
2

41
<

10

51
, 7D ·Rz =

2

17
<

10

51
imply that P 6= Ox. The curve Rz is singular at the point Ox. The inequalities

29D · Lxt =
2

17
<

10

51
,

29

4
D ·Rt =

5

28
<

10

51
imply that P 6= Oz. The curve Rt is singular at the point Oz.

We write D = m0Lxt +m1Lyz +m2Rx +m3Ry +m4Rz +m5Rt + Ω, where Ω is an effective
divisor whose support contains none of the curves Lxt, Lyz, Rx, Ry, Rz, Rt. Since the pair

(X, 51
10D) is log canonical at the points Ox, Oy, Oz, the numbers mi are at most 10

51 . Then by
Lemma 1.3.8 the following inequalities enable us to conclude that either the point P is in the
outside of Cx ∪ Cy ∪Cz ∪ Ct or P = Ot:

(D −m0Lxt) · Lxz =
2 + 44m0

17 · 29
6

10

51
, (D −m1Lyz) · Lyt =

2 + 53m1

14 · 41
6

10

51
,

(D −m2Rx) · Rx =
4 + 54m2

17 · 41
6

10

51
, (D −m3Ry) ·Ry =

10 + 60m3

29 · 41
6

10

51
,

(D −m4Rz) · Rz =
2 − 12m4

7 · 17
6

10

51
, (D −m5Rt) · Rt =

10 − 135m5

14 · 29
6

10

51
.

Suppose that P 6= Ot. Then we consider the pencil L on X defined by λyt + µz2 = 0,
[λ : µ] ∈ P1. The base locus of the pencil L consists of the curve Lyz and the point Oy. Let E
be the unique divisor in L that passes through the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the
divisor E is defined by the equation z2 = αyt, where α 6= 0.
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Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
yt = z2 and t2y + xy5 + x5z = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
z(z+xz9 +x5) = 0. Therefore, the divisor E consists of two irreducible and reduced curves Lyz

and C. We have the intersection number

D · C = D ·E −D · Lyz =
181

7 · 17 · 41
.

Also, we see

C2 = E · C − C · Lyz > E · C − Cy · C > 0

since C is different from Ry. By Lemma 1.3.8 the inequality D ·C < 10
51 gives us a contradiction.

Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lyz,
Rx, and M . Note that the curve M is different from the curves Ry and Lxt. Also, it is smooth
at the point P . We have

D ·M = D · E −D · Lyz −D ·Rx =
153

7 · 17 · 41
,

M2 = E ·M − Lyz ·M −Rx ·M > E ·M − Cy ·M − Cx ·M > 0.

By Lemma 1.3.8 the inequality D ·M < 10
51 gives us a contradiction. Therefore, the log pair

(X, 51
10D) is not log canonical at the point Ot.

Put D = aLyz + bRx + ∆, where ∆ is an effective Q-divisor whose support contains neither
Lyz nor Rx. Then a > 0 since otherwise we would have a contradictory inequality

1

7
= 41D · Lyz > multOt(D) >

10

51
.

Therefore, we may assume that Ry 6⊂ Supp(∆) by Lemma 1.3.6. Similarly, we may assume that
Lxt 6⊂ Supp(∆) if b > 0.

If b > 0, then
2

17 · 29
= D · Lxt > bRx · Lxt =

2b

17
,

and hence b 6 1
29 . Similarly, we have

10

29 · 41
= D · Ry >

5a

41
+

b

41
+

multOt(D) − a− b

41
>

4a

41
+

4

21 · 41
.

Therefore, a < 47
2·21·29 .

Let π : X̄ → X be the weighted blow up at the point Ot with weights (9, 4) and let F be the
exceptional curve of the morphism π. Then F contains two singular points Q9 and Q4 of X̄
such that Q9 is a singular point of type 1

9(1, 1), and Q4 is a singular point of type 1
4(3, 1). Then

KX̄ ∼Q π∗(KX) −
28

41
F, L̄yz ∼Q π∗(Lyz) −

4

41
F, R̄x ∼Q π∗(Rx) −

9

41
F, ∆̄ ∼Q π∗(∆) −

c

41
F,

where L̄yz, R̄x and ∆̄ are the proper transforms of Lyz, Rx and ∆ by π, respectively, and c is a
non-negative rational number. Note that F ∩ R̄x = {Q4} and F ∩ L̄yz = {Q9}.
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The log pull-back of the log pair (X, 51
10D) by π is the log pair

(

X̄,
51a

10
L̄yz +

51b

10
R̄x +

51

10
∆̄ + θ1F

)

,

where

θ1 =
280 + 51(4a + 9b+ c)

10 · 41
.

This is not log canonical at some point Q ∈ F .
We have

0 6 ∆̄ · R̄x =
4 + 54b

17 · 41
−

a

41
−

c

4 · 41
.

This inequality shows 4a+ c 6 4
17 (4 + 54b). Since b 6 1

29 , we obtain

θ1 =
280 + 51(4a + 9b+ c)

10 · 41
6

4760 + 51(16 + 369b)

10 · 17 · 41
< 1.

Suppose that Q 6∈ R̄x ∪ L̄yz. Then the log pair (F, 51
10∆̄|F ) is not log canonical at the point

Q, and hence
17c

120
=

51

10
∆̄ · F > 1

by Lemma 1.3.8. Thus, we see that c > 120
17 . However, since b 6 1

29 , we obtain

c 6 4a+ c 6
4

17
(4 + 54b) <

120

17
.

Therefore, the point Q must be either Q4 or Q9.
Suppose that Q = Q4. The pair (R̄x, (

51
10∆̄ + θ1F )|R̄x

) is not log canonical at Q. It then
follows from Lemma 1.3.8 that

1 < 4

(

51

10
∆̄ + θ1F

)

· R̄x =
4 · 51

10

(

4 + 54b

17 · 41
−

a

41
−

c

4 · 41

)

+ θ1.

However,

4 · 51

10

(

4 + 54b

17 · 41
−

a

41
−

c

4 · 41

)

+ θ1 =
4760 + 51(16 + 369b)

10 · 17 · 41
< 1.

This is a contradiction. Consequently, the point Q must be Q9.
Let ψ : X̃ → X̄ be the blow up at the point Q9 and let E be the exceptional curve of the

morphism ψ. The surface X̃ is smooth along the exceptional divisor E. Then

KX̃ ∼Q ψ∗(KX̄) −
7

9
E, L̃yz ∼Q ψ∗(L̄yz) −

1

9
E, F̃ ∼Q ψ∗(F ) −

1

9
E, ∆̃ ∼Q ψ∗(∆̄) −

d

9
E,

where L̃yz, F̃ and ∆̃ are the proper transforms of L̄yz, F and ∆̄ by ψ, respectively, and d is a
non-negative rational number.

The log pull-back of the log pair (X, 51
10D) by π ◦ ψ is the log pair

(

X̃,
51a

10
L̃yz +

51b

10
R̃x +

51

10
∆̃ + θ1F̃ + θ2E

)

,
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where R̃x is the proper transform of R̄x by ψ and

θ2 =
70 + 51(a+ d) + 10θ1

90
=

3150 + 51(45a + 9b+ c+ 41d)

90 · 41
.

This is not log canonical at some point O ∈ E.
We have

0 6 ∆̃ · L̃yx = ∆̄ · L̄yz −
d

9
=

2 + 53a

14 · 41
−

b

41
−

c

9 · 41
−
d

9
,

and hence 9b+ c+ 41d 6 9
14 (2 + 53a). Therefore, this inequality together with a < 47

2·21·29 gives
us

θ2 =
3150 + 51(45a + 9b+ c+ 41d)

90 · 41
=

=
3150 + 2295a

90 · 41
+

51(9b + c+ 41d)

90 · 41
6

6
5002 + 6273a

10 · 14 · 41
< 1.

Suppose that the point O is in the outside of L̃yz and F̃ . Then the log pair (E, 51
10∆̃|E) is not

log canonical at the point O and hence

1 <
51

10
∆̃ · E =

51d

10
.

However,

41d 6 9b+ c+ 41d 6
9

14
(2 + 53a) <

10 · 41

51

since a < 47
2·21·29 . This is a contradiction.

Suppose that the point O belongs to L̃yz Then the log pair (E, (51a
10 L̃yz + 51

10∆̃)|E) is not log
canonical at the point O and hence

1 < (
51a

10
L̃yz +

51

10
∆̃) · E =

51

10
(a+ d).

However,
51

10
(a+ d) 6

51

10

(

a+
9

14 · 41
(2 + 53a)

)

< 1

since a < 47
2·21·29 . This is a contradiction. Therefore, the point O is the intersection point of F̃

and E.
Let ξ : X̂ → X̃ be the blow up at the point O and let H be the exceptional divisor of ξ.

We also let L̂yz, R̂x, ∆̂, Ê, and F̂ be the proper transforms of L̃yz, R̃x, ∆̃, E and F̃ by ξ,
respectively. We have

K
X̂

∼Q ξ∗(KX̃) +H, Ê ∼Q ξ∗(E) −H, F̂ ∼Q ξ∗(F̃ ) −H, ∆̂ ∼Q ξ∗(∆̃) − eH,

where e is a non-negative rational number. The log pull-back of the log pair (X, 51
10D) via π◦φ◦ξ

is
(

X̂,
51a

10
L̂yz +

51b

10
R̂x +

51

10
∆̂ + θ1F̂ + θ2Ê + θ3H

)

,
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where

θ3 = θ1 + θ2 +
51e

10
− 1 =

1980 + 51(81a + 90b+ 10c + 41d+ 369e)

90 · 41
.

This log pair is not log canonical at some point A ∈ H. We have

c

9 · 4
−
d

9
− e = ∆̂ · F̂ > 0.

Therefore, 4d+ 36e 6 c. Then

θ3 =
1980 + 51(81a + 90b+ 10c)

90 · 41
+

51(d + 9e)

90
6

6
7920 + 51(324a + 360b+ 81c)

4 · 90 · 41
=

=
22 + 51b

41
+

51 · 81(4a + c)

4 · 90 · 41
6

6
22 + 51b

41
+

9 · 51(2 + 27b)

5 · 17 · 41
< 1

since b 6 1
29 and 4a+ c 6 4

17(4 + 54b).

Suppose that A 6∈ F̂ ∪ Ê. Then the log pair
(

X̂, 51
10∆̂ + θ3H

)

is not log canonical at the point

A. Applying Lemma 1.3.4, we get

1 <
51

10
∆̂ ·H =

51e

10
.

However,

e 6
1

36
(4d + 36e) 6

c

36
6

1

36
(4a+ c) 6

4 + 54b

17 · 9
<

10

51
.

Therefore, the point A must be either in F̂ or in Ê.

Suppose that A ∈ F̂ . Then the log pair
(

X̂, 51
10∆̂ + θ1F̂ + θ3H

)

is not log canonical at the

point A. Applying Lemma 1.3.4, we get

1 <

(

51

10
∆̂ + θ3H

)

· F̂ =
51

10

(

c

9 · 4
−
d

9
− e

)

+ θ3 =
7920 + 51(324a + 360b + 81c)

4 · 90 · 41
.

However,

7920 + 51(324a + 360b+ 81c)

4 · 90 · 41
< 1

as seen in the previous. Therefore, the point A is the intersection point of H and Ê. Then the

log pair
(

X̂, 51
10∆̂ + θ2Ê + θ3H

)

is not log canonical at the point A. From Lemma 1.3.4, we

obtain

1 <

(

51

10
∆̂ + θ3H

)

· Ê =
51

10
(d− e) + θ3 =

1980 + 51(81a + 90b+ 10c + 410d)

90 · 41
.
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However,

1980 + 51(81a + 90b+ 10c+ 410d)

90 · 41
=

220 + 459a

10 · 41
+

51(9b + c+ 41d)

9 · 41
6

6
220 + 459a

10 · 41
+

51(2 + 53a)

14 · 41
< 1

since 9b + c + 41d 6 9
14 (2 + 53a) and a < 47

2·21·29 . The obtained contradiction completes the
proof. �

3.3. Sporadic cases with I = 3

Lemma 3.3.1. Let X be a quasismooth hypersurface of degree 33 in P(5, 7, 11, 13). Then
lct(X) = 49

36 .

Proof. The surface X can be defined by the quasihomogeneous equation

z3 + yt2 + xy4 + x4t+ ǫx3yz = 0,

where ǫ ∈ C. Note that the surface X is singular at Ox, Oy and Ot.
The curves Cx, Cy are irreducible. Moreover, we have

25

18
= lct(X,

3

5
Cx) > lct(X,

3

7
Cy) =

49

36
.

Therefore, lct(X) 6 49
36 .

Suppose that lct(X) < 49
36 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 49
36D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of D contains neither Cx nor Cy. Since the curve Cy is singular at the point Ot, the
three inequalities

5D · Cy =
9

13
<

36

49
, 7D · Cx =

63

91
<

36

49
show that the point P is located in the outside of the set Cx ∪ Cy.

Let L be the pencil on X that is cut out by the equations

λx7 + µy5 = 0,

where [λ : µ] ∈ P1. Then the base locus of the pencil L consists of the point Ot. Let C be the
unique curve in L that passes through the point P . Since the point P is in the outside of the set
Cx ∪Cy, the curve C is defined by an equation of the form y5 − αx7 = 0, where α is a non-zero
constant. Suppose that C is irreducible and reduced. Then multP (C) 6 3 since the curve C is
a triple cover of the curve

y5 − αx7 = 0 ⊂ P
(

5, 7, 13
)

∼= Proj
(

C
[

x, y, t
]

)

.

In particular, lct(X, 3
35C) > 49

36 . Thus, we may assume that the support of D does not contain
the curve C and hence we obtain

36

49
< multP (D) 6 D · C =

9

13
<

36

49
.

This is a contradiction. Thus, to conclude the proof it suffices to prove that the curve C is
irreducible and reduced.
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Let S ⊂ C4 be the affine variety defined by the equations

y5 − αx7 = z3 + yt2 + xy4 + x4t+ ǫx3yz = 0 ⊂ C4 ∼= Spec
(

C
[

x, y, z, t
]

)

.

To conclude the proof, it is enough to prove that the variety S is irreducible.
Consider the projectivised surface S̄ of S defined by the homogeneous equations

y5w2 − αx7 = z3w2 + yt2w2 + xy4 + x4t+ ǫx3yz = 0 ⊂ P4 ∼= Proj
(

C
[

x, y, z, t, w
]

)

.

Then we consider the affine piece S′ of S̄ defined by y 6= 0. The affine surface S′ is defined by
the equations

w2 − αx7 = z3w2 + t2w2 + x+ x4t+ ǫx3z = 0 ⊂ C4 ∼= Spec
(

C
[

x, z, t, w
]

)

.

This is isomorphic to the affine hypersurface defined by

x(αx6z3 + αx6t2 + 1 + x3t+ ǫx2z) = 0 ⊂ C3 ∼= Spec
(

C
[

x, z, t
]

)

.

This affine hypersurface has two irreducible components. However, the component defined by
x = 0 originates from the hyperplane section of S̄ by w = 0. Therefore, the original affine
surface S must be irreducible and reduce. �

Lemma 3.3.2. Let X be a quasismooth hypersurface of degree 40 in P(5, 7, 11, 20). Then
lct(X) = 25

18 .

Proof. The surface X can be defined by the quasihomogeneous equation

t(t− x4) + yz3 + xy5 + ǫx3y2z,

where ǫ ∈ C. Note that X is singular at the points Ox, Oy, Oz and Q5 = [1 : 0 : 0 : 1].
The curve Cx is irreducible. We have

lct(X,
3

5
Cx) =

25

18
.

Therefore, lct(X) 6 25
18 . Meanwhile, the curve Cy is reducible. It consists of two irreducible

components Lyt and Ry = {y = t− x4 = 0}. The curve Lyt intersects Ry only at the point Oz.
It is easy to see

L2
yt = R2

y = −
13

55
, Lyt ·Ry =

4

11
.

Suppose that lct(X) < 25
18 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 25
18D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of D does not contain the curve Cx. Moreover, we may assume that the support of D
does not contain either Lyt or Ry since

lct(X,
3

7
Cy) =

35

24
>

25

18
.

Then one of the inequalities

multOz(D) 6 11D · Lyt =
3

5
<

18

25
, multOz(D) 6 11D ·Ry =

3

5
<

18

25
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must hold, and hence the point P cannot be the point Oz. Also, since 7D · Cx = 6
11 <

18
25 , the

point P cannot belong to the curve Cx.
We write D = aLyt + bRy + Ω, where Ω is an effective Q-divisor whose support contains

neither Lyt nor Ry. If a 6= 0, then we have

3

55
= D ·Ry > aLyt ·Ry =

4a

11
.

Therefore, a 6 3
20 . By the same way, we also obtain b 6 3

20 .
Since we have

5(D − aLyt) · Lyt =
3 + 13a

11
<

18

25
, 5(D − bRy) ·Ry =

3 + 13a

11
<

18

25

Lemma 1.3.8 implies that the point P is in the outside of Cy. Consequently, the point P is located
in the outside of Cx∪Cy. However, since H0(P,OP(40)) contains monomials x8, xy5, x4t and the
natural projection X 99K P(5, 7, 20) is a finite morphism outside of the curve Cy, Lemma 1.3.9
shows that the point P must belong to the set Cx ∪Cy. This is a contradiction. �

Lemma 3.3.3. Let X be a quasismooth hypersurface of degree 95 in P(11, 21, 29, 37). Then
lct(X) = 11

4 .

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + tz2 + xy4 + x6z = 0.

The surface X is singular at the points Ox, Oy, Oz , Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxt (resp. Lyz, Lyz, Lxt) and Rx = {x = yt + z2 = 0} (resp. Ry = {y = zt + x6 = 0},
Rz = {z = xy3 + t2 = 0}, Rt = {t = y4 + x5z = 0}). Also, we see that

Lxt ∩Rx = {Oy}, Lyz ∩Ry = {Ot}, Lyz ∩Rz = {Ox}, Lxt ∩Rt = {Oz}.

It is easy to check that lct(X, 3
11Cx) = 11

4 is less than each of the numbers lct(X, 3
21Cy),

lct(X, 3
29Cz) and lct(X, 3

37Ct). Therefore, lct(X) 6 11
4 .

Suppose that lct(X) < 11
4 . Then, there is an effective Q-divisor D ∼Q −KX such that the log

pair (X, 11
4 D) is not log canonical at some point P ∈ X.

The intersection numbers among the divisors D, Lxt, Lyz, Rx, Ry, Rz, Rt are as follows:

D · Lxt =
1

7 · 29
, D ·Rx =

2

7 · 37
, D ·Ry =

18

29 · 37
,

D · Lyz =
3

11 · 37
, D ·Rz =

2

7 · 11
, D ·Rt =

12

11 · 29
,

Lxt · Rx =
2

21
, Lyz ·Ry =

6

37
, Lyz ·Rz =

2

11
, Lxt · Rt =

4

29
,

L2
xt = −

47

21 · 29
, R2

x = −
52

21 · 37
, R2

y = −
48

29 · 37
,

L2
yz = −

45

11 · 37
, R2

z =
16

11 · 21
, R2

t =
104

11 · 29
.
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By Lemma 1.3.6 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. The inequalities

21D · Lxt =
3

29
<

4

11
, 21D · Rx =

6

37
<

4

11

imply that P 6= Oy. The inequalities

11D · Lyz =
3

37
<

4

11
, 11D · Rz =

2

7
<

4

11

imply that P 6= Ox. The inequalities

29D · Lxt =
1

7
<

4

11
,

29

4
D ·Rt =

3

11
<

4

11

imply that P 6= Oz. The curve Rt is singular at the point Oz with multiplicity 4.
We write D = m0Lxt +m1Lyz +m2Rx +m3Ry +m4Rz +m5Rt + Ω, where Ω is an effective

divisor whose support contains none of the curves Lxt, Lyz, Rx, Ry, Rz, Rt. Since the pair
(X, 11

4 D) is log canonical at the points Ox, Oy, Oz, the numbers mi are at most 4
11 . Then by

Lemma 1.3.8 the following inequalities enable us to conclude that either the point P is in the
outside of Cx ∪ Cy ∪Cz ∪ Ct or P = Ot:

(D −m0Lxt) · Lxt =
3 + 47m0

21 · 29
6

4

11
, (D −m1Lyz) · Lyz =

3 + 45m1

11 · 37
6

4

11
,

(D −m2Rx) · Rx =
6 + 52m2

21 · 37
6

4

11
, (D −m3Ry) ·Ry =

18 + 48m3

29 · 37
6

4

11
,

(D −m4Rz) · Rz =
6 − 16m4

11 · 21
6

4

11
, (D −m5Rt) · Rt =

12 − 104m5

11 · 29
6

4

11
.

Suppose that P 6= Ot. Then we consider the pencil L defined by λyt+ µz2 = 0, [λ : µ] ∈ P1.
The base locus of the pencil L consists of the curve Lyz and the point Oy. Let E be the unique
divisor in L that passes through the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the divisor E is
defined by the equation z2 = αyt, where α 6= 0.

Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
yt = z2 and t2y + xy4 + x6z = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
z(z+xz7 +x6) = 0. Therefore, the divisor E consists of two irreducible and reduced curves Lyz

and C. We have the intersection number

D · C = D ·E −D · Lyz =
169

7 · 11 · 37
.

Also, we see

C2 = E · C − C · Lyz > E · C − Cy · C > 0

since C is different from Ry. The multiplicity of D along the curve C is at most 4
11 since the

intersection number C ·Ct is positive and the pair (X, 11
4 D) is log canonical along the curve Ct.

Then by Lemma 1.3.8 the inequality D · C < 4
11 gives us a contradiction.
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Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lyz,
Rx, and M . Note that the curve M is different from the curves Ry and Lxt. Also, it is smooth
at the point P . We have

D ·M = D · E −D · Lyz −D ·Rx =
147

7 · 11 · 37
,

M2 = E ·M − Lyz ·M −Rx ·M > E ·M − Cy ·M − Cx ·M > 0.

The multiplicity of D along the curve M is at most 4
11 since the intersection number M · Ct

is positive and the pair (X, 11
4 D) is log canonical along the curve Ct. By Lemma 1.3.8 the

inequality D ·M < 4
11 gives us a contradiction. Therefore, P = Ot.

Put D = aLyz + bRx + ∆, where ∆ is an effective Q-divisor whose support contains neither
Lyz nor Rx. Then a > 0 since otherwise we would obtain an absurd inequality

3

11
= 37D · Lyz > multOt(D) >

4

11
.

Therefore, we may assume that Ry 6⊂ Supp(∆) by Lemma 1.3.6.
If b > 0, the curve Lxt is not contained in the support of D, and hence

3

21 · 29
= D · Lxt > bRx · Lxt =

2b

21
.

Therefore, b 6 3
58 . Similarly, we have

18

29 · 37
= D · Ry >

6a

37
+

b

37
+

multOt(D) − a− b

37
>

5a

37
+

4

11 · 37
,

and hence a < 82
5·11·29 .

Let π : X̄ → X be the weighted blow up of the point Ot with weights (13, 4) and let F be
the exceptional curve of the morphism π. Then F contains two singular points Q13 and Q4 of
X̄ such that Q13 is a singular point of type 1

13 (1, 2) and Q4 is a singular point of type 1
4(3, 1).

Then

KX̄ ∼Q π∗(KX) −
20

37
F, L̄yz ∼Q π∗(Lyz) −

4

37
F, R̄x ∼Q π∗(Rx) −

13

37
F, ∆̄ ∼Q π∗(∆) −

c

37
F,

where L̄yz, R̄x and ∆̄ are the proper transforms of Lyz, Rx and ∆ by π, respectively, and c is a
non-negative rational number.

The log pull-back of the log pair (X, 11
4 D) by π is the log pair

(

X̄,
11a

4
L̄yz +

11b

4
R̄x +

11

4
∆̄ + θ1F

)

,

where

θ1 =
11(4a + 13b+ c) + 80

4 · 37
.

This pair is not log canonical at some point Q ∈ F . We have

0 6 ∆̄ · R̄x =
6 + 52b

21 · 37
−

a

37
−

c

4 · 37
.
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This inequality shows 4a+ c 6 4
21(6 + 52b). Then

θ1 =
11(4a + c)

4 · 37
+

143b

4 · 37
+

20

37
6

11

21 · 37
(6 + 52b) +

143b

4 · 37
+

20

37
=

1944 + 5291b

4 · 21 · 37
< 1

since b 6 3
58 . Note that F ∩ R̄x = {Q4} and F ∩ L̄yz = {Q13}.

Suppose that the point Q is neither Q4 nor Q13. Then the pair
(

X̄, 11
4 ∆̄ + F

)

is not log
canonical at the point Q. Then

11c

16 · 13
=

11

4
∆̄ · F > 1

by Lemma 1.3.4. However, c 6 4a + c 6 4
21 (6 + 52b). This is a contradiction since b 6 3

58 .
Therefore, the point Q is either Q4 or Q13.

Suppose that the point Q is the point Q4. Then the log pair
(

X̄, 11b
4 R̄x + 11

4 ∆̄ + θ1F
)

is not
log canonical at the point Q. It then follows from Lemma 1.3.4 that

1 < 4

(

11

4
∆̄ + θ1F

)

· R̄x = 11

(

6 + 52b

21 · 37
−

a

37
−

c

4 · 37

)

+ θ1.

However,

11

(

6 + 52b

21 · 37
−

a

37
−

c

4 · 37

)

+ θ1 =
1944 + 5291b

4 · 21 · 37
< 1.

Therefore, the point Q must be the point Q13.
Let φ : X̃ → X̄ be the weighted blow up at the point Q13 with weights (1, 2). Let G be the

exceptional divisor of the morphism φ. Then G contains one singular point Q2 of the surface X̃
that is a singular point of type 1

2(1, 1). Let L̃yz, R̃x, ∆̃ and F̃ be the proper transforms of Lyz,
Rx, ∆ and F by φ, respectively. We have

KX̃ ∼Q φ∗(KX̄) −
10

13
G, L̃yz ∼Q φ∗(L̄yz) −

2

13
G, F̃ ∼Q φ∗(F ) −

1

13
G, ∆̃ ∼Q φ∗(∆̄) −

d

13
G,

where d is a non-negative rational number. The log pull-back of the log pair (X, 11
4 D) via π ◦ φ

is
(

X̃,
11a

4
L̃yz +

11b

4
R̃x +

11

4
∆̃ + θ1F̃ + θ2G

)

,

where

θ2 =
11

4 · 13
(2a+ d) +

θ1

13
+

10

13
=

1560 + 11(78a + 13b+ c+ 37d)

4 · 13 · 37
.

This log pair is not log canonical at some point O ∈ G. We have

0 6 ∆̃ · L̃yz =
3 + 45a

11 · 37
−

b

37
−

c

13 · 37
−

d

13
.

We then obtain 13b + c+ 37d 6 13
11 (3 + 45a). Since a < 82

5·11·29 , we see

θ2 =
1560 + 11(78a + 13b+ c+ 37d)

4 · 13 · 37
6

1560 + 858a

4 · 13 · 37
+

3 + 45a

4 · 37
< 1.
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Note that F̃ ∩G = Q2 and Q2 6∈ L̃yz. Suppose that O 6∈ F̃ ∪ L̃yz. The log pair
(

X̃, 11
4 ∆̃ +G

)

is not log canonical at the point O. Applying Lemma 1.3.4, we get

1 <
11

4
∆̃ ·G =

11d

4 · 2
,

and hence d > 8
11 . However, d 6 1

37 (13b + c + 37d) 6 13
11·37 (3 + 45a). This is a contradiction

since a < 82
5·11·29 . Therefore, the point O is either the point Q2 or the intersection point of G

and L̃yz. In the latter case, the pair
(

X̃, 11a
4 L̃yz + 11

4 ∆̃ + θ2G
)

is not log canonical at the point

O. Then, applying Lemma 1.3.4, we get

1 <

(

11

4
∆̃ + θ2G

)

· L̃yz =
11

4

(

3 + 45a

11 · 37
−

b

37
−

c

13 · 37
−

d

13

)

+ θ2.

However,

11

4

(

3 + 45a

11 · 37
−

b

37
−

c

13 · 37
−

d

13

)

+ θ2 =
11

4

(

3 + 45a

11 · 37

)

+
1560 + 858a

4 · 13 · 37
< 1

since a < 82
5·11·29 . Therefore, the point O must be the point Q2.

Let ξ : X̂ → X̃ be the blow up at the point Q2 and let H be the exceptional divisor of ξ.
We also let L̂yz, R̂x, ∆̂, Ĝ, and F̂ be the proper transforms of L̃yz, R̃x, ∆̃, G and F̃ by ξ,

respectively. Then X̂ is smooth along the exceptional divisor H. We have

K
X̂

∼Q ξ∗(KX̃), Ĝ ∼Q ξ∗(G) −
1

2
H, F̂ ∼Q ξ∗(F̃ ) −

1

2
H, ∆̂ ∼Q ξ∗(∆̃) −

e

2
H,

where e is a non-negative rational number. The log pull-back of the log pair (X, 11
4 D) via π◦φ◦ξ

is
(

X̂,
11a

4
L̂yz +

11b

4
R̂x +

11

4
∆̂ + θ1F̂ + θ2Ĝ+ θ3H

)

,

where

θ3 =
θ1 + θ2

2
+

11e

8
=

2600 + 11(130a + 182b+ 14c + 37d+ 481e)

8 · 13 · 37
.

This log pair is not log canonical at some point A ∈ H. We have

c

13 · 4
−

d

13 · 2
−
e

2
= ∆̂ · F̂ > 0.

Therefore, 2d+ 26e 6 c. Then

θ3 =
2600 + 11(130a + 182b+ 14c)

8 · 13 · 37
+

11(d+ 13e)

8 · 13
6

6
5200 + 11(260a + 364b+ 65c)

16 · 13 · 37
=

=
5200 + 4004b

16 · 13 · 37
+

11 · 65(4a + c)

16 · 13 · 37
6

6
100 + 77b

4 · 37
+

5 · 11(6 + 52b)

4 · 21 · 37
=

2430 + 4477b

4 · 21 · 37
< 1

since b 6 3
58 and 4a+ c 6 4

21(6 + 52b).
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Suppose that A 6∈ F̂ ∪ Ĝ. Then the log pair
(

X̂, 11
4 ∆̂ + θ3H

)

is not log canonical at the point

A. Applying Lemma 1.3.4, we get

1 <
11

4
∆̂ ·H =

11e

4
.

However,

e 6
1

26
(2d+ 26e) 6

c

26
6

1

26
(4a+ c) 6

4(6 + 52b)

21 · 26
6

4

11
.

Therefore, the point A must be either in F̂ or in Ĝ.

Suppose that A ∈ F̂ . Then the log pair
(

X̂, 11
4 ∆̂ + θ1F̂ + θ3H

)

is not log canonical at the

point A. Applying Lemma 1.3.4, we get

1 <

(

11

4
∆̂ + θ3H

)

· F̂ =
11

4

(

c

4 · 13
−

d

2 · 13
−
e

2

)

+ θ3 =
5200 + 11(260a + 364b + 65c)

16 · 13 · 37
.

However,

5200 + 11(260a + 364b + 65c)

16 · 13 · 37
=

400 + 11 · 28b

16 · 37
+

11 · 5(4a + c)

16 · 37
6

2430 + 4477b

4 · 21 · 37
< 1.

Therefore, the point A is the intersection point of H and Ĝ. Then the log pair
(

X̂, 11
4 ∆̂ + θ2Ĝ+ θ3H

)

is not log canonical at the point A. From Lemma 1.3.4, we obtain

1 <

(

11

4
∆̂ + θ3H

)

· Ĝ =
11

4

(

d

2
−
e

2

)

+ θ3 =
2600 + 11(130a + 182b+ 14c)

8 · 13 · 37
+

77d

4 · 13
.

However,

2600 + 11(130a + 182b+ 14c)

8 · 13 · 37
+

77d

4 · 13
=

100 + 55a

4 · 37
+

77(13b + c+ 37d)

4 · 13 · 37
6

121 + 370a

4 · 37
< 1

since a < 82
5·11·29 and 13b + c + 37d 6 13

11 (3 + 45a). The obtained contradiction completes the
proof. �

Lemma 3.3.4. Let X be a quasismooth hypersurface of degree 196 in P(11, 37, 53, 98). Then
lct(X) = 55

18 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + xy5 + x13z = 0.

It is singular at the points Ox, Oy and Oz. The curves Cx and Cy are irreducible. We have

55

18
= lct

(

X,
3

11
Cx

)

< lct

(

X,
3

37
Cy

)

=
37 · 5

26
,

and hence lct(X) 6 55
18 .

Suppose that lct(X) < 55
18 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 55
18D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains neither Cx nor Cy. Then the inequalities

53D · Cx =
6

37
<

18

55
, 11D · Cy =

6

53
<

18

55
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show that the point P is a smooth point in the outside of Cx. However, since H0(P,OP(583))
contains the monomials x53, y11x16 and z11, it follows from Lemma 1.3.9 that the point P is
either a singular point of X or a point on Cx. This is a contradiction. �

Lemma 3.3.5. Let X be a quasismooth hypersurface of degree 95 in P(13, 17, 27, 41). Then
lct(X) = 65

24 .

Proof. The surface X can be defined by the quasihomogeneous equation

z2t+ y4z + xt2 + x6y = 0.

The surface X is singular at the point Ox, Oy, Oz and Ot. Each of the divisors Cx, Cy, Cz,
and Ct consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct)
consists of Lxz (resp. Lyt, Lxz, Lyt) and Rx = {x = y4 + zt = 0} (resp. Ry = {y = z2 +xt = 0},
Rz = {z = t2 + x5y = 0}, Rt = {t = x6 + y3z = 0}). The curve Lxz intersects Rx (resp. Rz)
only at the point Ot (resp. Oy). Also, the curve Lyt intersects Ry (resp. Rt) only at the point
Ox (resp. Oz).

It is easy to check

−KX · Lxz =
3

17 · 41
, −KX · Lyt =

1

9 · 13
, −KX ·Rx =

4

9 · 41
,

−KX · Ry =
6

13 · 41
, −KX · Rz =

6

13 · 17
, −KX · Rt =

2

3 · 17
,

L2
xz = −

55

17 · 41
, L2

yt = −
37

13 · 27
, R2

x = −
56

27 · 41
, R2

y = −
48

13 · 41
, R2

z =
28

13 · 17

R2
t =

16

3 · 17
, Lxz ·Rx =

4

41
, Lyt ·Ry =

2

13
, Lxz · Rz =

2

17
, Lyt · Rt =

2

9
.

We have lct(X) 6 65
24 since

65

24
= lct

(

X,
3

13
Cx

)

<
51

12
= lct

(

X,
3

17
Cy

)

<
41

8
= lct

(

X,
3

41
Ct

)

<
21

4
= lct

(

X,
3

27
Cz

)

.

Suppose that lct(X) < 65
24 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 65
24D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of D does not contain at least one irreducible component of each of the curves Cx, Cy,
Cz and Ct. The curve Rz is singular at the point Oy. The curve Ct is singular at Oz with
multiplicity 3. Then in each of the following pairs of inequalities, at least one of two must hold:

multOx(D) 6 13D · Lyt =
1

9
<

24

65
, multOx(D) 6 13D ·Ry =

6

41
<

24

65
;

multOy(D) 6 17D · Lxz =
3

41
<

24

65
, multOy(D) 6

17

2
D ·Rz =

3

13
<

24

65
;

multOz(D) 6 27D · Lyt =
3

13
<

24

65
, multOz(D) 6

27

3
D · Rt =

6

17
<

24

65
;

Therefore, the point P can be none of Ox, Oy, Ot.
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Put D = m0Lxz + m1Lyt + m2Rx +m3Ry +m4Rz +m5Rt + Ω, where Ω is an effective Q-
divisor whose support contains none of Lxz, Lyt, Rx, Ry, Rz, Rt. Since the pair (X, 65

24D) is log

canonical at the points Ox, Oy, Oz, we have mi 6 24
65 for each i. Since

(D −m0Lxz) · Lxz =
3 + 55m0

17 · 41
6

24

65
, (D −m1Lyt) · Lyt =

3 + 37m1

13 · 27
6

24

65
,

(D −m2Rx) · Rx =
12 + 56m2

27 · 41
6

24

65
, (D −m3Ry) · Ry =

6 + 48m3

13 · 41
6

24

65
,

(D −m4Rz) · Rz =
6 − 28m4

13 · 17
6

24

65
, (D −m5Rt) · Rt =

2 − 16m5

3 · 17
6

24

65
Lemma 1.3.8 implies that the point P cannot be a smooth point of X on Cx ∪ Cy ∪ Cz ∪ Ct.
Therefore, the point P is either a point in the outside of Cx ∪ Cy ∪ Cz ∪ Ct or the point Ot.

Suppose that the point P is not the point Ot. We consider the pencil L on X defined by the
equations λxt+ µz2 = 0, [λ : µ] ∈ P1. Then there is a unique curve Zα in the pencil L passing
through the point P . Since the point P is located in the outside of Cx ∪ Cz ∪ Ct, the curve Zα

is defined by an equation of the form

xt+ αz2 = 0,

where α is a non-zero constant. Note that any component of Ct is not contained in Zα. The
open subset Zα \ Ct is a Z41-quotient of the affine curve

x+ αz2 = z2 + y4z + x+ x6y = 0 ⊂ C3 ∼= Spec
(

C
[

x, y, z
]

)

that is isomorphic to the plane affine curve defined by the equation

z(y4 + (1 − α)z + α6z11y) = 0 ⊂ C2 ∼= Spec
(

C
[

y, z
]

)

.

Therefore, if α 6= 1, then the curve Zα consists of two irreducible components Lxz and Cα. On
the other hand, if α = 1, then the curve Zα consists of three irreducible components Lxz, Ry,
and C1. Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the point P must be contained in Cα (including α = 1).
Also, the curve Cα is smooth at the point P . By Lemma 1.3.6, we may assume that Supp(D)
does not contain at least one irreducible component of the curve Zα.

Write D = mCα + Γ, where Γ is an effective Q-divisor whose support contains Cα. Suppose
that m 6= 0. If α 6= 1, then we obtain

3

17 · 41
= D · Lxz > mCα · Lxz =

109m

17 · 41

and hence m 6 3
109 . If α = 1, then one of the inequalities

3

17 · 41
= D · Lxz > mC1 · Lxz =

92m

17 · 41
,

6

13 · 41
= D · Ry > mC1 ·Ry =

11m

41

must hold, and hence m 6 6
11·13 . We also see that

D · Cα =











D · (Zα − Lxz) =
531

13 · 17 · 41
if α 6= 1,

D · (Zα − Lxz −Ry) =
33

17 · 41
if α = 1.

Also, if α 6= 1, then
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C2
α = Zα · Cα − Lxz · Cα > Zα · Cα − (Lxz +Rx) · Cα =

41

3
D · Cα.

If α = 1,

C2
1 = Zα · C1 − (Lxz +Ry) · C1 > Zα · C1 − (Lxz +Rx + Lyt +Ry) · C1 = 8D · C1.

In both cases, we have C2
α > 0. Since

(D −mCα) · Cα 6 D · Cα <
24

65
Lemma 1.3.8 gives us a contradiction. Therefore, the point P must be the point Ot.

If Lxz is not contained in the support of D, then the inequality

multOt(D) 6 41D · Lxz =
3

17
<

24

65
is a contradiction. Therefore, the irreducible component Lxz must be contained in the support
of D, and hence the curve Rx is not contained in the support of D. Put D = aLxz + bRy + ∆,
where ∆ is an effective Q-divisor whose support contains neither Lxz nor Ry. Then

4

9 · 41
= D ·Rx > aLxz ·Rx +

multOt(D) − a

41
>

3a

41
+

24

41 · 65

and hence a 6 44
585 . If b 6= 0, then Lyt is not contained in the support of D. Therefore,

1

9 · 13
= D · Lyt > bRy · Lyt =

2b

13
,

and hence b 6 1
18 .

Let π : X̄ → X be the weighted blow up at the point Ot with weights (1, 4) and let F be the
exceptional curve of the morphism π. Then F contains one singular point Q4 of X̄ such that
Q4 is a singular point of type 1

4 (3, 1). Then

KX̄ ∼Q π∗(KX) −
36

41
F, L̄xz ∼Q π∗(Lxz) −

4

41
F, R̄y ∼Q π∗(Ry) −

1

41
F, ∆̄ ∼Q π∗(∆) −

c

41
F,

where L̄xz, R̄y and ∆̄ are the proper transforms of Lxz, Ry and ∆ by π, respectively, and c is a
non-negative rational number. Note that F ∩ R̄y = {Q4}.

The log pull-back of the log pair (X, 65
24D) by π is the log pair

(

X̄,
65a

24
L̄xz +

65b

24
R̄y +

65

24
∆̄ + θ1F

)

,

where

θ1 =
864 + 65(4a + b+ c)

24 · 41
.

This is not log canonical at some point Q ∈ F . We have

0 6 ∆̄ · L̄xz =
3 + 55a

17 · 41
−

b

41
−

c

41
.

This inequality shows b+ c 6 1
17 (3 + 55a). Since a 6 44

585 , we obtain

θ1 =
864 + 260a

24 · 41
+

65(b+ c)

24 · 41
6

864 + 260a

24 · 41
+

65(3 + 55a)

17 · 24 · 41
=

121 + 65a

8 · 17
< 1.
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Suppose that the point Q is neither Q4 nor the intersection point of F and L̄xz. Then, the
point Q is not in L̄xz ∪ R̄y. Therefore, the pair

(

X̄, 65
24∆̄ + F

)

is not log canonical at the point
Q, and hence

1 <
65

24
∆̄ · F =

65c

4 · 24
.

But c 6 b + c 6 1
17 (3 + 55a) < 4·24

65 since a 6 44
585 . Therefore, the point Q is either Q4 or the

intersection point of F and L̄xz.
Suppose that the point Q is the intersection point of F and L̄xz. Then the point Q is in L̄xz

but not in R̄y. Therefore, the pair
(

X̄, L̄xz + 65
24∆̄ + θ1F

)

is not log canonical at the point Q.
Then

1 <

(

65

24
∆̄ + θ1F

)

· L̄xz =
65

24

(

3 + 55a

17 · 41
−
b+ c

41

)

+ θ1 =
121 + 65a

8 · 17
.

However, this is impossible since a 6 44
585 . Therefore, the point Q must be the point Q4.

Let ψ : X̃ → X̄ be the weighted blow up at the point Q4 with weights (3, 1) and let E be the
exceptional curve of the morphism ψ. The exceptional curve E contains one singular point O3

of X̃. This singular point is of type 1
3(1, 2). Then

KX̃ ∼Q ψ∗(KX̄), R̃y ∼Q ψ∗(R̄y) −
3

4
E, F̃ ∼Q ψ∗(F ) −

1

4
E, ∆̃ ∼Q ψ∗(∆̄) −

d

4
E,

where R̃y, F̃ and ∆̃ are the proper transforms of R̄y, F and ∆̄ by ψ, respectively, and d is a
non-negative rational number.

The log pull-back of the log pair (X, 65
24D) by π ◦ ψ is the log pair

(

X̃,
65a

24
L̃xz +

65b

24
R̃y +

65

24
∆̃ + θ1F̃ + θ2E

)

,

where

θ2 =
65(3b + d)

4 · 24
+

1

4
θ1.

This is not log canonical at some point O ∈ E.
We have

0 6 ∆̃ · R̃y = ∆̄ · R̄y −
d

4
=

6 + 48b

13 · 41
−

4a+ c

4 · 41
−
d

4
,

and hence 4a+ c+ 41d 6 4
13(6 + 48b). Therefore, this inequality together with b 6 1

18 gives us

θ2 =
65(3b + d)

4 · 24
+

864 + 65(4a + b+ c)

4 · 24 · 41
=

=
864 + 8060b + 65(4a+ c+ 41d)

4 · 24 · 41
6

6
6 + 55b

24
< 1.

Suppose that the point O is in the outside of R̃y and F̃ . Then the log pair (E, 65
24∆̃|E) is not

log canonical at the point O, and hence

1 <
65

24
∆̃ · E =

65d

72
.
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However,

41d 6 4a+ c+ 41d 6
4

13
(6 + 48b) <

41 · 72

65
since b 6 1

18 . This is a contradiction.

Suppose that the point O belongs to R̃y Then the log pair
(

E,
(

65b
24 R̃y + 65

24∆̃
) ∣

∣

∣

E

)

is not log

canonical at the point O, and hence

1 <

(

65b

24
R̃y +

65

24
∆̃

)

·E =
65

24

(

b+
d

3

)

.

However,
65

24

(

b+
d

3

)

6
65

24

(

b+
4

3 · 13 · 41
(6 + 48b)

)

< 1

since b 6 1
18 . This is a contradiction. Therefore, the point O is the point O3 which is the

intersection point of E and F̃ .
Let ξ : X̂ → X̃ be the weighted blow up at the point O with weights (1, 2) and let H be the

exceptional divisor of ξ. The exceptional divisor H contains a singular point of X̂. This singular
point is of type 1

2(1, 1). We have

K
X̂

∼Q ξ∗(KX̃), Ê ∼Q ξ∗(E) −
1

3
H, F̂ ∼Q ξ∗(F̃ ) −

2

3
H, ∆̂ ∼Q ξ∗(∆̃) −

e

3
H,

where Ê, F̂ , ∆̂, be the proper transforms of E, F̃ , ∆̃ by ξ, respectively, and e is a non-negative
rational number. The log pull-back of the log pair (X, 65

24D) via π ◦ ψ ◦ ξ is
(

X̂,
65a

24
L̂xz +

65b

24
R̂y +

65

24
∆̂ + θ1F̂ + θ2Ê + θ3H

)

,

where L̂xz and R̂y are the proper transforms of L̃xz and R̃y by ξ, respectively, and

θ3 =
1

3
(2θ1 + θ2) +

65e

3 · 24
.

This log pair is not log canonical at some point A ∈ H. We have

0 6 ∆̂ · F̂ = ∆̄ · F −
d

12
−
e

3
=
c

4
−

d

12
−
e

3
,

and hence d+ 4e 6 3c. Then

θ3 =
1

3
(2θ1 + θ2) +

65e

3 · 24
= =

3

4
θ1 +

65(3b + d)

3 · 4 · 24
+

65e

3 · 24
6

=
2592 + 65(12a + 44b+ 3c)

3 · 32 · 41
+

65(d + 4e)

3 · 4 · 24
6

6
2592 + 65(12a + 44b+ 3c)

3 · 32 · 41
+

65c

4 · 24
=

=
2592 + 65(12a + 44b+ 44c)

3 · 32 · 41
6

6
216 + 65a

8 · 41
+

65 · 11(3 + 55a)

3 · 8 · 17 · 41
=

321 + 1040a

3 · 8 · 17
< 1
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since b+ c 6 1
17 (3 + 55a) and a 6 44

585 .

Suppose that A 6∈ F̂ ∪ Ê. Then the log pair
(

X̂, 65
24∆̂ + θ3H

)

is not log canonical at the point

A. Applying Lemma 1.3.4, we get

1 <
65

24
∆̂ ·H =

65e

48
.

However,

e 6
1

4
(d+ 4e) 6

3c

4
6

3

4
(b+ c) 6

3(3 + 55a)

4 · 17
<

48

65
.

Therefore, the point A must be either in F̂ or in Ê.

Suppose that A ∈ F̂ . Then the log pair
(

X̂, 65
24∆̂ + θ1F̂ + θ3H

)

is not log canonical at the

point A. Applying Lemma 1.3.4, we get

1 <

(

65

24
∆̂ + θ3H

)

· F̂ =
65

24

(

c

4
−

d

12
−
e

3

)

+ θ3 =
2592 + 65(12a + 44b+ 44c)

3 · 32 · 41
.

However,
2592 + 65(12a + 44b+ 44c)

3 · 32 · 41
6

321 + 1040a

3 · 8 · 17
< 1.

Therefore, the point A is the intersection point of H and Ê. Then the log pair
(

X̂, 65
24∆̂ + θ2Ê + θ3H

)

is not log canonical at the point A. From Lemma 1.3.4, we obtain

1 < 2

(

65

24
∆̂ + θ3H

)

· Ê =
65

24

(

2d

3
−
e

3

)

+ θ3 =
2592 + 65(12a + 44b + 3c)

3 · 32 · 41
+

65d

32

However,

2592 + 65(12a + 44b+ 3c)

3 · 32 · 41
+

65d

32
=

648 + 715b

3 · 8 · 41
+

65(4a + c+ 41d)

32 · 41
6

12186 + 21515b

17 · 24 · 41
< 1

since b 6 1
18 and 4a+c+41d 6 4

13(6+48b). The obtained contradiction completes the proof. �

Lemma 3.3.6. Let X be a quasismooth hypersurface of degree 196 in P(13, 27, 61, 98). Then
lct(X) = 91

30 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y5z + xz3 + x13y = 0.

The surface X is singular at the points Ox, Oy and Oz. The curves Cx and Cy are irreducible.
We have

91

30
= lct

(

X,
3

13
Cx

)

< lct

(

X,
3

27
Cy

)

=
15

2
.

Therefore, lct(X) 6 91
30 .

Suppose that lct(X) < 91
30 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 91
30D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains neither the curve Cx nor the curve Cy. Then the inequalities

61D · Cx =
2

9
<

30

91
, 13D · Cy =

6

61
<

30

91
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show that the point P is a smooth point in the outside of Cx. However, H0(P,OP(793)) contains
x61, y26x7, y13x34 and z13, it follows from Lemma 1.3.9 that the point P must be a singular
point of X or a point on Cx. This is a contradiction. �

Lemma 3.3.7. Let X be a quasismooth hypersurface of degree 148 in P(15, 19, 43, 74). Then
lct(X) = 57

14 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + xy7 + x7z = 0.

The surface X is singular at the points Ox, Oy and Oz. The curves Cx, Cy and Cz are irreducible.
We can see that

lct

(

X,
3

19
Cy

)

=
57

14
< lct

(

X,
3

15
Cx

)

=
25

6
< lct

(

X,
3

43
Cz

)

=
129

14
.

Therefore, lct(X) 6 57
14 .

Suppose that lct(X) < 57
14 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 57
14D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains none of Cx, Cy, Cz. Note that the curve Cy is singular at the
point Oz. The inequalities

19D · Cx =
6

43
<

14

57
,

43

2
D · Cy =

1

5
<

14

57
, D · Cz =

2

95
<

14

57

show that the point P is located in the outside of Cx ∪ Cy ∪ Cz.
Now we consider the pencil L on X defined by the equations λz3 + µxy6 = 0, [λ : µ] ∈ P1.

Then there is a unique member C in L passing through the point P . Since the point P is located
in the outside of Cx ∪Cy ∪Cz, the curve C is cut out by the equation of the form xy6 +αz3 = 0,
where α is a non-zero constant. Since the curve C is a double cover of the curve defined by the
equation xy6 +αz3 = 0 in P(15, 19, 43), we have multP (C) 6 2. Therefore, we may assume that
the support of D does not contain at least one irreducible component. If α 6= 1, then the curve
C is irreducible, and hence the inequality

multP (D) 6 D · C =
6

5 · 19
<

14

57

is a contradiction. If α = 1, then the curve C consists of two distinct irreducible and reduced
curve C1 and C2. We have

D · C1 = D · C2 =
3

5 · 19
, C2

1 = C2
2 =

11

19
.

Put D = a1C1 + a2C2 + ∆, where ∆ is an effective Q-divisor whose support contains neither C1

nor C2. Since the pair (X, 57
14D) is log canonical at Ox, both a1 and a2 are at most 14

57 . Then a
contradiction follows from Lemma 1.3.8 since

(D − aiCi) · Ci 6 D · Ci =
3

5 · 19
<

14

57

for each i. �
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3.4. Sporadic cases with I = 4

Lemma 3.4.1. Let X be a quasismooth hypersurface of degree 24 in P(5, 6, 8, 9). Then lct(X) =
1.

Proof. The surface X can be defined by the quasihomogeneous equation

z3 + yt2 − y4 + ǫx2yz + x3t = 0,

where ǫ ∈ C. The surface X is singular at the points Ox, Ot, Q2 = [0 : 1 : 1 : 0] and
Q3 = [0 : 1 : 0 : 1].

The curves Cx, Cy, Cz and Ct are all irreducible. We have

1 = lct

(

X,
4

6
Cy

)

< lct

(

X,
4

5
Cx

)

=
5

4
< lct

(

X,
4

8
Cz

)

= 2

and lct
(

X, 4
9Ct

)

> 1. Therefore, lct(X) 6 1.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the pair

(X,D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the support
of the divisor D contains none of the curves Cx, Cy, Cz and Ct. Also, the curve Cy is singular at
the point Ot with multiplicity 3 and the curve Ct is singular at the point Ox. Then the following
intersection numbers show that the point P is located in the outside of the set Cx∪Cy ∪Cz ∪Ct:

3D · Cx =
2

3
< 1,

9

3
D · Cy =

4

5
< 1, D · Cz =

16

45
< 1,

5

2
D · Ct = 1.

Now we consider the pencil L on X defined by the equations λxt + µyz = 0, where [λ :
µ] ∈ P1. There is a unique member Z in the pencil L passing through the point P . Since
P 6∈ Cx ∪ Cy ∪Cz ∪ Ct, the divisor Z is defined by an equation of the form

xt = αyz,

where α is non-zero constant. Note that the curve Cx is not contained in the support of Z. The
open subset Z \ Cx of the curve Z is a Z5-quotient of the affine curve

t− αyz = z3 + yt2 + y4 + ǫyz + t = 0 ⊂ C3 ∼= Spec
(

C
[

y, z, t
]

)

,

that is isomorphic to the plane affine quintic curve Z ′ given by the equation

z3 + α2y3z2 + y4 + (ǫ+ α)yz = 0 ⊂ C2 ∼= Spec
(

C
[

y, z
]

)

.

This affine plane curve Z ′ is irreducible and hence the curve Z is also irreducible. The multiplicity
of Z at the point P is at most 3 since the quintic Z ′ is singular at the origin. This implies that
the log pair (X, 4

14Z) is log canonical at the point P . Thus, we may assume that Supp(D) does
not contain the curve Z by Lemma 1.3.6. Then we obtain a contradictory inequality

28

45
= D · Z > multP

(

D
)

> 1.

�

Lemma 3.4.2. Let X be a quasismooth hypersurface of degree 30 in P(5, 6, 8, 15). Then
lct(X) = 1.
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Proof. The surface X can be defined by the quasihomogeneous equation

t(t− x3) − y5 + yz3 + ǫx2y2z = 0.

The surface X is singular at the points Ox, Oz, Q5 = [1 : 0 : 0 : 1], Q3 = [0 : 1 : 0 : 1] and
Q2 = [0 : 1 : 1 : 0].

The curve Cx is irreducible. However, the curve Cy consists of two irreducible curves Lyt and
L = {y = t− x3 = 0}. It is easy to check

1 = lct

(

X,
4

6
Cy

)

< lct

(

X,
4

5
Cx

)

=
5

4
.

Therefore, lct(X) 6 1.
Suppose that lct(X) < 1. Then there is an effective Q-divisor D ∼Q −KX such that the pair

(X,D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the support
of the divisor D does not contain the curve Cx. Similarly, we may assume that the support of
D does not contain either Lyt or L.

We have the following intersection numbers for Lyt and L:

L2
yt = L2 = −

9

40
, Lyt · L =

3

8
.

Since H0(P,OP(30)) contains the monomials y5, yz3 and t2, it follows from Lemma 1.3.9 that
the point P is either a singular point of X or a point on Cy. However, since 3D · Cx = 1

2 < 1,
the point P must belong to the curve Cy.

Since the support of D does not contain either Lyt or L, one of the inequalities

multOz(D) 6 8D · Lyt =
4

5
< 1, multOz(D) 6 8D · L =

4

5
< 1

must hold, and hence the point P cannot be the point Oz.
We put D = kL+mLyt +∆, where ∆ is an effective Q-divisor whose support contains neither

L nor Lyt. If k 6= 0, then m = 0 and

1

10
= D · Lyt > kL · Lyt =

3k

8
.

Therefor, k 6 4
15 . By the same way, we can also obtain m 6 4

15 . Then, by Lemma 1.3.8, the
inequalities

5(D − kL) · L =
4 + 9k

8
< 1, 5(D −mLyt) · Lyt =

4 + 9m

8
< 1

show that the point P cannot belong to the curve Cy. This is a contradiction. �

Lemma 3.4.3. Let X be a quasismooth hypersurface of degree 45 in P(9, 11, 12, 17). Then
lct(X) = 77

60 .

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + y3z + xz3 + x5 = 0.

It is singular at the points Oy, Oz, Ot, and the point Q3 = [1 : 0 : −1 : 0]. The curve Cx consists
of two irreducible and reduced curves Lxy and Rx = {x = t2 + y2z = 0}. The curve Cy consists
of two irreducible and reduced curves Lxy and Ry = {y = z3 + x4 = 0}. The curves Cz and Ct
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are irreducible and reduced. It is easy to check that lct(X, 4
11Cy) = 77

60 is less than each of the

numbers lct(X, 4
9Cx), lct(X, 4

12Cz) and lct(X, 4
17Ct).

Suppose that lct(X) < 77
60 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 77
60D) is not log canonical at some point P . By Lemma 1.3.6 we may assume that the

support of D contains neither Cz nor Ct. Similarly, we may assume that the support of D does
not contain either Lxy or Rx. Also, we may assume that the support of D does not contain
either Lxy or Ry. Then in each of the following pairs of inequalities, at least one of two must
hold:

multOz(D) 6 12D · Lxy =
4

17
<

60

77
, multOz(D) 6 12D · Rx =

8

11
<

60

77
;

multOt(D) 6 17D · Lxy =
1

3
<

60

77
, multOt(D) 6

17

3
D · Ry =

4

9
<

60

77
.

Therefore, the point P can be neither Oz nor Ot. The curve Cz is singular at the point Oy.
Then the inequalities

11

2
D · Cz =

10

17
<

60

77
, 3D · Ct =

5

11
<

60

77
imply that the point P cannot belong to Cz ∪ Ct.

We can see that

Lxy ·D =
1

17 · 3
, Rx ·D =

2

33
, Ry ·D =

4

3 · 17
, Lxy · Rx =

1

6
,

Lxy · Ry =
3

17
, L2

xy = −
25

12 · 17
, R2

x = −
1

33
, R2

y =
2

3 · 17
.

If we write D = nLxy + ∆, where ∆ is an effective Q-divisor whose support does not contain
the curve Lxy, then we can see that n 6 4

11 since D ·Rx > nRx ·Lxy for n 6= 0. By Lemma 1.3.8
the inequality

(Lxy ·D − nL2
xy) =

4 + 25n

12 · 17
<

60

77
implies that the point P cannot belong to the curve Lxy. By the same method, we see that the
point P must be in the outside of Rx.

If we write D = mRy + Ω, where Ω is an effective Q-divisor whose support does not contain

the curve Ry, then we can see that 0 6 m 6 1
9 since D · Lxy > mRy · Lxy for m 6= 0. By

Lemma 1.3.8 the inequality

(Ry ·D −mR2
y) 6 Ry ·D <

60

77
implies that the point P cannot belong to the curve Ry.

Now we consider the pencil L on X cut out by λt2 +µy2z = 0. The base locus of the pencil L
consists of three points Oy, Oz, and Q. Let F be the member in L defined by t2 + y2z = 0. The
divisor F consists of two irreducible and reduced curves Rx and E = {t2 + y2z = x4 + z3 = 0}.
The curve E is smooth in the outside of the base points. We have

E ·D =
8

33
.

Since

E2 = F ·E −Rx ·E > F · E − (Lxy +Rx) ·E =
25

4
D ·E,
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the self-intersection E2 is positive. We write D = kE + Γ, where Γ is an effective Q-divisor
whose support does not contain the curve E. Since (X, 77

60D) is log canonical at the point Oy,

the non-negative number k is at most 60
77 . By Lemma 1.3.8, the inequality

(E ·D − kE2) 6 E ·D =
8

33
<

60

77

implies that the point P cannot belong to the curve E.
So far we have seen that the point P must lie in the outside of Cx ∪ Cy ∪ Cz ∪ Ct ∪ E. In

particular, it is a smooth point. There is a unique member C in L which passes through the
point P . Then the curve C is cut out by t2 = αy2z where α is a constant different from 0 and
−1. The curve C is isomorphic to the curve defined by y3z + xz3 + x5 = 0 and t2 = y2z. The
curve C is smooth in the outside of the base points and the singular locus of X by the Bertini
theorem, since it is isomorphic to a general curve in the pencil L. We claim that the curve C is
irreducible. If so then we may assume that the support of D does not contain the curve C and
hence we obtain

multP (D) 6 C ·D =
10

33
<

60

77
.

This is a contradiction.
For the irreducibility of the curve C, we may consider the curve C as a surface in C4 defined

by the equations y3z + xz3 + x5 = 0 and t2 = y2z. Then, we consider the surface in P4 defined
by the equations y3zw+xz3w+x5 = 0 and t2w = y2z. We take the affine piece defined by t 6= 0.
This affine piece is isomorphic to the surface defined by the equation y3zw+xz3w+x5 = 0 and
w = y2z in C4. It is isomorphic to the irreducible hypersurface y5z2 + xy2z5 + x5 = 0 in C3.
Therefore, the curve C is irreducible. �

Lemma 3.4.4. Let X be a quasismooth hypersurface of degree 75 in P(10, 13, 25, 31). Then
lct(X) = 91

60 .

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + z3 + xy5 + x5z = 0.

It has singular points at Ox, Oy, Ot and Q = [−1 : 0 : 1 : 0]. The curve Cx and Ct are
irreducible and reduced. The curve Cy (resp. Cz) consists of two irreducible reduced curves Lyz

and Ry = {y = z2 + x5 = 0} (resp. Rz = {y = t2 + xy4 = 0}). It is easy to see that

lct(X,
4

13
Cy) =

91

60
< lct(X,

4

10
Cx) < lct(X,

4

25
Cz) < lct(X,

4

31
Ct).

Also, we have the following intersection numbers:

−KX · Lyz =
2

5 · 31
, −KX · Ry =

4

5 · 31
, −KX ·Rz =

4

5 · 13
,

Lyz · Ry =
5

31
, Lyz · Rz =

1

5
, L2

yz = −
37

10 · 31
, R2

y = −
12

5 · 31
, R2

z =
12

5 · 13
.

Suppose that lct(X) < 91
60 . Then, there is an effective Q-divisor D ∼Q −KX such that the

log pair (X, 91
60D) is not log canonical at some point P ∈ X. Since the curves Cx and Ct are
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irreducible we may assume that the support of D contains none of them. The inequalities

13D · Cx <
60

91
, 5D · Ct <

60

91

show that the point P must lie in the outside of Cx ∪ Ct \ {Ox, Ot}.
By Lemma 1.3.6, we may assume that the support of D does not contain either Lyz or Ry. If

the support of D does not contain Lyz, then the inequality

31D · Lyz =
2

5
<

60

91

shows that the point P cannot beOt. On the other hand, if the support ofD does not contain Ry,
then the inequality

31

2
D ·Ry =

2

5
<

60

91
shows that the point P cannot be Ot. Note that the curve Ry is singular at the point Ot. We
use the same method for Cz = Rz + Lyz so that we can see that the point P cannot be Ox.

We write D = mRy + Ω, where Ω is an effective Q-divisor whose support does not contain
the curve Ry. Then we see m 6 2

25 since the support of D does not contain either Lyz or Ry

and D · Lyz > mRy · Lyz. Since Ry ·D −mR2
y <

60
91 , Lemma 1.3.8 implies that the point P is

located in the outside of Ry. Using the same argument for Lyz , we can also see that the point
P is located in the outside of Lyz. Also, the same method shows that the point P is located in
the outside of Rz. Consequently, the point P must lie in the outside of Cx ∪ Cy ∪ Cz ∪ Ct.

Now we consider the pencil L on X cut out by λt2 +µxy4 = 0. The base locus of the pencil L
consists of three points Ox, Oy, and Q. Let F be the member of L defined by t2 +xy4 = 0. The
divisor F consists of two irreducible and reduced curves Rz and E = {t2 + xy4 = z2 + x5 = 0}.
The curve E is smooth in the outside of Sing(X). We have

E ·D =
8

5 · 13
.

Since

E2 = F ·E −Rz ·E > F · E − (Lyz +Rz) ·E =
37

4
D ·E,

the self-intersection E2 is positive. We write D = kE + Γ, where Γ is an effective Q-divisor
whose support does not contain the curve E. Since (X, 91

60D) is log canonical at the point Oy,

the non-negative number k is at most 60
91 . By Lemma 1.3.8, the inequality

(E ·D − kE2) 6 E ·D =
8

5 · 13
<

60

91

implies that the point P cannot belong to the curve E.
So far we have seen that the point P must lie in the outside of Cx ∪ Cy ∪ Cz ∪ Ct ∪ E. In

particular, it is a smooth point. There is a unique member C in L which passes through the
point P . Then the curve C is cut out by t2 = αxy4 where α is a constant different from 0
and −1. The curve C is isomorphic to the curve defined by xy5 + z3 + x5z = 0 and t2 = xy4.
The curve C is smooth in the outside of the base points and the singular locus of X by Bertini
theorem, since it is isomorphic to a general curve in the pencil L. We claim that the curve C is
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irreducible. If so then we may assume that the support of D does not contain the curve C and
hence we obtain

multP (D) 6 C ·D =
12

5 · 13
<

60

91
.

This is a contradiction.
For the irreducibility of the curve C, we may consider the curve C as a surface in C4 defined

by the equations xy5 + z3 + x5z = 0 and t2 = xy4. Then, we consider the surface in P4 defined
by the equations xy5 +w3z3 +x5z = 0 and t2w3 = xy4. We then take the affine piece defined by
y 6= 0. This affine piece is isomorphic to the surface defined by the equation x+w3z3 + x5z = 0
and t2w3 = x in C4. It is isomorphic to the hypersurface defined by t2w3 +w3z3 + t10w15z = 0
in C3. It has two irreducible components w = 0 and t2+z3+t10w12z = 0. The former component
originates from the hyperplane at infinity in P4. Therefore, the curve C must be irreducible. �

Lemma 3.4.5. Let X be a quasismooth hypersurface of degree 71 in P(11, 17, 20, 27). Then
lct(X) = 11

6 .

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + y3z + xz3 + x4t = 0.

The surface X is singular at the points Ox, Oy, Oz , Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxy (resp. Lxy, Lzt, Lzt) and Rx = {x = y2z + t2 = 0} (resp. Ry = {y = x3t + z3 = 0},
Rz = {z = x4 + yt = 0}, Rt = {t = y3 + xz2 = 0}). Also, we see that

Lxy ∩Rx = {Oz}, Lxy ∩Ry = {Ot}, Lzt ∩Rz = {Oy}, Lzt ∩Rt = {Ox}.

One can easily check that lct(X, 11
4 Cx) = 11

6 is less than each of the numbers lct(X, 17
4 Cy),

lct(X, 20
4 Cz) and lct(X, 27

4 Ct). Therefore, lct(X) 6 11
6 . Suppose lct(X) < 11

6 . Then, there is

an effective Q-divisor D ∼Q −KX such that the log pair (X, 11
6 D) is not log canonical at some

point P ∈ X.
The intersection numbers among the divisors D, Lxy, Lzt, Rx, Ry, Rz, Rt are as follows:

D · Lxy =
1

5 · 27
, D ·Rx =

2

5 · 17
, D · Ry =

4

9 · 11
,

D · Lzt =
4

11 · 17
, D ·Rz =

16

17 · 27
, D ·Rt =

3

5 · 11
,

Lxy ·Rx =
1

10
, Lxy · Ry =

1

9
, Lzt · Rz =

4

17
, Lzt ·Rt =

3

11
,

L2
xy = −

43

20 · 27
, R2

x = −
3

5 · 17
, R2

y =
2

3 · 11
,

L2
zt = −

24

11 · 17
, R2

z = −
28

17 · 27
, R2

t =
21

20 · 11
.

By Lemma 1.3.6 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. Since the curve Rt is singular at the point Ox and the curve Ry
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is singular at the point Ot with multiplicity 3, in each of the following pairs of inequalities, at
least one of two must hold:

multOx(D) 6 11D · Lzt =
4

17
<

6

11
, multOx(D) 6

11

2
D ·Rt =

3

10
<

6

11
;

multOz(D) 6 20D · Lxy =
4

27
<

6

11
, multOz(D) 6 20D · Rx =

8

17
<

6

11
;

multOt(D) 6 27D · Lxy =
1

5
<

6

11
, multOt(D) 6

27

3
D ·Ry =

4

11
<

6

11
.

Therefore, the point P can be none of Ox, Oz , Ot.
Suppose that the point P is the point Oy. We then put D = mLzt+∆, where ∆ is an effective

Q-divisor whose support does not contain the curve Lzt. If m = 0, then

multOy(D) 6 17D · Lzt =
4

11
<

6

11
.

This is a contradiction. Therefore, m > 0, and hence the support of D does not contain the
curve Rz. Since

16

17 · 27
= D · Rz >

4m

17
+

multOy(D) −m

17
>

3m

17
+

6

11 · 17

we obtain m < 14
3·11·27 . However, we obtain

17(D −mLzt) · Lzt =
4 + 24m

11
>

6

11

from Lemma 1.3.8. This is a contradiction. Therefore, the point P is a smooth point of X.
We write D = a0Lxy + a1Lzt + a2Rx + a3Ry + a4Rz + a5Rt + Ω, where Ω is an effective

Q-divisor whose support contains none of the curves Lxy, Lzt, Rx, Ry, Rz, Rt. Since the pair

(X, 11
6 D) is log canonical at the points Ox, Oz, Ot, the numbers ai are at most 6

11 . Then by
Lemma 1.3.8 the following inequalities enable us to conclude that the point P is in the outside
of Cx ∪Cy ∪ Cz ∪ Ct:

(D − a0Lxy) · Lxy =
4 + 43a0

20 · 27
6

6

11
, (D − a1Lzt) · Lzt =

4 + 24a1

11 · 17
6

6

11
,

(D − a2Rx) ·Rx =
2 + 3a2

5 · 17
6

6

11
, (D − a3Ry) ·Ry =

4 − 6a3

9 · 11
6

6

11
,

(D − a4Rz) ·Rz =
16 + 28a4

17 · 27
6

6

11
, (D − a5Rt) ·Rt =

12 − 21a5

20 · 11
6

6

11
.

We consider the pencil L defined by λty + µx4 = 0, [λ : µ] ∈ P1. The base locus of the pencil
L consists of the curve Lxy and the point Oy. Let E be the unique divisor in L that passes
through the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the divisor E is defined by the equation
ty = αx4, where α 6= 0.

Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
ty = x4 and x4t + y3z + xz3 = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
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x(x2 + x11z + z3) = 0. Therefore, the divisor E consists of two irreducible and reduced curves
Lxy and C. We have

D · C = D ·E −D · Lxy =
267

5 · 17 · 27
,

C2 = E · C − Lxy · C > E · C − Lxy · C −Rx · C =
33

4
D · C > 0.

By Lemma 1.3.8 the inequality D · C < 6
11 gives us a contradiction.

Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lxy,
Rz, and M . Note that the curve M is different from the curves Rx and Lzt. Also, it is smooth
at the point P . We have

D ·M = D ·E −D · Lxy −D ·Rz =
11

5 · 27
,

M2 = E ·M − Lxy ·M −Rz ·M > E ·M − Cx ·M − Cz ·M =
13

4
D ·M > 0.

By Lemma 1.3.8 the inequality D ·M < 6
11 gives us a contradiction. �

Lemma 3.4.6. Let X be a quasismooth hypersurface of degree 79 in P(11, 17, 24, 31). Then
lct(X) = 33

16 .

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

t2y + tz2 + xy4 + x5z = 0.

The surface X is singular at the points Ox, Oy, Oz , Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
of Lxt (resp. Lyz, Lyz, Lxt) and Rx = {x = yt + z2 = 0} (resp. Ry = {y = zt + x5 = 0},
Rz = {z = xy3 + t2 = 0}, Rt = {t = y4 + x4z = 0}). Also, we see that

Lxt ∩Rx = {Oy}, Lyz ∩Ry = {Ot}, Lyz ∩Rz = {Ox}, Lxt ∩Rt = {Oz}.

One can easily check that lct(X, 4
11Cx) = 33

16 is less than each of the numbers lct(X, 4
17Cy),

lct(X, 4
24Cz) and lct(X, 4

31Ct). Therefore, lct(X) 6 33
16 . Suppose lct(X) < 33

16 . Then, there is

an effective Q-divisor D ∼Q −KX such that the log pair (X, 33
16D) is not log canonical at some

point P ∈ X.
The intersection numbers among the divisors D, Lxt, Lyz, Rx, Ry, Rz, Rt are as follows:

D · Lxt =
1

6 · 17
, D ·Rx =

8

17 · 31
, D ·Ry =

5

6 · 31
,

D · Lyz =
4

11 · 31
, D ·Rz =

8

11 · 17
, D · Rt =

2

3 · 11
,

Lxt ·Rx =
2

17
, Lyz · Ry =

5

31
, Lyz · Rz =

2

11
, Lxt · Rt =

1

6
,

L2
xt = −

37

17 · 24
, R2

x = −
40

17 · 31
, R2

y = −
35

24 · 31
,

L2
yz = −

38

11 · 31
, R2

z =
14

11 · 17
, R2

t =
10

3 · 11
.
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By Lemma 1.3.6 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. The inequalities

17D · Lxt =
1

6
<

16

33
, 17D ·Rx =

8

31
<

16

33

imply that P 6= Oy. The inequalities

11D · Lyz =
4

31
<

16

33
, 11D · Rz =

8

17
<

16

33

imply that P 6= Ox. Since the curve Rt is singular at the point Oz with multiplicity 4 the
inequalities

24D · Lxt =
24

6 · 17
<

16

33
,

24

4
D · Rt =

4

11
<

16

33
imply that P 6= Oz.

We write D = a1Lxt + a2Lyz + a3Rx + a4Ry + a5Rz + a6Rt + Ω, where Ω is an effective
Q-divisor whose support contains none of the curves Lxt, Lyz, Rx, Ry, Rz, Rt. Since the pair

(X, 33
16D) is log canonical at the points Ox, Oy, Oz, the numbers ai are at most 16

33 . Then by
Lemma 1.3.8 the following inequalities enable us to conclude that either the point P is in the
outside of Cx ∪ Cy ∪Cz ∪ Ct or P = Ot:

33

16
D ·Lxt−L

2
xt =

181

3 · 17 · 32
< 1,

33

16
D ·Rx−R

2
x =

113

2 · 17 · 31
< 1,

33

16
D ·Ry −R

2
y =

25

3 · 31
< 1,

33

16
D·Lyz−L

2
xt =

185

4 · 11 · 31
< 1,

33

16
D·Rz−R

2
z =

5

2 · 11 · 17
< 1,

33

16
D·Rt−R

2
t =

−47

3 · 8 · 11
< 1.

Suppose that P 6= Ot. Then we consider the pencil L defined by λyt+ µz2 = 0, [λ : µ] ∈ P1.
The base locus of the pencil L consists of the curve Lyz and the point Oy. Let E be the unique
divisor in L that passes through the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the divisor E is
defined by the equation z2 = αyt, where α 6= 0.

Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
yt = z2 and t2y + xy4 + x5z = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
z(z+xz7 +x5) = 0. Therefore, the divisor E consists of two irreducible and reduced curves Lyz

and C. We have the intersection numbers

D · C = D · E −D · Lyz =
564

11 · 17 · 31
, C · Lyz = E · Lyz − L2

yz =
2

11
.

Also, we see

C2 = E · C − C · Lyz > 0.

By Lemma 1.3.8 the inequality D · C < 16
33 gives us a contradiction.

Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lyz,
Rx, and M . Note that the curve M is different from the curves Ry and Lxt. Also, it is smooth
at the point P . We have

D ·M = D ·E −D · Lyz −D ·Rx =
4 · 119

11 · 17 · 31
,

M2 = E ·M − Lyz ·M −Rx ·M > E ·M − Cy ·M −Cx ·M = 5D ·M > 0.
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By Lemma 1.3.8 the inequality D ·M < 16
33 gives us a contradiction. Therefore, P = Ot.

We write D = aLyz + bRx +∆, where ∆ is an effective divisor whose support contains neither
Lyz nor Rx. Note that we already assumed that the support of D cannot contain either Lyz

or Ry. If the support of D contains Ry, then it does not contain Lyz. However, the inequality

31D ·Lyz = 4
11 <

16
33 shows that P 6= Ot. Therefore, the support of D does not contain the curve

Ry. The inequality D · Lxt > bRx · Lxt implies b 6 1
12 . On the other hand, we have

5

6 · 31
= D ·Ry >

5a

31
+

b

31
+

multOt(D) − a− b

31
>

4a

31
+

16

31 · 33
,

and hence a < 23
4·66 .

Let π : X̄ → X be the weighted blow up of Ot with weights (7, 4) and let F be the exceptional
curve of π. Then

KX̄ ∼Q π∗(KX) −
20

31
F, L̄yz ∼Q π∗(Lyz) −

4

31
F, R̄x ∼Q π∗(Rx) −

7

31
F, ∆̄ ∼Q π∗(∆) −

c

31
F,

where ∆̄, L̄yz, R̄x are the proper transforms of ∆, Lyz, Rx, respectively, and c is a non-negative
rational number. The curve F contains two singular points Q7 and Q4 of X̄. The point Q7 is a
singular point of type 1

7 (1, 1) and the point Q4 is of type 1
4 (1, 3). Note that the curve R̄x passes

through the point Q4 but not the point Q7. The curve L̄yz passes through the point Q7 but not
the point Q4.

The log pull-back of the log pair (X, 33
16D) by π is the log pair

(

X̄,
33a

16
L̄yz +

33b

16
R̄x +

33

16
∆̄ + θ1F

)

,

where

θ1 =
33(4a + 7b+ c) + 320

16 · 31
.

This pair is not log canonical at some point Q ∈ F . We have

0 6 ∆̄ · R̄x =
8 + 40b

17 · 31
−

a

31
−

c

4 · 31
.

This inequality shows 4a+ c 6 4
17(8 + 40b). Then

θ1 =
33(4a + c) + 231b+ 320

16 · 31
6

6496 + 9207b

16 · 17 · 31
< 1

since b 6 1
12 .

Suppose that the point Q is neither the point Q7 nor the point Q4. Then the log pair
(

X̄, 33
16∆̄ + F

)

is not log canonical at the point Q. Then

33c

16 · 28
=

33

16
∆̄ · F > 1

by Lemma 1.3.4. However, c 6 4a + c 6 4
17 (8 + 40b). This is a contradiction since b 6 1

12 .
Therefore, the point Q is either the point Q7 or the point Q4.
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Suppose that the point Q is the point Q4. This point is the intersection point of F and R̄x.
Then the log pair

(

X̄, 33b
16 R̄x + 33

16∆̄ + θ1F
)

is not log canonical at the point Q. It then follows
from Lemma 1.3.4 that

1 < 4

(

33

16
∆̄ + θ1F

)

· R̄x =
33 · 4

16

(

8 + 40b

17 · 31
−

a

31
−

c

4 · 31

)

+ θ1.

However,
33 · 4

16

(

8 + 40b

17 · 31
−

a

31
−

c

4 · 31

)

+ θ1 =
6496 + 9207b

16 · 17 · 31
< 1.

Therefore, the point Q is the point Q7. This point is the intersection point of F and L̄yz.

Let φ : X̃ → X̄ be the blow up at the point Q7. Let G be the exceptional divisor of the
morphism φ. The surface X̃ is smooth along the exceptional divisor G. Let L̃yz, R̃x, ∆̃ and F̃

be the proper transforms of Lyz, Rx, ∆ and F by φ, respectively. We have

K
X̃

∼Q φ∗(KX̄) −
5

7
G, L̃yz ∼Q φ∗(L̄yz) −

1

7
G, F̃ ∼Q φ∗(F ) −

1

7
G, ∆̃ ∼Q φ∗(∆̄) −

d

7
G,

where d is a non-negative rational number. The log pull-back of the log pair (X, 33
16D) via π ◦ φ

is
(

X̃,
33a

16
L̃yz +

33b

16
R̃x +

33

16
∆̃ + θ1F̃ + θ2G

)

,

where

θ2 =
33

7 · 16
(a+ d) +

θ1

7
+

5

7
=

2800 + 33(35a + 7b+ c+ 31d)

7 · 16 · 31
.

This log pair is not log canonical at some point O ∈ G. We have

0 6 ∆̃ · L̃yz =
4 + 38a

11 · 31
−

b

31
−

c

7 · 31
−
d

7
.

We then obtain 7b+ c+ 31d 6 7
11(4 + 38a). Since a 6 23

264 , we see

θ2 =
2800 + 33(35a + 7b+ c+ 31d)

7 · 16 · 31
6

4532 + 3069a

11 · 16 · 31
< 1.

Suppose that O 6∈ F̃ ∪ L̃yz. The log pair
(

X̃, 13
8 ∆̃ +G

)

is not log canonical at the point O.

Applying Lemma 1.3.4, we get

1 <
33

16
∆̃ ·G =

33d

16
,

and hence d > 16
33 . However, d 6 1

31(7b+ c+ 31d) 6 7
11·31 (4 + 38a). This is a contradiction since

a 6 23
264 . Therefore, the point O is either the intersection point of G and F̃ or the intersection

point of G and L̃yz. In the latter case, the pair
(

X̃, 33a
16 L̃yz + 33

16∆̃ + θ2G
)

is not log canonical

at the point O. Then, applying Lemma 1.3.4, we get

1 <

(

33

16
∆̃ + θ2G

)

· L̃yz =
33

16

(

4 + 38a

11 · 31
−

b

31
−

c

7 · 31
−
d

7

)

+ θ2.

However,
33

16

(

4 + 38a

11 · 31
−

b

31
−

c

7 · 31
−
d

7

)

+ θ2 =
4532 + 3069a

11 · 16 · 31
< 1.
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Therefore, the point O must be the intersection point of G and F̃ .
Let ξ : X̂ → X̃ be the blow up at the point O and let H be the exceptional divisor of ξ.

We also let L̂yz, R̂x, ∆̂, Ĝ, and F̂ be the proper transforms of L̃yz, R̃x, ∆̃, G and F̃ by ξ,

respectively. Then X̂ is smooth along the exceptional divisor H. We have

K
X̂

∼Q ξ∗(KX̃) −H, Ĝ ∼Q ξ∗(G) −H, F̂ ∼Q ξ∗(F̃ ) −H, ∆̂ ∼Q ξ∗(∆̃) − eH,

where e is a non-negative rational number. The log pull-back of the log pair (X, 33
16D) via π◦φ◦ξ

is
(

X̂,
33a

16
L̂yz +

33b

16
R̂x +

33

16
∆̂ + θ1F̂ + θ2Ĝ+ θ3H

)

,

where

θ3 = θ1 + θ2 +
33e

16
− 1 =

1568 + 33(63a + 56b+ 8c+ 31d+ 217e)

7 · 16 · 31
.

This log pair is not log canonical at some point A ∈ H. We have

c

28
−
d

7
− e = ∆̂ · F̂ > 0.

Therefore, 4d+ 28e 6 c.
Then

θ3 =
1568 + 33(63a + 56b+ 8c)

7 · 16 · 31
+

33 · 31(d+ 7e)

7 · 16 · 31
6

6
6272 + 33(252a + 224b + 63c)

4 · 7 · 16 · 31
=

=
6272 + 7392b

4 · 7 · 16 · 31
+

33 · 63(4a + c)

4 · 7 · 16 · 31
6

6
28 + 33b

2 · 31
+

9 · 33(1 + 5b)

2 · 17 · 31
=

773 + 2046b

2 · 17 · 31
< 1

since b 6 1
12 and 4a+ c 6 4

17(8 + 40b). In particular, θ3 is a positive number.

Suppose that A 6∈ F̂ ∪ Ĝ. Then the log pair
(

X̂, 33
16∆̂ + θ3H

)

is not log canonical at the point

A. Applying Lemma 1.3.4, we get

1 <
33

16
∆̂ ·H =

33e

16
.

However,

e 6
1

28
(4d+ 28e) 6

c

28
6

1

28
(4a+ c) 6

4(8 + 40b)

17 · 28
6

4

11
.

Therefore, the point A must be either in F̂ or in Ĝ.

Suppose that A ∈ F̂ . Then the log pair
(

X̂, 33
16∆̂ + θ1F̂ + θ3H

)

is not log canonical at the

point A. Applying Lemma 1.3.4, we get

1 <

(

33

16
∆̂ + θ3H

)

· F̂ =
33

16

(

c

28
−
d

7
− e

)

+ θ3 =
6272 + 33(252a + 224b+ 63c)

4 · 7 · 16 · 31
.
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However,
6272 + 33(252a + 224b + 63c)

4 · 7 · 16 · 31
6

773 + 2046b

2 · 17 · 31
< 1.

Therefore, the point A is the intersection point of H and Ĝ. Then the log pair
(

X̂, 33
16∆̂ + θ2Ĝ+ θ3H

)

is not log canonical at the point A. From Lemma 1.3.4, we obtain

1 <

(

33

16
∆̂ + θ3H

)

· Ĝ =
33

16
(d− e) + θ3 =

1568 + 33(63a + 56b+ 8c+ 248d)

7 · 16 · 31
.

However,

1568 + 33(63a + 56b+ 8c+ 248d)

7 · 16 · 31
=

224 + 297a

16 · 31
+

33(7b + c+ 31d)

2 · 7 · 31
6

320 + 1209a

16 · 31
< 1

since a < 23
4·66 and 7b + c + 31d 6 7

11(4 + 38a). The obtained contradiction completes the
proof. �

Lemma 3.4.7. Let X be a quasismooth hypersurface of degree 166 in P(11, 31, 45, 83). Then
lct(X) = 55

24 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + yz3 + xy5 + x11z = 0.

The surface X is singular only at the points Ox, Oy and Oz. The curves Cx and Cy are
irreducible. We have

55

24
= lct

(

X,
4

11
Cx

)

< lct

(

X,
4

31
Cy

)

=
13 · 31

88
.

Therefore, lct(X) 6 55
24 .

Suppose that lct(X) < 55
24 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 55
24D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains neither Cx nor Cy. Then the inequalities

45D · Cx =
8

31
<

24

55
, 11D · Cy =

8

45
<

24

55

show that the point P is a smooth point in the outside of Cx. However, H0(P,OP(495)) contains
the monomials x45, y11x14 and z11, it follows from Lemma 1.3.9 that the point P is either a
singular point of X or a point on Cx. This is a contradiction. �

Lemma 3.4.8. Let X be a quasismooth hypersurface of degree 71 in P(13, 14, 19, 29). Then
lct(X) = 65

36 .

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

ty3 + yz3 + xt2 + x4z = 0.

The surface X is singular at the points Ox, Oy, Oz , Ot. Each of the divisors Cx, Cy, Cz, and Ct

consists of two irreducible and reduced components. The divisor Cx (resp. Cy, Cz, Ct) consists
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of Lxy (resp. Lxy, Lzt, Lzt) and Rx = {x = z3 + ty2 = 0} (resp. Ry = {y = x3z + t2 = 0},
Rz = {z = y3 + xt = 0}, Rt = {t = x4 + yz2 = 0}). Also, we see that

Lxy ∩Rx = {Ot}, Lxy ∩Ry = {Oz}, Lzt ∩Rz = {Ox}, Lzt ∩Rt = {Oy}.

One can easily check that lct(X, 4
13Cx) = 65

36 is less than each of the numbers lct(X, 4
14Cy),

lct(X, 4
19Cz) and lct(X, 4

29Ct). Therefore, lct(X) 6 65
36 . Suppose lct(X) < 65

36 . Then, there is

an effective Q-divisor D ∼Q −KX such that the log pair (X, 65
36D) is not log canonical at some

point P ∈ X.
The intersection numbers among the divisors D, Lxy, Lzt, Rx, Ry, Rz, Rt are as follows:

D · Lxy =
4

19 · 29
, D ·Rx =

6

7 · 29
, D · Ry =

8

13 · 19
,

D · Lzt =
2

7 · 13
, D ·Rz =

12

13 · 29
, D ·Rt =

8

7 · 19
,

Lxy ·Rx =
3

29
, Lxy · Ry =

2

19
, Lzt ·Rz =

3

13
, Lzt · Rt =

2

7
,

L2
xy = −

44

19 · 29
, R2

x = −
3

14 · 29
, R2

y =
2

13 · 19
,

L2
zt = −

23

13 · 14
, R2

z = −
30

13 · 29
, R2

t =
20

7 · 19
.

By Lemma 1.3.6 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. Since the curve Rt is singular at the point Oy and the curve Ry

is singular at the point Oz, in each of the following pairs of inequalities, at least one of two must
hold:

multOx(D) 6 13D · Lzt =
2

7
<

36

65
, multOx(D) 6 13D ·Rz =

12

29
<

36

65
;

multOy(D) 6 14D · Lzt =
4

13
<

36

65
, multOy(D) 6

14

2
D · Rt =

8

19
<

36

65
;

multOz(D) 6 19D · Lxy =
4

29
<

36

65
, multOz(D) 6

19

2
D · Ry =

4

13
<

36

65
;

multOt(D) 6 29D · Lxy =
4

19
<

36

65
, multOt(D) 6

29

2
D · Rx =

3

7
<

36

65
.

Therefore, the point P can be none of Ox, Oy, Oz, Ot.
We write D = a0Lxy + a1Lzt + a2Rx + a3Ry + a4Rz + a5Rt + Ω, where Ω is an effective

Q-divisor whose support contains none of the curves Lxy, Lzt, Rx, Ry, Rz, Rt. Since the pair
(X, 65

36D) is log canonical at the points Ox, Oy, Oz, Ot, the numbers ai are at most 36
65 . Then by

Lemma 1.3.8 the following inequalities enable us to conclude that the point P must be located
in the outside of Cx ∪ Cy ∪ Cz ∪ Ct:

(D − a0Lxy) · Lxy =
4 + 44a0

19 · 29
6

36

65
, (D − a1Lzt) · Lzt =

4 + 23a1

13 · 14
6

36

65
,

(D − a2Rx) · Rx =
12 + 3a2

14 · 29
6

36

65
, (D − a3Ry) ·Ry =

8 − 2a3

13 · 19
6

36

65
,

(D − a4Rz) ·Rz =
12 + 30a4

13 · 29
6

36

65
, (D − a5Rt) · Rt =

8 − 20a5

7 · 19
6

36

65
.
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We consider the pencil L defined by λtx+ µy3 = 0, [λ : µ] ∈ P1. The base locus of the pencil
consists of the curve Lxy and the point Ox. Let E be the unique divisor in L that passes through
the point P . Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the divisor E is defined by the equation tx = αy3,
where α 6= 0.

Suppose that α 6= −1. Then the curve E is isomorphic to the curve defined by the equations
tx = y3 and xt2 + yz3 + x4z = 0. Since the curve E is isomorphic to a general curve in L,
it is smooth at the point P . The affine piece of E defined by t 6= 0 is the curve given by
y(y2 + y11z + z3) = 0. Therefore, the divisor E consists of two irreducible and reduced curves
Lxy and C. We have

D · C = D ·E −D · Lxy =
800

13 · 19 · 29
.

Also, we see
C2 = E · C − C · Lxy > E · C − Cx · C > 0.

By Lemma 1.3.8 the inequality D · C < 36
65 gives us a contradiction.

Suppose that α = −1. Then divisor E consists of three irreducible and reduced curves Lxy,
Rz, and M . Note that the curve M is different from the curves Rx and Lzt. Also, it is smooth
at the point P . We have

D ·M = D ·E −D · Lxy −D ·Rz =
572

13 · 19 · 29
,

M2 = E ·M − Lxy ·M −Rz ·M > E ·M − Cx ·M − Cz ·M =
5

2
D ·M > 0.

By Lemma 1.3.8 the inequality D ·M < 36
65 gives us a contradiction. �

Lemma 3.4.9. Let X be a quasismooth hypersurface of degree 79 in P(13, 14, 23, 33). Then
lct(X) = 65

32 .

Proof. The surface X can be defined by the quasihomogeneous equation

z2t+ y4z + xt2 + x5y = 0.

The surface X is singular at Ox, Oy, Oz and Ot. We have

lct

(

X,
4

13
Cx

)

=
65

32
< lct

(

X,
4

13
Cx

)

=
21

8
< lct

(

X,
5

25
Ct

)

=
33

10
< lct

(

X,
4

23
Cz

)

=
69

20
.

In particular, lct(X) 6 65
32 .

Each of the divisors Cx, Cy, Cz, and Ct consists of two irreducible and reduced components.
The divisor Cx (resp. Cy, Cz, Ct) consists of Lxz (resp. Lyt, Lxz, Lyt) andRx = {x = y4+zt = 0}
(resp. Ry = {y = z2 + xt = 0}, Rz = {z = x4y + t2 = 0}, Rt = {t = x5 + y3z = 0}). The curve
Lxz intersects Rx (resp. Rz) only at the point Ot (resp. Oy). The curve Lyt intersects Ry (resp.
Rt) only at the point Ox (resp. Oz).

We suppose that lct(X) < 65
32 . Then there is an effective Q-divisor D ∼Q −KX such that the

log pair (X, 65
32D) is not log canonical at some point P ∈ X.

The intersection numbers among the divisors D, Lxz, Lyt, Rx, Ry, Rz, Rt are as follows:

L2
xz = −

43

14 · 33
, R2

x = −
40

23 · 33
, Lxz ·Rx =

4

33
, D · Lxz =

4

14 · 33
, D · Rx =

16

23 · 33
,
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L2
yt = −

32

13 · 23
, R2

y = −
38

13 · 33
, Lyt · Ry =

2

13
, D · Lyt =

4

13 · 23
, D · Ry =

8

13 · 33
,

R2
z =

20

13 · 14
, Lxz · Rz =

2

14
, D · Rz =

8

13 · 14
,

R2
t =

95

14 · 13
, Lyt · Rt =

5

23
, D ·Rt =

20

14 · 23
.

By Lemma 1.3.6 we may assume that the support of D does not contain at least one component
of each divisor Cx, Cy, Cz, Ct. Since the curve Rt is singular at the point Oz with multiplicity
3 and the curve Rz is singular at the point Oy, in each of the following pairs of inequalities, at
least one of two must hold:

multOx(D) 6 13D · Lyt =
4

23
<

32

65
, multOx(D) 6 13D ·Ry =

8

33
<

32

65
;

multOy(D) 6 14D · Lxz =
4

33
<

32

65
, multOy(D) 6

14

2
D · Rz =

4

13
<

32

65
;

multOz(D) 6 23D · Lyt =
4

13
<

32

65
, multOz(D) 6

23

3
D · Rt =

10

21
<

32

65
.

Therefore, the point P can be none of Ox, Oy, Oz.
Put D = m0Lxz + m1Lyt + m2Rx +m3Ry +m4Rz +m5Rt + Ω, where Ω is an effective Q-

divisor whose support contains none of Lxz, Lyt, Rx, Ry, Rz, Rt. Since the pair (X, 65
32D) is log

canonical at the points Ox, Oy, Oz, we have mi 6 32
65 for each i. Since

(D −m0Lxz) · Lxz =
4 + 43m0

14 · 33
6

32

65
, (D −m1Lyt) · Lyt =

4 + 32m1

13 · 23
6

32

65
,

(D −m2Rx) · Rx =
16 + 40m2

23 · 33
6

32

65
, (D −m3Ry) · Ry =

8 + 38m3

13 · 33
6

32

65
,

(D −m4Rz) ·Rz =
8 − 20m4

13 · 14
6

32

65
, (D −m5Rt) · Rt =

20 − 95m5

14 · 23
6

32

65
Lemma 1.3.8 implies that the point P cannot be a smooth point of X on Cx ∪ Cy ∪ Cz ∪ Ct.
Therefore, the point P is either a point in the outside of Cx ∪ Cy ∪ Cz ∪ Ct or the point Ot.

Suppose that P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct. Then we consider the pencil L on X defined by the
equations λxt+ µz2 = 0, [λ : µ] ∈ P1. There is a unique curve Zα in the pencil passing through
the point P . This curve is cut out by

xt+ αz2 = 0,

where α is a non-zero constant.
The curve Zα is reduced. But it is always reducible. Indeed, one can easily check that

Zα = Cα + Lxz

where Cα is a reduced curve whose support contains no Lxy. Let us prove that Cα is irreducible
if α 6= 1.

Any component of the curve Ct is not contained in the curve Zα. The open subset Zα \Ct of
the curve Zα is a Z33-quotient of the affine curve

x+ αz2 = z2 + y4z + x+ x5y = 0 ⊂ C3 ∼= Spec
(

C
[

x, y, z
]

)

,
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that is isomorphic to a plane affine curve defined by the equation

z
(

(α− 1)z + y4 − α5yz9
)

= 0 ⊂ C2 ∼= Spec
(

C
[

y, z
]

)

.

Thus, if α 6= 1, then the curve Zα consists of two irreducible and reduced curves Lxz and Cα. If
α = 1, then the curve Zα consists of three irreducible and reduced curves Lxz, Ry, and C1. In
both cases, the curve Cα (including α = 1) is smooth at the point P . By Lemma 1.3.6, we may
assume that Supp(D) does not contain at least one irreducible component of the curve Zα.

If α 6= 1, then

D · Cα =
8

13 · 14
,

C2
α = Zα · Cα − Lxz · Cα > Zα · Cα − (Rx + Lxz) · Cα =

33

4
D · Cα > 0.

If α = 1, then

D · C1 =
152

13 · 14 · 33
,

C2
1 = Z1 · C1 − (Lxz +Ry) · C1 > Z1 · C1 − (Rx + Lxz) · C1 − (Lyt +Ry) · C1 =

19

4
D · C1 > 0.

We put D = mCα + ∆α, where ∆α is an effective Q-divisor such that Cα 6⊂ Supp(∆α). Since
Cα intersects the curve Ct and the pair (X, 65

32D) is log canonical along the curve Ct, we obtain

m 6 32
65 . Then, the inequality

(D −mCα) · Cα 6 D · Cα <
32

65

implies that the pair (X, 65
32D) is log canonical at the point P by Lemma 1.3.8. The obtained

contradiction conclude that the point P must be the point Ot.
If Lxz is not contained in the support of D, then the inequality

multOt(D) 6 33D · Lxz =
2

7
<

32

65
is a contradiction. Therefore, the curve Lxz must be contained in the support of D, and hence
the curve Rx is not contained in the support of D. Put D = aLxz + bRy + ∆, where ∆ is an
effective Q-divisor whose support contains neither Lxz nor Ry. Then

16

23 · 33
= D · Rx > aLxz ·Rx +

multOt(D) − a

33
>

3a

33
+

32

33 · 65

and hence a < 304
3·23·65 . If b 6= 0, then Lyt is not contained in the support of D. Therefore,

4

13 · 23
= D · Lyt > bRy · Lyt =

2b

13
,

and hence b 6 2
23 .

Let π : X̄ → X be the weighted blow up at the point Ot with weights (13, 19) and let F be
the exceptional curve of the morphism π. Then F contains two singular points Q13 and Q19 of
X̄ such that Q13 is a singular point of type 1

13 (1, 1), and Q19 is a singular point of type 1
19(3, 7).

Then

KX̄ ∼Q π∗(KX) −
1

33
F, L̄xz ∼Q π∗(Lxz) −

19

33
F, R̄y ∼Q π∗(Ry) −

13

33
F, ∆̄ ∼Q π∗(∆) −

c

33
F,
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where L̄xz, R̄y and ∆̄ are the proper transforms of Lxz, Ry and ∆ by π, respectively, and c is a
non-negative rational number. Note that F ∩ R̄y = {Q19} and F ∩ L̄xz = {Q13}.

The log pull-back of the log pair (X, 65
32D) by π is the log pair

(

X̄,
65a

32
L̄xz +

65b

32
R̄y +

65

32
∆̄ + θ1F

)

,

where

θ1 =
32 + 65(19a + 13b+ c)

32 · 33
.

This is not log canonical at some point Q ∈ F . We have

0 6 ∆̄ · L̄xz =
4 + 43a

14 · 33
−

b

33
−

c

13 · 33
.

This inequality shows 13b + c 6 13
14(4 + 43a). Since a 6 304

3·23·65 , we obtain

θ1 =
32 + 1235a

32 · 33
+

65(13b + c)

32 · 33
6

32 + 1235a

32 · 33
+

13 · 65(4 + 43a)

14 · 32 · 33
< 1.

Suppose that the point Q is neither Q13 nor Q19. Then, the point Q is not in L̄xz ∪ R̄y.

Therefore, the pair
(

X̄, 65
32∆̄ + F

)

is not log canonical at the point Q, and hence

1 <
65

32
∆̄ · F =

65c

13 · 19 · 32
.

But c 6 13b+ c 6 13
14(4 + 43a) < 13·19·32

65 since a 6 304
3·23·65 . Therefore, the point Q is either Q13

or Q19.
Suppose that the point Q is Q13. Then the point Q is in L̄xz but not in R̄y. Therefore, the

pair
(

X̄, L̄xz + 65
32∆̄ + θ1F

)

is not log canonical at the point Q. However, this is impossible since

13

(

65

32
∆̄ + θ1F

)

· L̄xz =
13 · 65

32

(

4 + 43a

14 · 33
−

b

33
−

c

13 · 33

)

+ θ1 =

=
32 + 1235a

32 · 33
+

13 · 65(4 + 43a)

14 · 32 · 33
< 1.

Therefore, the point Q must be the point Q19.
Let ψ : X̃ → X̄ be the weighted blow up at the point Q19 with weights (3, 7) and let E be the

exceptional curve of the morphism ψ. The exceptional curve E contains two singular points O3

and O7 of X̃ . The point O3 is of type 1
3 (1, 2) and the point O7 is of type 1

7(4, 5). Then

KX̃ ∼Q ψ∗(KX̄) −
9

19
E, R̃y ∼Q ψ∗(R̄y) −

3

19
E, F̃ ∼Q ψ∗(F ) −

7

19
E, ∆̃ ∼Q ψ∗(∆̄) −

d

19
E,

where R̃y, F̃ and ∆̃ are the proper transforms of R̄y, F and ∆̄ by ψ, respectively, and d is a
non-negative rational number.

The log pull-back of the log pair (X, 65
32D) by π ◦ ψ is the log pair

(

X̃,
65a

32
L̃xz +

65b

32
R̃y +

65

32
∆̃ + θ1F̃ + θ2E

)

,
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where L̃xz is the proper transform of L̄xz by ψ and

θ2 =
65(3b + d)

19 · 32
+

7

19
θ1 +

9

19
=

9728 + 65(133a + 190b + 7c+ 33d)

19 · 32 · 33
.

This is not log canonical at some point O ∈ E.
We have

0 6 ∆̃ · R̃y = ∆̄ · R̄y −
d

7 · 19
=

8 + 38b

13 · 33
−

19a+ c

19 · 33
−

d

7 · 19
,

and hence 133a+ 7c+ 33d 6 133
13 (8 + 38b). Therefore, this inequality together with b < 2

23 gives
us

θ2 =
9728 + 65 · 190b

19 · 32 · 33
+

65(133a + 7c+ 33d)

19 · 32 · 33
6

6
9728 + 65 · 190b

19 · 32 · 33
+

65 · 7(8 + 38b)

13 · 32 · 33
< 1.

Suppose that the point O is in the outside of R̃y and F̃ . Then the log pair (E, 65
32∆̃|E) is not

log canonical at the point O and hence

1 <
65

32
∆̃ ·E =

65d

3 · 7 · 32
.

However,

d 6
1

33
(133a + 7c+ 33d) 6

133

13 · 33
(8 + 38b) <

3 · 7 · 32

65

since b 6 2
23 . This is a contradiction.

Suppose that the point O belongs to R̃y. Then the log pair
(

X̃, 65b
32 R̃y + 65

32∆̃ + θ2E
)

is not

log canonical at the point O and hence

1 < 7

(

65

32
∆̃ + θ2E

)

· R̃x =
7 · 65

32

(

8 + 38b

13 · 33
−

19a+ c

19 · 33
−

d

7 · 19

)

+ θ2.

However,

7 · 65

32

(

8 + 38b

13 · 33
−

19a+ c

19 · 33
−

d

7 · 19

)

+ θ2 =
9728 + 65 · 190b

19 · 32 · 33
+

65 · 7(8 + 38b)

13 · 32 · 33
< 1.

This is a contradiction. Therefore, the point O is the point O3.

Suppose that the point O belongs to F̃ . Then the log pair
(

X̃, 65
32∆̃ + θ1F̃ + θ2E

)

is not log

canonical at the point O and hence

1 < 3

(

65

32
∆̃ + θ2E

)

· F̃ =
3 · 65

32

(

c

13 · 19
−

d

3 · 19

)

+ θ2.
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However,

3 · 65

32

(

c

13 · 19
−

d

3 · 19

)

+ θ2 =
3 · 65c

13 · 19 · 32
+

9728 + 65(133a + 190b+ 7c)

19 · 32 · 33
=

=
512 + 455a

32 · 33
+

65 · 190(13b + c)

13 · 19 · 32 · 33
6

6
512 + 455a

32 · 33
+

65 · 190(4 + 43a)

14 · 19 · 32 · 33
< 1

since 13b+ c 6 13
14 (4 + 43a) and a 6 304

3·23·65 . This is a contradiction. �

Lemma 3.4.10. Let X be a quasismooth hypersurface of degree 166 in P(13, 23, 51, 83). Then
lct(X) = 91

40 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y5z + xz3 + x11y = 0.

The surface X is singular only at the points Ox, Oy and Oz. The curves Cx and Cy are
irreducible. We have

91

40
= lct

(

X,
4

13
Cx

)

< lct

(

X,
4

23
Cy

)

=
115

24
,

and hence lct(X) 6 91
40 .

Suppose that lct(X) < 91
40 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 91
40D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D contains neither Cx nor Cy. Then the inequalities

51D · Cx =
8

23
<

40

91
, 13D · Cy =

8

51
<

40

91

show that the point P is a smooth point of X in the outside of Cx. However, H0(P,OP(663))
contains x51, y13x28, y26x5 and z13, and hence it follows from Lemma 1.3.9 that the point P is
either a singular point of X or a point on Cx. This is a contradiction. �

3.5. Sporadic cases with I = 5

Lemma 3.5.1. Let X be a quasismooth hypersurface of degree 63 in P(11, 13, 19, 25). Then
lct(X) = 13

8 .

Proof. The surface X can be defined by the quasihomogeneous equation

z2t+ yt2 + xy4 + x4z = 0,

and X is singular at Ox, Oy, Oz and Ot.
The curve Cx (resp. Cy, Cz, Ct) consists of two irreducible and reduced curves Lxt (resp Lyz,

Lyz, Lxt) and Rx = {x = z2 + yt = 0} (resp. Ry = {y = x4 + zt = 0}, Rz = {z = t2 + xy3 = 0},
Rt = {t = y4 + x3z = 0}). The curve Lxt intersects Rx (resp. Rt) only at the point Oy (resp.
Oz). The curve Lyz intersects Ry (resp. Rz) only at the point Ot (resp. Ox).
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We have the following intersection numbers

D · Lxt =
5

13 · 19
, D · Lyz =

1

5 · 11
, D ·Rx =

2

5 · 13
, D · Ry =

4

5 · 19
, D · Rz =

10

11 · 13
,

D ·Rt =
20

11 · 19
, Lxt ·Rx =

2

13
, Lxt ·Rt =

4

19
, Lyz · Ry =

4

25
, Lyz · Rz =

2

11
,

L2
xt = −

27

13 · 19
, L2

yz = −
31

11 · 25
, R2

x = −
28

13 · 25
, R2

y = −
24

19 · 25
, R2

z =
12

11 · 13
, R2

t =
56

11 · 19
.

We have

lct

(

X,
5

13
Cy

)

=
13

8
< lct

(

X,
5

11
Cx

)

=
33

20
< lct

(

X,
5

25
Ct

)

=
35

16
< lct

(

X,
5

19
Cz

)

=
19

8
.

In particular, we have lct(X) 6 13
8 .

We suppose that lct(X) < 13
8 . Then there is an effective Q-divisor D ∼Q −KX such that the

log pair (X, 13
8 D) is not log canonical at some point P ∈ X.

Suppose that the point P is located in the outside of Cx ∪ Cy ∪ Cz ∪ Ct. We consider the
pencil L on X defined by the equations λx4 + µzt = 0, where [λ : µ] ∈ P1. The curve Lxt is the
unique base component of the pencil L. There is a unique member Z in the pencil L passing
through the point P . Since the point P is in the outside of Cx ∪ Cy ∪ Cz ∪ Ct, the curve Z is
defined by an equation of the form

αx4 + zt = 0,

where α is a non-zero constant.
The open subset Z \ Cz of the curve Z is a Z19-quotient of the affine curve

αx4 + t = t+ yt2 + xy4 + x4 = 0 ⊂ C3 ∼= Spec
(

C
[

x, y, z
]

)

,

that is isomorphic to the affine curve given by the equation

x
(

(1 − α) x3 + α2x7y + y4
)

= 0 ⊂ C2 ∼= Spec
(

C
[

y, z
]

)

.

If α 6= 1, the divisor Z consists of two irreducible and reduced curves Lxt and Zα. On the
other hand, if α = 1, then the divisor Z consists of three irreducible and reduced curves Lxt, Ry

and Z1. Since P 6∈ Cx ∪ Cy ∪ Cz ∪ Ct, the point P must be contained in Zα (including α = 1).
Also, the curve Zα is smooth at the point P .

Write D = nZα + Γ, where Γ is an effective Q-divisor whose support contains Zα. Since Zα

passing through the point Ot and the pair (X, 13
8 D) is log canonical at the point Oz, we have

n 6 8
13 . We can easily check

D · Zα =











D · (Z − Lxt) =
227

5 · 13 · 19
if α 6= 1,

D · (Z − Lxt −Ry) =
35

13 · 19
if α = 1.

Also, if α 6= 1, then

Z2
α = Z · Zα − Lxt · Zα > Z · Zα − (Lxt +Rx) · Zα =

33

5
D · Zα.
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If α = 1,

Z2
α = Z · Zα − (Lxt +Ry) · Zα > Z · Zα − (Lxt +Rx + Lyz +Ry) · Zα = 4D · Zα.

In both cases, we have Z2
α > 0. Since

(D − nZα) · Zα 6 D · Zα <
8

13

Lemma 1.3.8 shows that the pair (X, 13
8 D) is log canonical at the point P . This is a contradiction.

Therefore, the point P must belong to the set Cx ∪ Cy ∪ Cz ∪ Ct.
It follows from Lemma 1.3.6 that we may assume that Supp(D) does not contain at least

one irreducible component of the curves Cx, Cy, Cz, Ct. Since the curve Rt is singular at the
point Oz with multiplicity 3 and the support of D does not contain either Lxt or Rt, one of the
inequalities

multOz(D) 6 19D · Lxt =
5

13
<

8

13
, multOz(D) 6

19

3
D · Rt =

20

3 · 11
<

8

13

must hold, and hence the point P cannot be the point Oz . Similarly, we see that the point P
can be neither Ox nor Oy.

Now we write D = m0Lxt+m1Lyz +m2Rx+m3Ry +m4Rz +m5Rt+Ω, where Ω is an effective

Q-divisor whose support contains none of Lxt, Lyz, Rx, Ry, Rz, Rt. Since the pair (X, 13
8 D) is

log canonical at the points Ox, Oy, Oz , we must have mi 6 8
13 . Then the inequalities

(D −m0Lxt) · Lxt =
5 + 27m0

13 · 19

(D −m1Lyz) · Lyz =
5 + 31m1

11 · 25

(D −m2Rx) ·Rx =
10 + 28m2

25 · 13

(D −m3Ry) · Ry =
20 + 24m3

25 · 19

(D −m4Rz) ·Rz =
10 − 12m4

11 · 13

(D −m5Rt) ·Rt =
20 − 56m5

11 · 19











































































6
8

13

imply that the point P must be the point Ot.
Put D = aLyz + bRx + ∆, where ∆ is an effective Q-divisor whose support contains neither

the curve Lyz nor Rx. If a = 0, then we obtain

multOt(D) 6 25D · Lyz =
5

11
<

8

13
.

This is a contradiction. Therefore, a > 0, and hence the support of D dose not contain the curve
Ry. Since

4

5 · 19
= D ·Ry > aLyz ·Ry +

multOt(D) − a

25
>

3a

25
+

8

13 · 25
,
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and hence a 6 36
247 . If b > 0, then

5

13 · 19
= D · Lxt > bRx · Lxt =

2b

13
,

and hence b 6 5
38 .

Let π : X̄ → X be the weighted blow up of Ot with weights (7, 3) and let F be the exceptional
curve of π. Then

KX̄ ∼Q π∗(KX) −
15

25
F, L̄yz ∼Q π∗(Lyz) −

3

25
F, R̄x ∼Q π∗(Rx) −

7

25
F, ∆̄ ∼Q π∗(∆) −

c

25
F,

where ∆̄, L̄yz, R̄x are the proper transforms of ∆, Lyz, Rx, respectively, and c is a non-negative
rational number. The curve F contains two singular points Q7 and Q3 of X̄. The point Q7 is a
singular point of type 1

7 (1, 1) and the point Q3 is of type 1
3 (2, 1). Note that the curve R̄x passes

through the point Q3 but not the point Q7. The curve L̄yz passes through the point Q7 but not
the point Q3.

The log pull-back of the log pair (X, 13
8 D) by π is the log pair

(

X̄,
13a

8
L̄yz +

13b

8
R̄x +

13

8
∆̄ + θ1F

)

,

where

θ1 =
13(3a + 7b+ c) + 120

8 · 25
.

This pair is not log canonical at some point Q ∈ F . We have

0 6 ∆̄ · R̄x =
10 + 28b

13 · 25
−

a

25
−

c

3 · 25
.

This inequality shows 3a+ c 6 3
13(10 + 28b). Then

θ1 =
13(3a + c) + 91b+ 120

8 · 25
6

6 + 7b

8
< 1

since b 6 5
38 .

Suppose that the point Q is neither the point Q7 nor the point Q3. Then the log pair
(

X̄, 13
8 ∆̄ + F

)

is not log canonical at the point Q. Then

13c

8 · 21
=

13

8
∆̄ · F > 1

by Lemma 1.3.4. However, c 6 3a + c 6 3
13 (10 + 28b). This is a contradiction since b 6 5

38 .
Therefore, the point Q is either the point Q7 or the point Q3.

Suppose that the point Q is the point Q3. This point is the intersection point of F and R̄x.
Then the log pair

(

X̄, 13b
8 R̄x + 13

8 ∆̄ + θ1F
)

is not log canonical at the point Q. It then follows
from Lemma 1.3.4 that

1 < 3

(

13

8
∆̄ + θ1F

)

· R̄x =
13 · 3

8

(

10 + 28b

13 · 25
−

a

25
−

c

3 · 25

)

+ θ1.

However,
13 · 3

8

(

10 + 28b

13 · 25
−

a

25
−

c

3 · 25

)

+ θ1 =
6 + 7b

8
< 1.
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Therefore, the point Q is the point Q7. This point is the intersection point of F and L̄yz.

Let φ : X̃ → X̄ be the blow up at the point Q7. Let G be the exceptional divisor of the
morphism φ. The surface X̃ is smooth along the exceptional divisor G. Let L̃yz, R̃x, ∆̃ and F̃

be the proper transforms of Lyz, Rx, ∆ and F by π ◦ φ, respectively. We have

KX̃ ∼Q φ∗(KX̄) −
5

7
G, L̃yz ∼Q φ∗(L̄yz) −

1

7
G, F̃ ∼Q φ∗(F ) −

1

7
G, ∆̃ ∼Q φ∗(∆̄) −

d

7
G,

where d is a non-negative rational number. The log pull-back of the log pair (X, 13
8 D) via π ◦ φ

is
(

X̃,
13a

8
L̃yz +

13b

8
R̃x +

13

8
∆̃ + θ1F̃ + θ2G

)

,

where

θ2 =
13

7 · 8
(a+ d) +

θ1

7
+

5

7
=

1120 + 13(28a + 7b+ c+ 25d)

7 · 8 · 25
.

This log pair is not log canonical at some point O ∈ G. We have

0 6 ∆̃ · L̃yz =
5 + 31a

11 · 25
−

b

25
−

c

7 · 25
−
d

7
.

We then obtain 7b+ c+ 25d 6 7
11(5 + 31a). Since a 6 36

247 , we see

θ2 =
1120 + 13(28a + 7b+ c+ 25d)

7 · 8 · 25
6

511 + 273a

7 · 8 · 11
< 1.

Suppose that O 6∈ F̃ ∪ L̃yz. The log pair
(

X̃, 13
8 ∆̃ +G

)

is not log canonical at the point O.

Applying Lemma 1.3.4, we get

1 <
13

8
∆̃ ·G =

13d

8
,

and hence d > 8
13 . However, d 6 1

25(7b+ c+ 25d) 6 7
11·25 (5 + 31a). This is a contradiction since

a 6 36
247 . Therefore, the point O is either the intersection point of G and F̃ or the intersection

point of G and L̃yz. In the latter case, the pair
(

X̃, 13a
8 L̃yz + 13

8 ∆̃ + θ2G
)

is not log canonical

at the point O. Then, applying Lemma 1.3.4, we get

1 <

(

13

8
∆̃ + θ2G

)

· L̃yz =
13

8

(

5 + 31a

11 · 25
−

b

25
−

c

7 · 25
−
d

7

)

+ θ2.

However,

13

8

(

5 + 31a

11 · 25
−

b

25
−

c

7 · 25
−
d

7

)

+ θ2 =
511 + 273a

7 · 8 · 11
< 1.

Therefore, the point O must be the intersection point of G and F̃ .
Let ξ : X̂ → X̃ be the blow up at the point O and let H be the exceptional divisor of ξ.

We also let L̂yz, R̂x, ∆̂, Ĝ, and F̂ be the proper transforms of L̃yz, R̃x, ∆̃, G and F̃ by ξ,

respectively. Then X̂ is smooth along the exceptional divisor H. We have

K
X̂

∼Q ξ∗(KX̃) −H, Ĝ ∼Q ξ∗(G) −H, F̂ ∼Q ξ∗(F̃ ) −H, ∆̂ ∼Q ξ∗(∆̃) − eH,
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where e is a non-negative rational number. The log pull-back of the log pair (X, 13
8 D) via π◦φ◦ξ

is
(

X̂,
13a

8
L̂yz +

13b

8
R̂x +

13

8
∆̂ + θ1F̂ + θ2Ĝ+ θ3H

)

,

where

θ3 = θ1 + θ2 +
13e

8
− 1 =

560 + 13(49a + 56b+ 8c+ 25d + 175e)

7 · 8 · 25
.

This log pair is not log canonical at some point A ∈ H. We have

c

21
−
d

7
− e∆̂ · F̂ > 0.

Therefore, 3d+ 21e 6 c.
Then

θ3 =
560 + 13(49a + 56b+ 8c)

7 · 8 · 25
+

13(d+ 7e)

7 · 8
6

6
1680 + 13(147a + 168b + 49c)

3 · 7 · 8 · 25
=

=
1680 + 1284b

3 · 7 · 8 · 25
+

13 · 49(3a + c)

3 · 7 · 8 · 25
6

6
140 + 107b

2 · 7 · 25
+

7(5 + 14b)

4 · 25
=

21 + 36b

28
< 1

since b 6 5
38 and 3a+ c 6 3

13(10 + 28b). In particular, θ3 is a positive number.

Suppose that A 6∈ F̂ ∪ Ĝ. Then the log pair
(

X̂, 13
8 ∆̂ + θ3H

)

is not log canonical at the point

A. Applying Lemma 1.3.4, we get

1 <
13

8
∆̂ ·H =

13e

8
.

However,

e 6
1

21
(3d + 21e) 6

c

21
6

1

21
(3a+ c) 6

3(10 + 28b)

13 · 21
6

8

13
.

Therefore, the point A must be either in F̂ or in Ĝ.

Suppose that A ∈ F̂ . Then the log pair
(

X̂, 13
8 ∆̂ + θ1F̂ + θ3H

)

is not log canonical at the

point A. Applying Lemma 1.3.4, we get

1 <

(

13

8
∆̂ + θ3H

)

· F̂ =
13

8

(

c

21
−
d

7
− e

)

+ θ3 =
1680 + 13(147a + 168b+ 49c)

3 · 7 · 8 · 25
.

However,
1680 + 13(147a + 168b+ 49c)

3 · 7 · 8 · 25
6

21 + 36b

28
< 1.

Therefore, the point A is the intersection point of H and Ĝ. Then the log pair
(

X̂, 13
8 ∆̂ + θ2Ĝ+ θ3H

)

is not log canonical at the point A. From Lemma 1.3.4, we obtain

1 <

(

13

8
∆̂ + θ3H

)

· Ĝ =
13

8
(d− e) + θ3 =

560 + 13(49a + 56b+ 8c+ 200d)

7 · 8 · 25
.
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However,

560 + 13(49a + 56b+ 8c+ 200d)

7 · 8 · 25
=

80 + 91a

8 · 25
+

13(7b + c+ 25d)

7 · 25
6

56 + 169a

8 · 11
< 1

since a < 36
247 and 7b+c+25d 6 7

11 (5+31a). The obtained contradiction completes the proof. �

Lemma 3.5.2. Let X be a quasismooth hypersurface of degree 136 in P(11, 25, 37, 68). Then
lct(X) = 11

6 .

Proof. The surface X can be defined by the quasihomogeneous equation

xy5 + x9z + yz3 + t2 = 0.

The surface X is singular at the points Ox, Oy and Oz.
The curves Cx and Cy are reduced and irreducible. We have

11

6
= lct

(

X,
5

11
Cx

)

< lct

(

X,
5

25
Cy

)

=
55

18
.

Thus, lct(X) 6 11
6 .

Suppose that lct(X) < 11
6 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 11
6 D) is not log canonical at some point P . By Lemma 1.3.6 we may assume that the

support of D contains neither Cx nor Cy. Then two inequalities

37D · Cx =
2

5
<

6

11
, 11D · Cy =

10

37
<

6

11

imply that the point P is neither a singular point of X nor a point on Cx. Since H0(P,OP(407))
contains x37, z11 and x12y11, we see that this cannot happen by Lemma 1.3.9. �

Lemma 3.5.3. Let X be a quasismooth hypersurface of degree 136 in P(13, 19, 41, 68). Then
lct(X) = 91

50 .

Proof. The surface X can be defined by the quasihomogeneous equation

x9y + xz3 + y5z + t2 = 0.

The surface X is singular only at the points Ox, Oy and Oz.
The curves Cx and Cy are reduced and irreducible. Also, it is easy to check

91

50
= lct

(

X,
5

13
Cx

)

< lct(X,
5

19
Cy) =

19

6
.

Therefore, lct(X) 6 50
91 .

Suppose that lct(X) < 91
50 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 91
50D) is not log canonical at some point P . By Lemma 1.3.6 we may assume that the

support of D contains neither Cx nor Cy. Then two inequalities

41D · Cx =
10

19
<

50

91
, 13D · Cy =

10

41
<

50

91

imply that the point P is neither a singular point of X nor a point on Cx. However, by
Lemma 1.3.9 this is impossible since H0(P,OP(533)) contains x41, z13 and x3y26. �
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3.6. Sporadic cases with I = 6

Lemma 3.6.1. Let X be a quasismooth hypersurface of degree 45 in P(7, 10, 15, 19). Then
lct(X) = 35

54 .

Proof. The surface X can be defined by the equation z3 − y3z + xt2 + x5y = 0. It is singular at
the points Ox, Oy, Ot and Q = [0 : 1 : 1 : 0].

The curve Cx consists of two irreducible and reduced curves Lxz and Rx = {x = z2−y3 = 0}.
These two curves Lxz and Rx meets each other at the point Ot. Also,

L2
xz = −

23

10 · 19
, R2

x = −
8

5 · 19
, Lxz ·Rx =

3

19
.

The curve Rx is singular at the point Ot. The curve Cy is irreducible and

35

54
= lct

(

X,
6

7
Cx

)

< lct

(

X,
6

10
Cy

)

=
25

18
.

Therefore, lct(X) 6 35
54 .

Suppose that lct(X) < 35
54 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 35
54D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
Lxz 6⊆ Supp(D) or Rx 6⊆ Supp(D).

Since H0(P,OP(105)) contains the monomials x15, y7x5 and z7, it follows from Lemma 1.3.9
that the point P is either a point on Cx or the singular point Ox.

Since either Lxz 6⊆ Supp(D) or Rx 6⊆ Supp(D), one of the inequalities

multOt(D) 6 19D · Lxz =
3

5
<

54

35
, multOt(D) 6

19

2
D ·Rx =

3

5
<

54

35
must hold, and hence the point P cannot be the point Ot. On the other hand, the inequality
7D · Cy = 18

19 <
54
35 shows that the point P cannot be the point Ox.

Put D = mLxz + Ω, where Ω is an effective Q-divisor such that Lxz 6⊂ Supp(Ω). If m 6= 0,
then

6

5 · 19
= D ·Rx > mLxz ·Rx =

3m

19
,

and hence m 6 2
5 . Then,

10(D −mLxz) · Lxz =
6 + 23m

19
6

54

35
.

Thus it follows from Lemma 1.3.8 that the point P cannot belong to Lxz.
Now we write D = ǫRx + ∆, where ∆ is an effective Q-divisor such that Rx 6⊂ Supp(∆). If

ǫ 6= 0, then
3

5 · 19
= D · Lxz > ǫRx · Lxz =

3ǫ

19
,

and hence ǫ 6 1
5 . Then

5(D − ǫRx) · Rx =
3 + 8ǫ

19
6

54

35
.

By Lemma 1.3.8 the point P cannot be contained in Rx either. Therefore, the point P is located
nowhere. �
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Lemma 3.6.2. Let X be a quasismooth hypersurface of degree 106 in P(11, 19, 29, 53). Then
lct(X) = 55

36 .

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

x7z + xy5 + yz3 + t2 = 0.

The surface X is singular at Ox, Oy and Oz . The curves Cx and Cy are irreducible. It is easy
to see

lct(X,
6

11
Cx) =

55

36
< lct(X,

6

19
Cy) =

57

28
.

Suppose that lct(X) < 55
36 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 55
36D) is not log canonical. For a smooth point P ∈ X \ Cx, we have

multP (D) 6
6 · 319 · 106

11 · 19 · 29 · 53
<

36

55

by Lemma 1.3.9 since H0(P,OP(319)) contains the monomials x29, z11 and x10y11. Therefore,
either there is a point P ∈ Cx such that multP (D) > 36

55 or we have multOx(D) > 36
55 . Since the

pairs (X, 6·55
11·36Cx) and (X, 6·55

19·36Cy) are log canonical and the curves Cx and Cy are irreducible,
we may assume that the support of D contains neither the curve Cx nor the curve Cy. Then we
can obtain

multOx(D) 6 11Cy ·D 6
11 · 19 · 106 · 6

11 · 19 · 29 · 53
<

36

55
and for any point P ∈ Cx

multP (D) 6 29Cx ·D 6
29 · 11 · 106 · 6

11 · 19 · 29 · 53
<

36

55
.

This is a contradiction. Therefore, lct(X) = 55
36 . �

Lemma 3.6.3. Let X be a quasismooth hypersurface of degree 106 in P(13, 15, 31, 53). Then
lct(X) = 91

60 .

Proof. The surface X can be defined by the quasihomogeneous equation

x7y + xz3 + y5z + t2 = 0.

The surface X is singular at the points Ox, Oy and Oz.
The curves Cx, Cy and Cz are reduced and irreducible. We have

lct

(

X,
6

13
Cx

)

=
91

60
< lct

(

X,
6

15
Cy

)

=
25

12
< lct

(

X,
6

31
Cz

)

=
93

28
.

Therefore, lct(X) 6 91
60 .

Suppose that lct(X) < 91
60 . Then there is an effective Q-divisor D ∼Q −KX such that the pair

(X, 91
60D) is not log canonical at some point P . By Lemma 1.3.6 we may assume that the support

of D contains none of Cx, Cy, Cz. Since Cy is singular at the point Oz and 31
2 D ·Cy = 6

13 <
60
91 ,

the point P must be in the outside of Cy. Furthermore, the point P is in the outside of Cx ∪Cz

since 15D · Cx = 12
31 <

60
91 and D · Cz = 4

65 <
60
91 .

Now we consider the pencil L on X defined by the equations λz3 + µx6y = 0, [λ : µ] ∈ P1.
Then there is a unique member C in L passing through the point P . Since the point P is located
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in the outside of Cx ∪Cy ∪Cz, the curve C is cut out by the equation of the form x6y+αz3 = 0,
where α is a non-zero constant. Since the curve C is a double cover of the curve defined by the
equation x6y+αz3 = 0 in P(13, 15, 31), we have multP (C) 6 2. Therefore, we may assume that
the support of D does not contain at least one irreducible component. If α 6= 1, then the curve
C is irreducible, and hence the inequality

multP (D) 6 D · C =
12

65
<

60

91

is a contradiction. If α = 1, then the curve C consists of two distinct irreducible and reduced
curve C1 and C2. We have

D · C1 = D · C2 =
6

65
, C2

1 = C2
2 =

8

13
.

Put D = a1C1 + a2C2 + ∆, where ∆ is an effective Q-divisor whose support contains neither C1

nor C2. Since the pair (X, 91
60D) is log canonical at Ox, both a1 and a2 are at most 60

91 . Then a
contradiction follows from Lemma 1.3.8 since

(D − aiCi) · Ci 6 D · Ci =
12

65
<

60

91

for each i. �

3.7. Sporadic cases with I = 7

Lemma 3.7.1. Let X be a quasismooth hypersurface of degree 76 in P(11, 13, 21, 38). Then
lct(X) = 13

10 .

Proof. We may assume that the surface X is defined by the equation t2 + yz3 + xy5 + x5z = 0.
The surface X is singular at Ox, Oy and Oz. The curves Cx, Cy and Cz are irreducible. We
have

21

10
= lct(X,

7

21
Cz) >

55

42
= lct(X,

7

11
Cx) > lct(X,

7

13
Cy) =

13

10
.

Therefore, lct(X) 6 13
10 .

Suppose that lct(X) < 13
10 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 13
10D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of D contains none of the curves Cx, Cy and Cz.
Since the curve Cy is singular at the point Oz, the inequality 11D · Cy = 2

3 <
10
13 shows that

the point P does not belong to the curve Cy. Also, the inequality 13D · Cx = 2
3 <

10
13 implies

that the point P cannot belong to Cx either. The inequality D ·Cz = 14
11·13 <

10
13 shows that the

point P cannot belong to Cz

Consider the pencil L on X defined by the equations λy5 + µx4z = 0, [λ : µ] ∈ P1. There is
a unique member Z in L passing through the point P . Since P 6∈ Cx ∪ Cy ∪ Cz, the curve Z is
defined by an equation of the form x4z = αy5, where α is a non-zero constant. The open subset
Z \ Cx of the curve Z is a Z11-quotient of the affine curve

z − αy5 = t2 + yz3 + y5 + z = 0 ⊂ C3 ∼= Spec
(

C
[

y, z, t
]

)
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that is isomorphic to the plane affine curve C ⊂ C2 defined by the equation

t2 + α3y16 + (1 + α)y5 = 0 ⊂ C2 ∼= Spec
(

C
[

y, z
]

)

.

The curve C is irreducible if α 6= −1 and reducible if α = 1. Since the Cx is not contained in the
support of Z, the curve Z is irreducible if α 6= −1 and reducible if α = 1. From the equation of
C, we can see that the log pair (X, 7

50Z) is log canonical at the point P . By Lemma 1.3.6, we
may assume that Supp(D) does not contain at least one irreducible component of the curve Z.

Suppose that α 6= −1. Then Z 6⊆ Supp(D) and

10

33
= D · Z > multP

(

D
)

>
10

13
.

This is a contradiction. Thus, α = −1. Then it follows from the equation of C that the curve
Z consists of two irreducible and reduced curves Z1 and Z2. Without loss of generality we may
assume that the point P belongs to the curve Z1.

Put D = mZ1 + Ω, where Ω is an effective Q-divisor such that Z1 6⊂ Supp(Ω). Since the pair
(X, 13

10D) is log canonical at the point Ox, one has m 6 10
13 . Then

(

D −mZ1

)

· Z1 < D · Z1 =
5

33
<

10

13
.

since Z2
1 > 0. By Lemma 1.3.8, the log pair (X, 13

10D) is log canonical at the point P . This is a
contradiction. �

3.8. Sporadic cases with I = 8

Lemma 3.8.1. Let X be a quasismooth hypersurface of degree 46 in P(7, 11, 13, 23). Then
lct(X) = 35

48 .

Proof. The surface X can be defined by the equation t2 + y3z + xz3 + x5y = 0. The surface X
is singular at the points Ox, Oy and Oz. The curves Cx, Cy and Cz are irreducible. We have

35

48
= lct

(

X,
8

7
Cx

)

< lct

(

X,
8

13
Cz

)

=
91

80
< lct

(

X,
8

11
Cy

)

=
55

48
.

In particular, lct(X) 6 35
48 . Suppose that lct(X) < 35

48 . Then there is an effective Q-divisor

D ∼Q −KX such that the pair (X, 35
48D) is not log canonical at some point P . By Lemma 1.3.6,

we may assume that the support of the divisor D contains none of the curves Cx, Cy and Cz.
Since the curve Cx is singular at the point Oz, the inequality

11D · Cx =
16

13
<

48

35
shows that the point P cannot belong to Cx. Also, the inequality

7D · Cy =
16

13
<

48

35
implies that the point P is not in Cy. Since

D · Cz =
16

7 · 11
<

48

35
,

the point P cannot be in Cz either.
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Consider the pencil L on X defined by the equations λx4y + µz3 = 0, [λ : µ] ∈ P1. There is
a unique member Z in L passing through the point P . Since P 6∈ Cx ∪ Cy ∪ Cz, the curve Z is
defined by an equation of the form x4y = αz3, where α is a non-zero constant. The open subset
Z \ Cx of the curve Z is a Z7-quotient of the affine curve

y − αz3 = t2 + y3z + z3 + y = 0 ⊂ C3 ∼= Spec
(

C
[

y, z, t
]

)

that is isomorphic to the plane affine curve C ⊂ C2 defined by the equation

t2 + α3z10 + (1 + α)z3 = 0 ⊂ C2 ∼= Spec
(

C
[

y, z
]

)

.

The curve C is irreducible if α 6= −1 and reducible if α = −1. Since the Cx is not contained
in the support of Z, the curve Z is irreducible if α 6= −1 and reducible if α = −1. From
the equation of C, we can see that the log pair (X, 35

234Z) is log canonical at the point P . By
Lemma 1.3.6, we may assume that Supp(D) does not contain at least one irreducible component
of the curve Z.

Suppose that α 6= −1. Then Z 6⊆ Supp(D) and

48

77
= D · Z > multP

(

D
)

>
48

35
.

This is a contradiction. Thus, α = −1. Then it follows from the equation of C that the curve
Z consists of two irreducible and reduced curves Z1 and Z2. Without loss of generality we may
assume that the point P belongs to the curve Z1.

Put D = mZ1 + Ω, where Ω is an effective Q-divisor such that Z1 6⊂ Supp(Ω). Since the pair
(X, 48

35D) is log canonical at the point Ox, one has m 6 35
48 . Then

(

D −mZ1

)

· Z1 < D · Z1 =
24

77
<

48

35
.

since Z2
1 > 0. By Lemma 1.3.8, the log pair (X, 48

35D) is log canonical at the point P . This is a
contradiction. �

Lemma 3.8.2. Let X be a quasismooth hypersurface of degree 81 in P(7, 18, 27, 37). Then
lct(X) = 35

72 .

Proof. The surface X can be defined by the quasihomogeneous equation

z3 − y3z + xt2 + x9y = 0.

The surface X is singular at the points Ox, Oy, Ot and Q = [0 : 1 : 1 : 0].
The curve Cx consists of two irreducible and reduced curves Lxz and Rx = {x = z2−y3 = 0}.

These two curves intersect each other only at the point Ot. Also,

L2
xz = −

47

18 · 37
, R2

x = −
20

9 · 37
, Lxz ·Rx =

3

37
.

The curve Cy is irreducible and

35

72
= lct

(

X,
8

7
Cx

)

< lct

(

X,
8

18
Cy

)

=
15

8
.
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Suppose that lct(X) < 35
72 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 35
72D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
Lxz 6⊆ Supp(D) or Rx 6⊆ Supp(D).

Since either Lxz 6⊆ Supp(D) or Rx 6⊆ Supp(D), one of the inequalities

multOt(D) 6 37D · Lxz =
4

9
<

72

35
, multOt(D) 6 37D · Rx =

8

9
<

72

35

must hold, and hence the point P cannot be Ot. Since multOx(D) 6 7D · Cy = 24
37 <

72
35 , the

point P cannot be the point Ox.
Put D = mLxz + Ω, where Ω is an effective Q-divisor such that Lxz 6⊂ Supp(Ω). If m 6= 0,

then
16

18 · 37
= D ·Rx > mLxz ·Rx =

3m

37
,

and hence m 6 8
27 . Since

18
(

D −mLxz

)

· Lxz =
8 + 47m

37
6

72

35
it follows from Lemma 1.3.8 that the point P cannot belong to Lxz.

Now we write D = ǫZx + ∆, where ∆ is an effective Q-divisor such that Zx 6⊂ Supp(∆). If
ǫ 6= 0, then

8

18 · 37
= D · Lxz > ǫRx · Lxz =

3ǫ

37
,

and hence ǫ 6 4
27 . Since

9
(

D − ǫRx

)

·Rx =
8 + 20ǫ

37
6

72

35
it follows from Lemma 1.3.8 that the point P cannot belong to Rx. Consequently, the point
P must be a smooth point in the outside of Cx. However, since H0(P,OP(189)) contains the
monomials x27, y7x9 and z7, it follows from Lemma 1.3.9 that P must be either a singular point
of X or a point on Cx. This is a contradiction. �

3.9. Sporadic cases with I = 9

Lemma 3.9.1. Let X be a quasismooth hypersurface of degree 64 in P(7, 15, 19, 32). Then
lct(X) = 35

54 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y3z + xz3 + x7y = 0.

The surface X is singular only at the points Ox, Oy and Oz. The curves Cx and Cy are
irreducible, and

35

54
= lct

(

X,
9

7
Cx

)

< lct

(

X,
9

15
Cy

)

=
25

18
.

In particular, lct(X) 6 35
54 .

Suppose that lct(X) < 35
54 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 35
54D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the
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support of the divisor D contains neither the curve Cx nor the curve Cy. Then two inequalities
19D · Cx = 6

5 <
54
35 , 7D · Cy = 18

19 <
54
35 show that the point P must be a smooth point in the

outside of Cx.
Note that H0(P,OP(133)) contains the monomials x19, y7x4 and z7 and hence it follows from

Lemma 1.3.9 that the point P is either a singular point of X or a point on Cx. This is a
contradiction. �

3.10. Sporadic cases with I = 10

Lemma 3.10.1. Let X be a quasismooth hypersurface of degree 82 in P(7, 19, 25, 41). Then
lct(X) = 7

12 .

Proof. The surface X can be defined by the quasihomogeneous equation

t2 + y3z + xz3 + x9y = 0.

It is singular at the points Ox, Oy and Oz.
The curves Cx and Cy are irreducible. We have

7

12
= lct

(

X,
10

7
Cx

)

< lct

(

X,
10

19
Cy

)

=
19

12
,

and hence lct(X) 6 7
12 .

Suppose that lct(X) < 7
12 . Then there is an effective Q-divisor D ∼Q −KX such that the pair

(X, 7
12D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the support

of the divisor D contains neither the curve Cx nor the curve Cy. Since 25D · Cx = 20
19 <

12
7 and

7D · Cy = 4
5 <

12
7 , the point P must be a smooth point in the outside of the curve Cx. Note

that H0(P,OP(175)) contains the monomials x25, x6y7 and z7, and hence the point P cannot
be a smooth point in the outside of Cx by Lemma 1.3.9. Consequently, lct(X) = 7

12 . �

Lemma 3.10.2. Let X be a quasismooth hypersurface of degree 117 in P(7, 26, 39, 55). Then
lct(X) = 7

18 .

Proof. The surface X can be defined by the equation z3 − y3z + xt2 + x13y = 0. It is singular
at the points Ox, Oy, Ot and Q = [0 : 1 : 1 : 0].

The curve Cx consists of two irreducible curves Lxz and Rx = {x = z2 − y3 = 0}. These two
curves intersect each other only at the point Ot. It is easy to check

L2
xz = −

71

26 · 55
, R2

x = −
32

13 · 55
, Lxz · Rx =

3

55
.

On the other hand, the curve Cy is irreducible. We have

7

18
= lct

(

X,
10

7
Cx

)

< lct

(

X,
10

26
Cy

)

=
13

6
.

In particular, lct(X) 6 7
18 .

Suppose that lct(X) < 7
18 . Then there is an effective Q-divisor D ∼Q −KX such that the

pair (X, 7
18D) is not log canonical at some point P . By Lemma 1.3.6, we may assume that the

support of the divisor D does not contain the curve Cy. Similarly, we may assume that either
Lxz 6⊂ Supp(D) or Rx 6⊂ Supp(D).
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Since 7D · Cy = 6
11 <

18
7 , the point P cannot be the point Ox. Meanwhile, since the support

of D does not contain at least one components of Cx, one of the inequalities

multOt(D) 6 55D · Lxz =
5

13
<

18

7
,

multOt(D) 6 55D ·Rx =
10

13
<

18

7
must hold, and hence the point P cannot be the point Ot.

Put D = mLxz + Ω, where Ω is an effective Q-divisor such that Lxz 6⊂ Supp(Ω). If m 6= 0,
then

10

13 · 55
= D ·Rx > mLxz ·Rx =

3m

55
,

and hence m 6 10
39 . Then

26
(

D −mLxz

)

· Lxz =
10 + 71m

55
<

18

7
,

and hence Lemma 1.3.8 implies that the point P cannot belong to Lxz.
Now we write D = ǫRx + ∆, where ∆ is an effective Q-divisor such that Rx 6⊂ Supp(∆). If

ǫ 6= 0, then
10

26 · 55
= D · Lxz > ǫRx · Lxz =

3ǫ

55
,

and hence ǫ 6 5
39 . Then

13(D − ǫRx

)

·Rx =
10 + 32ǫ

55
<

18

7
.

Thus, Lemma 1.3.4 shows that the point P is not on Rx.
Therefore, the point P must be a smooth point in the outside of the curve Cx. Since

H0(P,OP(273)) contains the monomials x39, y7x13 and z7, it follows from Lemma 1.3.9 that
P is either a point on Cx or a singular point of X. This is a contradiction. �

Part 4. The Big Table

The tables contains the following information on del Pezzo surfaces.

• The first column: the weights (a0, a1, a2, a3) of the weighted projective space P.
• The second column: the degree of the surface X ⊂ P.
• The third column: the self-intersection number K2

X of an anticanonical divisor of X.
• The fourth column: the rank ρ of the Picard group of the surface X.
• The fifth column: the global log canonical theeshold lct(X) of X.
• The sixth column: the possible monomials in x, y, z, t in the defining equation
f(x, y, z, t) = 0 of the surface X.

• The seventh column: the information on the singular points of X. We use the standard
notation for cyclic quotient singularities along with the following convention: when we
write, for instance, OxOy = n × 1

r
(a, b), we mean that there are n cyclic quotient sin-

gularities of type 1
r
(a, b) cut out on X by the equations z = t = 0 that are different

from the point Ox in the case when Ox ∈ X and Ox is not of type 1
r
(a, b), and that are

different from the point Oy in the case when Oy ∈ X and Oy is not of type 1
r
(a, b).
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Log del Pezzo surfaces with I = 1

Weights Degree K2
X ρ lct Monomials Singular Points

(2, 2n + 1, 2n + 1, 4n + 1) 8n+ 4 2
(2n+1)(4n+1) 8 1

y4, y3z, y2z2,
yz3, z4, xt2,

xn+1yt, xn+1zt,
x2n+1y2,
x2n+1yz,

x2n+1z2, x4n+2

Ot = 1
4n+1(1, 1)

OyOz =
= 4 × 1

2n+1(1, n)

(1, 2, 3, 5) 10 1
3 9

1a

7
10

b

t2, yzt, y2z2, y5,
xz3, xy2t, xy3z,
x2zt, x2yz2,
x2y4, x3yt,
x3y2z, x4z2,

x4y3, x5t, x5yz,
x6y2, x7z, x8y,

x10

Oz = 1
3 (1, 1)

(1, 3, 5, 7) 15 1
7 9

1c

8
15

d

z3, yzt, y5, xt2,
xy3z, x2yz2,
x2y2t, x3zt,
x3y4, x4y2z,

x5z2, x5yt, x6y3,
x7yz, x8t, x9y2,
x10z, x12y, x15

Ot = 1
7(3, 5)

(1, 3, 5, 8) 16 2
15 10 1

t2, yzt, y2z2,
xz3, xy5, x2y2t,
x2y3z, x3zt,
x3yz2, x4y4,
x5yt, x5y2z,

x6z2, x7y3, x8t,
x8yz, x10y2,
x11z, x13y, x16

Oy = 1
3(1, 1)

Oz = 1
5 (1, 1)

a: if Cx has an ordinary double point, b: if Cx has a non-ordinary double point,
c: if the defining equation of X contains yzt, d: if the defining equation of X does not contain yzt.
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Log del Pezzo surfaces with I = 1

Weights Degree K2
X ρ lct Monomials Singular Points

(2, 3, 5, 9) 18 1
15 7

2a

11
6

b

t2, yz3, y3t, y6,
xy2z2, x2zt,
x2y3z, x3yt,

x3y4, x4z2, x5yz,
x6y2, x9

Oz = 1
5(1, 2)

OyOt = 2 × 1
3(1, 1)

(3, 3, 5, 5) 15 1
15 5 2

t3, zt2, z2t, z3,
y5, xy4, x2y3,
x3y2, x4y, x5

OxOy = 5 × 1
3 (1, 1)

OzOt = 3 × 1
5(1, 1)

(3, 5, 7, 11) 25 5
231 5 21

10

z2t, y5, xt2,
xy3z, x2yz2,
x3yt, x5y2, x6z

Ox = 1
3(1, 1)

Oz = 1
7(3, 5)

Ot = 1
11(5, 7)

(3, 5, 7, 14) 28 2
105 6 9

4

t2, z2t, z4, xy5,
x2y3z, x3yt,

x3yz2, x6y2, x7z

Ox = 1
3(1, 1)

Oy = 1
5(1, 2)

OzOt = 2 × 1
7(3, 5)

(3, 5, 11, 18) 36 2
165 6 21

10

t2, y5z, xz3,
xy3t, x2y6,
x3yz2, x5y2z,
x6t, x7y3, x12

Oy = 1
5(1, 1)

Oz = 1
11(5, 7)

OxOt = 2 × 1
3(1, 1)

(5, 14, 17, 21) 56 4
1785 4 25

8
yt2, y4, xz3, x5yz,

x7t

Ox = 1
5(2, 1)

Oz = 1
17(7, 2)

Ot = 1
21(5, 17)

OyOt = 1 × 1
7(5, 3)

(5, 19, 27, 31) 81 3
2945 3 25

6
z3, yt2, xy4, x7yz,

x10t

Ox = 1
5(2, 1)

Oy = 1
19(2, 3)

Ot = 1
31(5, 27)

(5, 19, 27, 50) 100 2
2565 4 25

6
t2, yz3, xy5, x7y2z,

x10t, x20

Oy = 1
19(2, 3)

Oz = 1
27(5, 23)

OxOt = 2 × 1
5(2, 1)

(7, 11, 27, 37) 81 3
2849 3 49

12
z3, y4t, xt2, x3y3z,

x10y

Ox = 1
7(3, 1)

Oy = 1
11(7, 5)

Ot = 1
37(11, 27)

a: if Cy has a tacnodal point, b: if Cy has no tacnodal points.
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Log del Pezzo surfaces with I = 1

Weights Degree K2
X ρ lct Monomials Singular Points

(7, 11, 27, 44) 88 2
2079 4 35

8
t2, y4t, y8, xz3,
x4y3z, x11y

Ox = 1
7(3, 1)

Oz = 1
27(11, 17)

OyOt = 2 × 1
11 (7, 5)

(9, 15, 17, 20) 60 1
765 3 21

4 t3, y4, xz3, x5y

Ox = 1
9(4, 1)

Oz = 1
17(5, 1)

OxOy = 1 × 1
3 (1, 1)

OyOt = 1 × 1
5(2, 1)

(9, 15, 23, 23) 69 1
1035 5 6

t3, zt2, z2t, z3, xy4,
x6y

Ox = 1
9(1, 1)

Oy = 1
15(1, 1)

OxOy = 1 × 1
3 (1, 1)

OzOt = 3 × 1
23 (3, 5)

(11, 29, 39, 49) 127 127
609609 3 33

4 z2t, yt2, xy4, x8z

Ox = 1
11(7, 5)

Oy = 1
29(1, 2)

Oz = 1
39(11, 29)

Ot = 1
49(11, 39)

(11, 49, 69, 128) 256 2
37191 2 55

6 t2, yz3, xy5, x17z

Ox = 1
11(5, 7)

Oy = 1
49(2, 3)

Oz = 1
69(11, 59)

(13, 23, 35, 57) 127 127
596505 3 65

8 z2t, y4z, xt2, x8y

Ox = 1
13(9, 5)

Oy = 1
23(13, 11)

Oz = 1
35(13, 23)

Ot = 1
57(23, 35)

(13, 35, 81, 128) 256 2
36855 2 91

10 t2, y5z, xz3, x17y

Ox = 1
13(3, 11)

Oy = 1
35(13, 23)

Oz = 1
81(35, 47)



E
X

C
E

P
T

IO
N

A
L

D
E

L
P

E
Z
Z
O

H
Y

P
E

R
S
U

R
F
A

C
E

S
1
3
7

Log del Pezzo surfaces with I = 2

Weights Degree K2
X ρ lct Monomials Singular Points

(3, 3n, 3n + 1, 3n + 1) 9n+ 3 4
3n(3n+1) 7 1

t3, zt2, z2t, z3, xy3,
xn+1y2, x2n+1y,

x3n+1

Oy = 1
3n

(1, 1)

OxOy = 3 × 1
3(1, 1)

OzOt = 3 × 1
3n+1(1, n)

(3, 3n + 1, 3n + 2, 3n + 2) 9n+ 6 4
(3n+1)(3n+2) 5 1

t3, zt2, z2t, z3, xy3,
xn+1yt, xn+1yz,

x3n+2

Oy = 1
3n+1(1, 1)

OzOt =
= 3 × 1

3n+2(3, 3n + 1)

(3, 3n + 1, 3n + 2, 6n + 1) 12n + 5 4(12n+5)
3(3n+1)(3n+2)(6n+1) 5 1

x3n+1z, y3z, z2t,
t2x, xnyz2, xn+1yt,

x2n+1y2

Ox = 1
3(1, 1)

Oy = 1
3n+1(3, 3n)

Oz = 1
3n+2(3, 3n + 1)

Ot = 1
6n+1 (3n+1, 3n+2)

(3, 3n + 1, 6n + 1, 9n) 18n + 3 4
9n(3n+1) 5 1

z3, y3t, xt2 xnyz2,
x2ny2z, x3ny3,
x3n+1t, x6n+1

Oy = 1
3n+1(1, n)

Ot = 1
9n

(3n + 1, 6n + 1)

OxOt = 2 × 1
3(1, 1)

(3, 3n + 1, 6n + 1, 9n + 3) 18n + 6 8
3(3n+1)(6n+1) 6 1

t2, y3t, y6, xz3,
xn+1yz2, x2n+1y2z,
x3n+1t, x3n+1y3,

x6n+2

Oz = 1
6n+1(3n+1, 3n+2)

OxOt = 2 × 1
3(1, 1)

OyOt = 2 × 1
3n+1(1, n)

(4, 2n + 1, 4n + 2, 6n + 1) 12n + 6 3
(2n+1)(6n+1) 6 1

z3, y2z2, y4z, y6,
xt2, xn+1yt, x2n+1z,

x2n+1y2

Ox = 1
4(1, 1)

Ot = 1
6n+1 (2n+1, 4n+2)

OxOz = 1 × 1
2 (1, 1)

OyOz = 3 × 1
2n+1(1, n)

(4, 2n + 3, 2n + 3, 4n + 4) 8n+ 12 1
(n+1)(2n+3) 7 1

y4, y3z, y2z2, yz3,
z4, xt2, xn+2t,

x2n+3

Ot = 1
4n+4 (2, 2)

OxOt = 2 × 1
4(1, 1)

OyOz =

= 4 × 1
2n+3(4, 2n + 1)
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Log del Pezzo surfaces with I = 2

Weights Degree K2
X ρ lct Monomials Singular Points

(2, 3, 4, 5) 12 2
5 5

1a

7
12

b

z3, yzt, y4, xt2,
xy2z, x2z2, x2yt,
x3y2, x4z, x6

Ot = 1
5(3, 4)

OxOz = 3 × 1
2(1, 1)

(2, 3, 4, 7) 14 1
3 6 1

t2, yzt, y2z2, xz3,
xy4, x2yt, x2y2z,
x3z2, x4y2, x5z, x7

Oy = 1
3(1, 1)

Oz = 1
4(1, 1)

OxOz = 3 × 1
2(1, 1)

(3, 4, 5, 10) 20 2
15 5 3

2

t2, z2t, z4, y5, xy3z,
x2yt, x2yz2, x4y2,

x5z

Ox = 1
3(1, 1)

OyOt = 1 × 1
2 (1, 1)

OzOt = 2 × 1
5(3, 4)

(3, 4, 10, 15) 30 1
15 7 3

2

t2, z3, y5z, xy3t,
x2yz2, x2y6, x4y2z,
x5t, x6y3, x10

Oy = 1
4(1, 1)

OyOz = 1 × 1
2 (1, 1)

OzOt = 1 × 1
5(3, 4)

OxOt = 2 × 1
3(1, 1)

(5, 13, 19, 22) 57 6
715 3 25

12
t2y, z3, xy4, x5yz,

x7t

Ox = 1
5(3, 4)

Oy = 1
13(2, 3)

Ot = 1
22(5, 19)

(5, 13, 19, 35) 70 8
1235 3 25

12
t2, yz3, xy5, x5y2z,

x7t, x14

Oy = 1
13(2, 3)

Oz = 1
19 (5, 16)

OxOt = 2 × 1
5(3, 4)

(6, 9, 10, 13) 36 4
195 4 25

12
t2z, y4, xz3, x3y2,

x6

Oz = 1
10 (3, 1)

Ot = 1
13(2, 3)

OxOy = 2 × 1
3(1, 1)

OxOz = 1 × 1
2(1, 1)

a: if the defining equation of X contains yzt, b: if the defining equation of X contains no yzt.
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Log del Pezzo surfaces with I = 2

Weights Degree K2
X ρ lct Monomials Singular Points

(7, 8, 19, 25) 57 57
6650 3 49

24
ty4, z3, xt2, x2y3z,

x7y

Ox = 1
7(5, 4)

Oy = 1
8(7, 3)

Ot = 1
25(8, 19)

(7, 8, 19, 32) 64 1
133 4 35

16
t2, ty4, y8, xz3,
x3y3z, x8y

Ox = 1
7(5, 4)

Oz = 1
19 (8, 13)

OyOt = 2 × 1
8(7, 3)

(9, 12, 13, 16) 48 1
117 3 63

24 t3, y4, xz3, x4y

Ox = 1
9(4, 7)

Oz = 1
13 (4, 1)

OxOy = 1 × 1
3 (1, 1)

OyOt = 1 × 1
4(1, 1)

(9, 12, 19, 19) 57 1
171 5 3

t3, t2z, tz2, z3, xy4,
x5y

Ox = 1
9(1, 1)

Oy = 1
12(1, 1)

OxOy = 1 × 1
3 (1, 1)

OzOt = 3 × 1
19(3, 4)

(9, 19, 24, 31) 81 3
1178 3 3 t2y, y3z, xz3, x9

Oy = 1
19(3, 4)

Oz = 1
24 (19, 7)

Ot = 1
31(3, 8)

OxOz = 1 × 1
3(1, 1)

(10, 19, 35, 43) 105 6
4085 3 57

14 t2y, z3, xy5, x7z

Ox = 1
10 (3, 1)

Oy = 1
19(16, 5)

Ot = 1
43(2, 7)

OxOz = 1 × 1
5(4, 3)

(11, 21, 28, 47) 105 5
3619 3 77

30 y5, yz3, xt2, x7z

Ox = 1
11 (10, 3)

Oy = 1
28(11, 19)

Ot = 1
47(3, 4)

OyOz = 1 × 1
7 (4, 5)
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Log del Pezzo surfaces with I = 2

Weights Degree K2
X ρ lct Monomials Singular Points

(11, 25, 32, 41) 107 107
90200 3 11

3 t2y, y3z, xz3, x6t

Ox = 1
11 (3, 10)

Oy = 1
25(11, 16)

Oz = 1
32 (25, 9)

Ot = 1
41(11, 32)

(11, 25, 34, 43) 111 222
201025 3 33

8 t2y, z2t, xy4, x7z

Ox = 1
11 (3, 10)

Oy = 1
25(1, 2)

Oz = 1
34 (11, 25)

Ot = 1
43(11, 34)

(11, 43, 61, 113) 226 8
28853 2 55

12 t2, yz3, xy5, x15z

Ox = 1
11 (10, 3)

Oy = 1
43(2, 3)

Oz = 1
61 (11, 52)

(13, 18, 45, 61) 135 2
2379 3 91

30 z3, y5z, xt2, x9y

Ox = 1
13 (2, 3)

Oy = 1
18(13, 7)

Ot = 1
61(2, 5)

OyOz = 1 × 1
9 (4, 7)

(13, 20, 29, 47) 107 107
88595 3 65

18 y3t, yz3, xt2, x6z

Ox = 1
13 (7, 8)

Oy = 1
20(13, 9)

Oz = 1
29 (13, 18)

Ot = 1
47(20, 29)

(13, 20, 31, 49) 111 111
98735 3 65

16 z3t, y4z, xt2, x7y

Ox = 1
13 (1, 2)

Oy = 1
20(13, 9)

Oz = 1
31 (13, 20)

Ot = 1
49(20, 31)

(13, 31, 71, 113) 226 8
28613 2 91

20 t2, y5z, xz3, x15y

Ox = 1
13 (6, 9)

Oy = 1
31(13, 20)

Oz = 1
71 (31, 42)

(14, 17, 29, 41) 99 198
141491 3 51

10 t2y, z2t, xy5, x5z

Ox = 1
14 (3, 13)

Oy = 1
17(12, 7)

Oz = 1
29 (14, 17)

Ot = 1
41(14, 29)



E
X

C
E

P
T

IO
N

A
L

D
E

L
P

E
Z
Z
O

H
Y

P
E

R
S
U

R
F
A

C
E

S
1
4
1

Log del Pezzo surfaces with I = 3

Weights Degree K2
X ρ lct Monomials Singular Points

(5, 7, 11, 13) 33 27
455 3 49

36
t2y, z3, xy4, x3yz,

x4t

Ox = 1
5(2, 1)

Oy = 1
7(2, 3)

Ot = 1
13(5, 11)

(5, 7, 11, 20) 40 18
385 4 25

18
t2, yz3, xy5, x3y2z,

x4t, x8

Oy = 1
7(2, 3)

Oz = 1
11 (1, 4)

OxOt = 2 × 1
5(2, 1)

(11, 21, 29, 37) 95 285
82621 3 11

4 t2y, z2t, xy4, x6z

Ox = 1
11 (5, 2)

Oy = 1
21(1, 2)

Oz = 1
29 (11, 21)

Ot = 1
37(11, 29)

(11, 37, 53, 98) 196 18
21571 2 55

18 t2, yz3, xy5, x13z

Ox = 1
11 (2, 5)

Oy = 1
37(2, 3)

Oz = 1
53 (11, 45)

(13, 17, 27, 41) 95 95
27183 3 65

24 z2t, y4z, xt2, x6y

Ox = 1
13 (1, 2)

Oy = 1
17(13, 7)

Oz = 1
27 (13, 17)

Ot = 1
41(17, 27)

(13, 27, 61, 98) 196 2
2379 2 91

30 t2, y5z, xz3, x13y

Ox = 1
13 (9, 7)

Oy = 1
27(13, 17)

Oz = 1
61 (27, 37)

(15, 19, 43, 74) 148 6
4085 2 57

14 t2, yz3, xy7, x7z

Ox = 1
15 (2, 7)

Oy = 1
19(5, 17)

Oz = 1
43 (15, 31)
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Log del Pezzo surfaces with I = 4

Weights Degree K2
X ρ lct Monomials Singular Points

(6, 6n + 3, 6n + 5, 6n + 5) 18n+ 15 8
(6n+3)(6n+5) 5 1

t3, zt2, z2t, z3,
xy3, x2n+2y

Ox = 1
6(1, 1)

Oy = 1
6n+3 (1, 1)

OxOy = 1 × 1
3(1, 1)

OzOt =
= 3 × 1

6n+5 (2, 2n + 1)

(6, 6n + 5, 12n + 8, 18n + 9) 36n+ 24 8
3(6n+3)(6n+5) 3 1

z3, y3t, xt2,
x2n+1y2z, x6n+4

Oy = 1
6n+5 (2, 2n + 1)

Ot =
= 1

18n+9(6n+5, 12n+8)

OxOz = 1 × 1
2(1, 1)

OxOt = 1 × 1
3 (1, 1)

(6, 6n + 5, 12n + 8, 18n + 15) 36n+ 30 4
3(3n+2)(6n+5) 4 1

t2, y3t, y6, xz3,
x2n+2y2z, x6n+5

Oz = 1
12n+8(6n+5, 6n+7)

OxOz = 1 × 1
2(1, 1)

OxOt = 1 × 1
3 (1, 1)

OyOt =

= 2 × 1
6n+5 (2, 2n + 1)

(5, 6, 8, 9) 24 8
45 3 1 t2y, y4, z3, x2yz,

x3t

Ox = 1
5(1, 3)

Ot = 1
9(5, 8)

OyOz = 1 × 1
2(1, 1)

OyOt = 1 × 1
3(1, 1)

(5, 6, 8, 15) 30 2
15 4 1

t2, y5, yz3,
x2y2z, x3t, x6

Oz = 1
8(5, 7)

OxOt = 2 × 1
5 (1, 3)

OyOt = 1 × 1
3(1, 1)

OyOz = 1 × 1
2(1, 1)

(9, 11, 12, 17) 45 20
561 3 77

60 t2y, y3z, xz3, x5

Oy = 1
11 (3, 2)

Oz = 1
12(11, 5)

Ot = 1
17(3, 4)

OxOz = 1 × 1
3(1, 1)
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Log del Pezzo surfaces with I = 4

Weights Degree K2
X ρ lct Monomials Singular Points

(10, 13, 25, 31) 75 24
2015 3 91

60 t2y, z3, xy5, x5z

Ox = 1
10 (3, 1)

Oy = 1
13 (12, 5)

Ot = 1
31 (2, 5)

OxOz = 1 × 1
5(3, 1)

(11, 17, 20, 27) 71 284
25245 3 11

6 t2y, y3z, xz3, x4t

Ox = 1
11 (2, 3)

Oy = 1
17 (11, 10)

Oz = 1
20 (17, 7)

Ot = 1
27 (11, 20)

(11, 17, 24, 31) 79 158
17391 3 33

16 t2y, tz2, xy4, x5z

Ox = 1
11 (2, 3)

Oy = 1
17 (1, 2)

Oz = 1
24 (11, 17)

Ot = 1
31 (11, 24)

(11, 31, 45, 83) 166 32
15345 2 55

24 t2, yz3, xy5, x11z

Ox = 1
11 (3, 2)

Oy = 1
31 (2, 3)

Oz = 1
45 (11, 38)

(13, 14, 19, 29) 71 568
50141 3 65

36 ty3, yz3, xt2, x4z

Ox = 1
13 (1, 3)

Oy = 1
14 (13, 5)

Oz = 1
19 (13, 10)

Ot = 1
29 (14, 19)

(13, 14, 23, 33) 79 632
69069 3 65

32 tz2, y4z, xt2, x5y

Ox = 1
13 (1, 2)

Oy = 1
14 (13, 5)

Oz = 1
23 (13, 14)

Ot = 1
33 (14, 23)

(13, 23, 51, 83) 166 32
15249 2 91

40 t2, y5z, xz3, x11y

Ox = 1
11 (7, 6)

Oy = 1
23 (13, 14)

Oz = 1
51 (23, 32)
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Log del Pezzo surfaces with I = 5

Weights Degree K2
X ρ lct Monomials Singular Points

(11, 13, 19, 25) 63 63
2717 3 13

8 t2y, tz2, xy4, x4z

Ox = 1
11 (2, 3)

Oy = 1
13 (1, 2)

Oz = 1
19 (11, 13)

Ot = 1
25 (11, 19)

(11, 25, 37, 68) 136 2
407 2 11

6 t2, yz3, xy5, x9z

Ox = 1
11 (3, 2)

Oy = 1
25 (2, 3)

Oz = 1
37 (11, 31)

(13, 19, 41, 68) 136 50
10127 2 91

50 t2, y5z, xz3, x9y

Ox = 1
13 (2, 3)

Oy = 1
19 (13, 11)

Oz = 1
41 (19, 27)
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Log del Pezzo surfaces with I = 6

Weights Degree K2
X ρ lct Monomials Singular Points

(8, 4n + 5, 4n + 7, 4n + 9) 12n+ 23 9(12n+23)
2(4n+5)(4n+7)(4n+9) 3 1 z2t, yt2, xy3,

xn+2z

Ox = 1
8(4n + 5, 4n + 9)

Oy = 1
4n+5(1, 2)

Oz = 1
4n+7(8, 4n + 5)

Ot = 1
4n+9(8, 4n + 7)

(9, 3n + 8, 3n + 11, 6n + 13) 12n+ 35 4(12n+35)
(3n+8)(3n+11)(6n+13) 3 1

z2t, y3z, xt2,
xn+3y

Ox = 1
9(3n + 11, 6n + 13)

Oy = 1
3n+8(9, 6n + 13)

Oz = 1
3n+11(9, 3n + 8)

Ot =
= 1

6n+13(3n+8, 3n+11)

(7, 10, 15, 19) 45 54
665 3 35

54
z3, y3z, xt2,

x5y

Ox = 1
7(1, 5)

Oy = 1
10(7, 9)

Ot = 1
19(2, 3)

OyOz = 1 × 1
5 (1, 2)

(11, 19, 29, 53) 106 72
6061 2 55

36
t2, yz3, xy5,

x7z

Ox = 1
11 (8, 9)

Oy = 1
19(2, 3)

Oz = 1
29 (11, 24)

(13, 15, 31, 53) 106 24
2015 2 91

60
t2, y5z, xz3,

x7y

Ox = 1
13 (5, 1)

Oy = 1
15(13, 8)

Oz = 1
31 (15, 22)
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Log del Pezzo surfaces with I = 7

Weights Degree K2
X ρ lct Monomials Singular Points

(11, 13, 21, 38) 76 14
429 2 13

10 t2, yz3, xy5, x5z

Ox = 1
11 (2, 5)

Oy = 1
13(2, 3)

Oz = 1
21 (11, 17)

Log del Pezzo surfaces with I = 8

Weights Degree K2
X ρ lct Monomials Singular Points

(7, 11, 13, 23) 46 128
1001 2 35

48 t2, y3z, xz3, x5y

Ox = 1
7 (3, 1)

Oy = 1
11(7, 1)

Oz = 1
13 (11, 10)

(7, 18, 27, 37) 81 32
777 3 35

72 y3z, z3, xt2, x9y

Ox = 1
7 (3, 1)

Oy = 1
18(7, 1)

Ot = 1
37 (2, 3)

OyOz = 1 × 1
9(7, 1)

Log del Pezzo surfaces with I = 9

Weights Degree K2
X ρ lct Monomials Singular Points

(7, 15, 19, 32) 64 54
665 2 35

54 t2, y3z, xz3, x7y

Ox = 1
7 (5, 4)

Oy = 1
15(7, 2)

Oz = 1
19 (15, 13)

Log del Pezzo surfaces with I = 10

Weights Degree K2
X ρ lct Monomials Singular Points

(7, 19, 25, 41) 82 8
133 2 7

12 t2, y3z, xz3, x9y

Ox = 1
7 (2, 3)

Oy = 1
19(7, 3)

Oz = 1
25 (19, 16)

(7, 26, 39, 55) 117 30
1001 3 7

18 y3z, z3, xt2, x13y

Ox = 1
7 (2, 3)

Oy = 1
26(7, 3)

Ot = 1
55 (26, 39)

OyOz = 1 × 1
13(7, 3)
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[31] M. Lübke, Stability of Einstein-Hermitian vector bundles

Manuscripta Mathematica 42 (1983), 245–257

[32] D.Markushevich, Yu.Prokhorov, Exceptional quotient singularities

American Journal of Mathematics 121 (1999), 1179–1189

[33] Y.Matsushima, Sur la structure du groupe d’homéomorphismes analytiques
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