THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Exceptional del Pezzo hypersurfaces

Citation for published version:

Cheltsov, I, Park, J \& Shramov, C 2010, 'Exceptional del Pezzo hypersurfaces' Journal of Geometric Analysis, vol. 20, no. 4, pp. 787-816. DOI: 10.1007/s12220-010-9135-2

Digital Object Identifier (DOI):
10.1007/s12220-010-9135-2

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

Journal of Geometric Analysis

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1007/s12220-010-9135-2

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

EXCEPTIONAL DEL PEZZO HYPERSURFACES

IVAN CHELTSOV, JIHUN PARK, CONSTANTIN SHRAMOV

Abstract

We compute global log canonical thresholds of a large class of quasismooth wellformed del Pezzo weighted hypersurfaces in $\mathbb{P}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. As a corollary we obtain the existence of orbifold Kähler-Einstein metrics on many of them, and classify exceptional and weakly exceptional quasismooth well-formed del Pezzo weighted hypersurfaces in $\mathbb{P}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$.

Contents

Part 1. Introduction 2
1.1. Background 2
1.2. Results1.3. Preliminarie11
1.4. Notation 14
1.5. The scheme of the proof 14
Part 2. Infinite series 16
2.1. Infinite series with $I=1$ 16
2.2. Infinite series with $I=2$ 17
2.3. Infinite series with $I=4$ 24
2.4. Infinite series with $I=6$ 28
Part 3. Sporadic cases 40
3.1. Sporadic cases with $I=1$ 40
3.2. Sporadic cases with $I=2$ 57
3.3. Sporadic cases with $I=3$ 85
3.4. Sporadic cases with $I=4$ 100
3.5. Sporadic cases with $I=5$ 119
3.6. Sporadic cases with $I=6$ 126
3.7. Sporadic cases with $I=7$ 128
3.8. Sporadic cases with $I=8$ 129
3.9. Sporadic cases with $I=9$ 131
3.10. Sporadic cases with $I=10$ 132
Part 4. The Big Table 133
References 147

Part 1. Introduction

All varieties are always assumed to be complex, algebraic, projective and normal unless otherwise stated.

1.1. Background

The multiplicity of a nonzero polynomial $f \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ at a point $P \in \mathbb{C}^{n}$ is the nonnegative integer m such that $f \in \mathfrak{m}_{P}^{m} \backslash \mathfrak{m}_{P}^{m+1}$, where \mathfrak{m}_{P} is the maximal ideal of polynomials vanishing at the point P in $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$. It can be also defined by derivatives: the multiplicity of f at the point P is the number

$$
\operatorname{mult}_{P}(f)=\min \left\{m \left\lvert\, \frac{\partial^{m} f}{\partial^{m_{1}} z_{1} \partial^{m_{2}} z_{2} \ldots \partial^{m_{n}} z_{n}}(P) \neq 0\right.\right\}
$$

On the other hand, we have a similar invariant that is defined by integrations. This invariant, which is called the complex singularity exponent of f at the point P, is given by

$$
c_{P}(f)=\sup \left\{\left.c| | f\right|^{-c} \text { is locally } L^{2} \text { near the point } P \in \mathbb{C}^{n}\right\} .
$$

In algebraic geometry this invariant is usually called a \log canonical threshold. Let X be a variety with at most \log canonical singularities, let $Z \subseteq X$ be a closed subvariety, and let D be an effective \mathbb{Q}-Cartier \mathbb{Q}-divisor on the variety X. Then the number

$$
\operatorname{lct}_{Z}(X, D)=\sup \{\lambda \in \mathbb{Q} \mid \text { the } \log \text { pair }(X, \lambda D) \text { is } \log \text { canonical along } Z\}
$$

is called a \log canonical threshold of the divisor D along Z. It follows from [26] that for a polynomial f in n variables over \mathbb{C} and a point $P \in \mathbb{C}^{n}$

$$
\operatorname{lct}_{P}\left(\mathbb{C}^{n}, D\right)=c_{P}(f)
$$

where the divisor D is defined by the equation $f=0$ on \mathbb{C}^{n}. We can define the \log canonical threshold of D on X by

$$
\begin{aligned}
\operatorname{lct}_{X}(X, D) & =\inf \left\{\operatorname{lct}_{P}(X, D) \mid P \in X\right\} \\
& =\sup \{\lambda \in \mathbb{Q} \mid \text { the log pair }(X, \lambda D) \text { is } \log \text { canonical }\} .
\end{aligned}
$$

For simplicity, the \log canonical threshold $\operatorname{lct}_{X}(X, D)$ will be denoted by $\operatorname{lct}(X, D)$.

Example 1.1.1. Let D be a cubic curve on the projective plane \mathbb{P}^{2}. Then

$$
\operatorname{lct}\left(\mathbb{P}^{2}, D\right)=\left\{\begin{array}{l}
1 \text { if } D \text { is a smooth curve, } \\
1 \text { if } D \text { is a curve with ordinary double points, } \\
\frac{5}{6} \text { if } D \text { is a curve with one cuspidal point, } \\
\frac{3}{4} \text { if } D \text { consists of a conic and a line that are tangent, } \\
\frac{2}{3} \text { if } D \text { consists of three lines intersecting at one point, } \\
\frac{1}{2} \text { if } \operatorname{Supp}(D) \text { consists of two lines, } \\
\frac{1}{3} \text { if } \operatorname{Supp}(D) \text { consists of one line. }
\end{array}\right.
$$

Now we suppose that X is a Fano variety with at most \log terminal singularities.
Definition 1.1.2. The global log canonical threshold of the Fano variety X is the number

$$
\operatorname{lct}(X)=\inf \left\{\operatorname{lct}(X, D) \mid D \text { is an effective } \mathbb{Q} \text {-divisor on } X \text { with } D \sim_{\mathbb{Q}}-K_{X}\right\} .
$$

The number $\operatorname{lct}(X)$ is an algebraic counterpart of the α-invariant introduced in [44] and [48] (see [14, Appendix A]). Because X is rationally connected (see [50]), we have

$$
\operatorname{lct}(X)=\sup \left\{\begin{array}{l|l}
\lambda \in \mathbb{Q} & \begin{array}{l}
\text { the log pair }(X, \lambda D) \text { is } \log \text { canonical for every } \\
\text { effective } \mathbb{Q} \text {-divisor numerically equivalent to }-K_{X}
\end{array}
\end{array}\right\} .
$$

It immediately follows from Definition 1.1.2 that

$$
\operatorname{lct}(X)=\sup \left\{\begin{array}{l|l}
\varepsilon \in \mathbb{Q} & \begin{array}{l}
\text { the log pair }\left(X, \frac{\varepsilon}{n} D\right) \text { is log canonical for every } \\
\text { divisor } D \in\left|-n K_{X}\right| \text { and every positive integer } n
\end{array}
\end{array}\right\} .
$$

Example 1.1.3 ([14]). Suppose that $\mathbb{P}\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is a well-formed weighted projective space with $a_{0} \leqslant a_{1} \leqslant \ldots \leqslant a_{n}$ (see [22]). Then

$$
\operatorname{lct}\left(\mathbb{P}\left(a_{0}, a_{1}, \ldots, a_{n}\right)\right)=\frac{a_{0}}{\sum_{i=0}^{n} a_{i}} .
$$

Example 1.1.4. Let X be a smooth hypersurface in \mathbb{P}^{n} of degree $m \leqslant n$. The paper [6] shows that

$$
\operatorname{lct}(X)=\frac{1}{n+1-m}
$$

if $m<n$. For the case $m=n \geqslant 2$ it also shows that

$$
1-\frac{1}{n} \leqslant \operatorname{lct}(X) \leqslant 1
$$

and the left equality holds if X contains a cone of dimension $n-2$. Meanwhile, the papers [13] and [38] show that

$$
1 \geqslant \operatorname{lct}(X) \geqslant\left\{\begin{array}{l}
1 \text { if } n \geqslant 6 \\
\frac{22}{25} \text { if } n=5 \\
\frac{16}{21} \text { if } n=4 \\
\frac{3}{4} \text { if } n=3
\end{array}\right.
$$

if X is general.
Example 1.1.5. Let X be a smooth hypersurface in the weighted projective space $\mathbb{P}\left(1^{n+1}, d\right)$ of degree $2 d \geqslant 4$. Then

$$
\operatorname{lct}(X)=\frac{1}{n+1-d}
$$

in the case when $d<n$ (see [8, Proposition 20]). Suppose that $d=n$. Then the inequalities

$$
\frac{2 n-1}{2 n} \leqslant \operatorname{lct}(X) \leqslant 1
$$

hold (see [13]). But $\operatorname{lct}(X)=1$ if X is general and $n \geqslant 3$. Furthermore for the case $n=3$ the papers [13] and [38] prove that

$$
\operatorname{lct}(X) \in\left\{\frac{5}{6}, \frac{43}{50}, \frac{13}{15}, \frac{33}{38}, \frac{7}{8}, \frac{33}{38}, \frac{8}{9}, \frac{9}{10}, \frac{11}{12}, \frac{13}{14}, \frac{15}{16}, \frac{17}{18}, \frac{19}{20}, \frac{21}{22}, \frac{29}{30}, 1\right\}
$$

and all these values are attained. For instance, if the hypersurface X is given by

$$
w^{2}=x^{6}+y^{6}+z^{6}+t^{6}+x^{2} y^{2} z t \subset \mathbb{P}(1,1,1,1,3) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w])
$$

where $\mathrm{wt}(x)=\mathrm{wt}(y)=\mathrm{wt}(z)=\mathrm{wt}(t)=1$ and $\mathrm{wt}(w)=3$, then lct $(X)=1$ (see [13]).
Example 1.1.6 (21]). Let X be a rational homogeneous space such that the Picard group of X is generated by an ample Cartier divisor D and $-K_{X} \sim r D$ for some positive integer r. Then $\operatorname{lct}(X)=\frac{1}{r}$.
Example 1.1.7. Let X be a quasismooth well-formed (see [22]) hypersurface in $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$ of degree $\sum_{i=1}^{4} a_{i}$ with at most terminal singularities, where $a_{1} \leqslant \ldots \leqslant a_{4}$. Then there are exactly 95 possibilities for the quadruple ($a_{1}, a_{2}, a_{3}, a_{4}$) (see [22], [24]). For a general hypersurface X, it follows from [7], 9], [10] and [13] that

$$
1 \geqslant \operatorname{lct}(X) \geqslant \begin{cases}\frac{16}{21} & \text { if } a_{1}=a_{2}=a_{3}=a_{4}=1 \\ \frac{7}{9} & \text { if }\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(1,1,1,2) \\ \frac{4}{5} & \text { if }\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(1,1,2,2) \\ \frac{6}{7} & \text { if }\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(1,1,2,3) \\ 1 & \text { otherwise }\end{cases}
$$

The global log canonical threshold of the hypersurface

$$
w^{2}=t^{3}+z^{9}+y^{18}+x^{18} \subset \mathbb{P}(1,1,2,6,9) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w])
$$

is equal to $\frac{17}{18}$, where $\operatorname{wt}(x)=\operatorname{wt}(y)=1, \operatorname{wt}(z)=2, \operatorname{wt}(t)=6, \operatorname{wt}(w)=9$ (see [7]).
Example 1.1.8 ([12]). Let X be a singular cubic surface in \mathbb{P}^{3} with at most canonical singularities. The possible singularities of X are listed in [5]. The global \log canonical threshold of X is as follows:

$$
\operatorname{lct}(X)= \begin{cases}\frac{2}{3} & \text { if } \operatorname{Sing}(X)=\left\{\mathbb{A}_{1}\right\} \\ \frac{1}{3} & \text { if } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{4}\right\}, \operatorname{Sing}(X)=\left\{\mathbb{D}_{4}\right\} \text { or } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{2}, \mathbb{A}_{2}\right\} \\ \frac{1}{4} \quad \text { if } \operatorname{Sing}(X) \supseteq\left\{\mathbb{A}_{5}\right\} \text { or } \operatorname{Sing}(X)=\left\{\mathbb{D}_{5}\right\} \\ \frac{1}{6} \quad \text { if } \operatorname{Sing}(X)=\left\{\mathbb{E}_{6}\right\}, \\ \frac{1}{2} \quad \text { otherwise. }\end{cases}
$$

So far we have not seen any single variety whose global log canonical threshold is irrational. In general, it is unknown whether global log canonical thresholds are rational numbers or not(cf. Question 1 in [46]). Even for del Pezzo surfaces with log terminal singularities the rationality of their global log canonical thresholds is unknown. However, we expect more than this as follows:

Conjecture 1.1.9. There is an effective \mathbb{Q}-divisor D on the variety X such that it is \mathbb{Q}-linearly equivalent to $-K_{X}$ and

$$
\operatorname{lct}(X)=\operatorname{lct}(X, D)
$$

The following definition is due to [42] (cf. [23], [29], 32], 37]).
Definition 1.1.10. The Fano variety X is exceptional (resp. weakly exceptional, strongly exceptional) if for every effective \mathbb{Q}-divisor D on the variety X such that $D \sim_{\mathbb{Q}}-K_{X}$ and the pair (X, D) is \log terminal $(\operatorname{resp} . \operatorname{lct}(X) \geqslant 1, \operatorname{lct}(X)>1)$.

It is easy to see the implications
strongly exceptional \Longrightarrow exceptional \Longrightarrow weakly exceptional.
However, if Conjecture 1.1 .9 holds for X, then we see that X is exceptional if and only if X is strongly exceptional. Exceptional del Pezzo surfaces, which are called del Pezzo surfaces without tigers in [27], lie in finitely many families (see [42], [37]). We expect that strongly exceptional Fano varieties with quotient singularities enjoy very interesting geometrical properties (cf. [41, Theorem 3.3], [35, Theorem 1]).

The main motivation for this article is that the global log canonical threshold turns out to play important roles both in birational geometry and in complex geometry. We have two significant applications of the global log canonical threshold of a Fano variety X. The first one is for the case when $\operatorname{lct}(X) \geqslant 1$. This inequality has serious applications to rationality problems for Fano
varieties in birational geometry. The other is for the case when $\operatorname{lct}(X)>\frac{\operatorname{dim}(X)}{1+\operatorname{dim}(X)}$. This has important applications to Kähler-Einstein metrics on Fano varieties in complex geometry.

For a simple application of the first inequality, we can mention the following.
Theorem 1.1.11 ([7] and [38]). Let X_{i} be birationally super-rigid Fano variety with $\operatorname{lct}\left(X_{i}\right) \geqslant 1$ for each $i=1, \ldots, r$. Then the variety $X_{1} \times \ldots \times X_{r}$ is non-rational and

$$
\operatorname{Bir}\left(X_{1} \times \ldots \times X_{r}\right)=\operatorname{Aut}\left(X_{1} \times \ldots \times X_{r}\right)
$$

For every dominant map $\rho: X_{1} \times \ldots \times X_{r} \rightarrow Y$ whose general fiber is rationally connected, there is a subset $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, r\}$ and a commutative diagram

where ξ and σ are birational maps, and π is the natural projection.
This theorem may be more generalized so that we could obtain the following
Example 1.1.12 ([7]). Let X_{i} be a threefold satisfying hypotheses of Example 1.1 .7 with $\operatorname{lct}\left(X_{i}\right)=1$ for each $i=1, \ldots r$. Suppose, in addition, that each X_{i} is general in its deformation family. Then the variety $X_{1} \times \ldots \times X_{r}$ is non-rational and

$$
\operatorname{Bir}\left(X_{1} \times \ldots \times X_{r}\right)=\left\langle\prod_{i=1}^{r} \operatorname{Bir}\left(X_{i}\right), \operatorname{Aut}\left(X_{1} \times \ldots \times X_{r}\right)\right\rangle
$$

For every dominant map $\rho: X_{1} \times \ldots \times X_{r} \rightarrow Y$ whose general fiber is rationally connected, there is a subset $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, r\}$ and a commutative diagram

where ξ and σ are birational maps, and π is the natural projection.
The following result that gives strong connection between global log canonical thresholds and Kähler-Einstein metrics was proved in [16], [34, 44] (see [14, Appendix A]).

Theorem 1.1.13. Suppose that X is a Fano variety with at most quotient singularities. Then it admits an orbifold Kähler-Einstein metric if

$$
\operatorname{lct}(X)>\frac{\operatorname{dim}(X)}{\operatorname{dim}(X)+1}
$$

Examples 1.1.4, 1.1.5 and 1.1.7 are good examples to which we may apply Theorem 1.1.13.
There are many known obstructions for the existence of orbifold Kähler-Einstein metrics on Fano varieties with quotient singularities (see [17, [19], 31, [33, 40], 47]).

Example 1.1.14 ([20]). Let X be a quasismooth hypersurface in $\mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ of degree $d<$ $\sum_{i=0}^{n} a_{i}$, where $a_{0} \leqslant \ldots \leqslant a_{n}$. Suppose that X is well-formed and has a Kähler-Einstein metric. Then

$$
d\left(\sum_{i=0}^{n} a_{i}-d\right)^{n} \leqslant n^{n} \prod_{i=0}^{n} a_{i}
$$

and $\sum_{i=0}^{n} a_{i} \leqslant d+n a_{0}$ (see [2], 43]).
The problem of existence of Kähler-Einstein metrics on smooth del Pezzo surfaces is completely solved by [45] as follows:

Theorem 1.1.15. If X is a smooth del Pezzo surface, then the following conditions are equivalent:

- the automorphism group $\operatorname{Aut}(X)$ is reductive;
- the surface X admits a Kähler-Einstein metric;
- the surface X is not a blow up of \mathbb{P}^{2} at one or two points.

Acknowledgments. The first author is grateful to the Max Plank Institute for Mathematics at Bonn for the hospitality and excellent working conditions. The first author was supported by the grants NSF DMS-0701465 and EPSRC EP/E048412/1, the third author was supported by the grants RFFI No. 08-01-00395-a, N.Sh.-1987.1628.1 and EPSRC EP/E048412/1. The second author has been supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-C00024).

The authors thank I. Kim, B. Sea, and J. Won for their pointing out numerous mistakes in the first version of this paper.

1.2. Results

Let X_{d} be a quasismooth and well-formed hypersurface in $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ of degree d, where $a_{0} \leqslant a_{1} \leqslant a_{2} \leqslant a_{4}$. Then the hypersurface X_{d} is given by a quasihomogeneous polynomial equation $f(x, y, z, t)=0$ of degree d. The quasihomogeneous equation

$$
f(x, y, z, t)=0 \subset \mathbb{C}^{4} \cong \operatorname{Spec}(\mathbb{C}[x, y, z, t])
$$

defines an isolated quasihomogeneous singularity (V, O) with the Milnor number $\prod_{i=0}^{n}\left(\frac{d}{a_{i}}-1\right)$, where O is the origin of \mathbb{C}^{4}. It follows from the adjunction formula that

$$
K_{X_{d}} \sim_{\mathbb{Q}} \mathcal{O}_{\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)}\left(d-\sum_{i=0}^{3} a_{i}\right)
$$

and it follows from [18], [26, Proposition 8.14], [39] that the following conditions are equivalent:

- the inequality $d \leqslant \sum_{i=0}^{3} a_{i}-1$ holds;
- the surface X_{d} is a del Pezzo surface;
- the singularity (V, O) is rational;
- the singularity (V, O) is canonical.

Blowing up \mathbb{C}^{4} at the origin O with weights $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$, we get a purely \log terminal blow up of the singularity (V, O) (see [28], [36]). The paper [36] shows that the following conditions are equivalent:

- the surface X_{d} is exceptional (weakly exceptional, respectively);
- the singularity (V, O) is exceptional ${ }^{11}$ (weakly exceptional, respectively).

From now on we suppose that $d \leqslant \sum_{i=0}^{3} a_{i}-1$. Then X_{d} is a del Pezzo surface. Put $I=\sum_{i=0}^{3} a_{i}-d$. The list of possible values of ($\left.a_{0}, a_{1}, a_{2}, a_{3}, d\right)$ with $2 I<3 a_{0}$ can be found in [4] and [15]. For the case $I=1$, we can obtain the complete list of del Pezzo surfaces $X_{d} \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ from [25] as follows:

- smooth del Pezzo surfaces

$$
X_{3} \subset \mathbb{P}(1,1,1,1), \quad X_{4} \subset \mathbb{P}(1,1,1,2), \quad X_{6} \subset \mathbb{P}(1,1,2,3),
$$

- singular del Pezzo surfaces
$X_{8 n+4} \subset \mathbb{P}(2,2 n+1,2 n+1,4 n+1)$, where n is a positive integer,
$X_{10} \subset \mathbb{P}(1,2,3,5), \quad X_{15} \subset \mathbb{P}(1,3,5,7), \quad X_{16} \subset \mathbb{P}(1,3,5,8), \quad X_{18} \subset \mathbb{P}(2,3,5,9)$,
$X_{15} \subset \mathbb{P}(3,3,5,5), \quad X_{25} \subset \mathbb{P}(3,5,7,11), \quad X_{28} \subset \mathbb{P}(3,5,7,14)$,
$X_{36} \subset \mathbb{P}(3,5,11,18), \quad X_{56} \subset \mathbb{P}(5,14,17,21), \quad X_{81} \subset \mathbb{P}(5,19,27,31)$,
$X_{100} \subset \mathbb{P}(5,19,27,50), \quad X_{81} \subset \mathbb{P}(7,11,27,37), \quad X_{88} \subset \mathbb{P}(7,11,27,44)$,
$X_{60} \subset \mathbb{P}(9,15,17,20), \quad X_{69} \subset \mathbb{P}(9,15,23,23), \quad X_{127} \subset \mathbb{P}(11,29,39,49)$,
$X_{256} \subset \mathbb{P}(11,49,69,128), \quad X_{127} \subset \mathbb{P}(13,23,35,57), \quad X_{256} \subset \mathbb{P}(13,35,81,128)$.
The global \log canonical thresholds of such del Pezzo surfaces have been considered either implicitly or explicitly in [1], [3], [11, [16, [25]. For example, the papers [1], [3], 16] and [25] gives us lower bounds for global log canonical thresholds of singular del Pezzo surfaces with $I=1$. Meanwhile, the paper [11] deals with the exact values of the global log canonical thresholds of smooth del Pezzo surfaces with $I=1$.

Theorem 1.2.1. Suppose that $I=1$ and X_{d} is smooth. Then

$$
\operatorname{lct}\left(X_{d}\right)= \begin{cases}1 & \text { if }\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(1,1,2,3) \text { and }\left|-K_{X_{6}}\right| \text { contains no cuspidal curves, } \\ \frac{5}{6} & \text { if }\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(1,1,2,3) \text { and }\left|-K_{X_{6}}\right| \text { contains a cuspidal curve, } \\ \frac{5}{6} & \text { if }\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(1,1,1,2) \text { and }\left|-K_{X_{4}}\right| \text { contains no tacnodal curves, } \\ \frac{3}{4} & \text { if }\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=(1,1,1,2) \text { and }\left|-K_{X_{4}}\right| \text { contains a tacnodal curve, } \\ \frac{3}{4} & \text { if } X_{3} \text { is a cubic in } \mathbb{P}^{3} \text { with no Eckardt points, } \\ \frac{2}{3} & \text { if } X_{3} \text { is a cubic in } \mathbb{P}^{3} \text { with an Eckardt point. }\end{cases}
$$

However, for singular del Pezzo surfaces, the exact values of global log canonical thresholds have not been considered seriously.

A singular del Pezzo hypersurface $X_{d} \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ must satisfy exclusively one of the following properties:

[^0](1) $2 I \geqslant 3 a_{0}$;
(2) $2 I<3 a_{0}$ and
$$
\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(I-k, I+k, a, a+k, 2 a+k+I)
$$
for some non-negative integer $k<I$ and some positive integer $a \geqslant I+k$.
(3) $2 I<3 a_{0}$ but
$$
\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right) \neq(I-k, I+k, a, a+k, 2 a+k+I)
$$
for any non-negative integer $k<I$ and any positive integer $a \geqslant I+k$.
For the first two cases one can check that $\operatorname{lct}\left(X_{d}\right) \leqslant \frac{2}{3}$ (for instance, see [4] and [15]). All the quintuples $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)$ such that the hypersurface X_{d} is singular and satisfies the last condition are listed in Section 4. They are taken from [4] and [15]. Note that we rearranged a little the quintuples taken from [4 by putting some cases that were contained in the infinite series of [4 into the sublist of sporadic cases; on the other hand, we removed two sporadic cases, because they are contained in the additional infinite series found in [15]. The completeness of this list is proved in [15] by using [49].

We already know the global log canonical thresholds of smooth del Pezzo surfaces. For del Pezzo surfaces satisfying one of the first two conditions, their global log canonical thresholds are relatively too small to enjoy the condition of Theorem 1.1.13, However, the global log canonical thresholds of del Pezzo surfaces satisfying the last condition have not been investigated sufficiently. In the present paper we compute all of them and then we obtain the following result.

Theorem 1.2.2. Let X_{d} be a quasismooth well-formed singular del Pezzo surface in the weighted projective space $\operatorname{Proj}(\mathbb{C}[x, y, z, t])$ with weights $\operatorname{wt}(x)=a_{0} \leqslant \operatorname{wt}(y)=a_{1} \leqslant \operatorname{wt}(z)=a_{2} \leqslant$ $\mathrm{wt}(t)=a_{3}$ such that $2 I<3 a_{0}$ but $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right) \neq(I-k, I+k, a, a+k, 2 a+k+I)$ for any non-negative integer $k<I$ and any positive integer $a \geqslant I+k$, where $I=\sum_{i=0}^{3} a_{i}-d$. Then if $a_{0} \neq a_{1}$, then

$$
\operatorname{lct}\left(X_{d}\right)=\min \left\{\operatorname{lct}\left(X_{d}, \frac{I}{a_{0}} C_{x}\right), \operatorname{lct}\left(X_{d}, \frac{I}{a_{1}} C_{y}\right), \operatorname{lct}\left(X_{d}, \frac{I}{a_{2}} C_{z}\right)\right\},
$$

where C_{x} (resp. C_{y}, C_{z}) is the divisor on X_{d} defined by $x=0$ (resp. $y=0, z=0$). If $a_{0}=a_{1}$, then

$$
\operatorname{lct}\left(X_{d}\right)=\operatorname{lct}\left(X_{d}, \frac{I}{a_{0}} C\right)
$$

where C is a reducible divisor in $\left|\mathcal{O}_{X_{d}}\left(a_{0}\right)\right|$.
In particular, we obtain the value of $\operatorname{lct}\left(X_{d}\right)$ for every del Pezzo surface X_{d} listed in Section 4 . As a result, we obtain the following corollaries.

Corollary 1.2.3. The following assertions are equivalent:

- the surface X_{d} is exceptional;
- $\operatorname{lct}\left(X_{d}\right)>1$;
- the quintuple ($a_{0}, a_{1}, a_{2}, a_{3}, d$) lies in the set

$$
\left\{\begin{array}{l}
(2,3,5,9,18),(3,3,5,5,15),(3,5,7,11,25),(3,5,7,14,28), \\
(3,5,11,18,36),(5,14,17,21,56),(5,19,27,31,81),(5,19,27,50,100), \\
(7,11,27,37,81),(7,11,27,44,88),(9,15,17,20,60),(9,15,23,23,69), \\
(11,29,39,49,127),(11,49,69,128,256),(13,23,35,57,127), \\
(13,35,81,128,256),(3,4,5,10,20),(3,4,10,15,30),(5,13,19,22,57), \\
(5,13,19,35,70),(6,9,10,13,36),(7,8,19,25,57),(7,8,19,32,64), \\
(9,12,13,16,48),(9,12,19,19,57),(9,19,24,31,81),(10,19,35,43,105), \\
(11,21,28,47,105),(11,25,32,41,107),(11,25,34,43,111),(11,43,61,113,226), \\
(13,18,45,61,135),(13,20,29,47,107),(13,20,31,49,111),(13,31,71,113,226), \\
(14,17,29,41,99),(5,7,11,13,33),(5,7,11,20,40),(11,21,29,37,95), \\
(11,37,53,98,196),(13,17,27,41,95),(13,27,61,98,196),(15,19,43,74,148), \\
(9,11,12,17,45),(10,13,25,31,75),(11,17,20,27,71),(11,17,24,31,79), \\
(11,31,45,83,166),(13,14,19,29,71),(13,14,23,33,79),(13,23,51,83,166), \\
(11,13,19,25,63),(11,25,37,68,136),(13,19,41,68,136),(11,19,29,53,106), \\
(13,15,31,53,106),(11,13,21,38,76)
\end{array} .\right.
$$

Corollary 1.2.4. The following assertions are equivalent:

- the surface X_{d} is weakly exceptional and not exceptional;
- $\operatorname{lct}\left(X_{d}\right)=1$;
- one of the following holds
- the quintuple ($\left.a_{0}, a_{1}, a_{2}, a_{3}, d\right)$ lies in the set
$\left\{\begin{array}{l}(2,2 n+1,2 n+1,4 n+1,8 n+4), \\ (3,3 n, 3 n+1,3 n+1,9 n+3),(3,3 n+1,3 n+2,3 n+2,9 n+6), \\ (3,3 n+1,3 n+2,6 n+1,12 n+5),(3,3 n+1,6 n+1,9 n, 18 n+3), \\ (3,3 n+1,6 n+1,9 n+3,18 n+6),(4,2 n+1,4 n+2,6 n+1,12 n+6), \\ (4,2 n+3,2 n+3,4 n+4,8 n+12),(6,6 n+3,6 n+5,6 n+5,18 n+15), \\ (6,6 n+5,12 n+8,18 n+9,36 n+24),(6,6 n+5,12 n+8,18 n+15,36 n+30), \\ (8,4 n+5,4 n+7,4 n+9,12 n+23),(9,3 n+8,3 n+11,6 n+13,12 n+35), \\ (1,3,5,8,16),(2,3,4,7,14),(5,6,8,9,24),(5,6,8,15,30)\end{array}\right\}$,
where n is a positive integer,
- $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(1,1,2,3,6)$ and the pencil $\left|-K_{X}\right|$ does not have cuspidal curves,
- $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(1,2,3,5,10)$ and $C_{x}=\{x=0\}$ has an ordinary double point,
- $\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(1,3,5,7,15)$ and the defining equation of X contains $y z t$,
$-\left(a_{0}, a_{1}, a_{2}, a_{3}, d\right)=(2,3,4,5,12)$ and the defining equation of X contains $y z t$.

Corollary 1.2.5. In the notation and assumptions of Theorem 1.2.2, the surface X_{d} has an orbifold Kähler-Einstein metric with the following possible exceptions: $X_{45} \subset \mathbb{P}(7,10,15,19)$, $X_{81} \subset \mathbb{P}(7,18,27,37), X_{64} \subset \mathbb{P}(7,15,19,32), X_{82} \subset \mathbb{P}(7,19,25,41), X_{117} \subset \mathbb{P}(7,26,39,55)$, $X_{15} \subset \mathbb{P}(1,3,5,7)$ whose defining equation does not contain $y z t$, and $X_{12} \subset \mathbb{P}(2,3,4,5)$ whose defining equation does not contain $y z t$.

Corollary 1.2 .3 illustrates the fact that exceptional del Pezzo surfaces lie in finitely many families (see [42], [37]). On the other hand, Corollary 1.2 .3 shows that weakly-exceptional del Pezzo surfaces do not enjoy this property. Note also that Corollary 1.2.3 follows from [29].

1.3. Preliminaries

For the basic definitions and properties concerning singularities of pairs we refer the reader to [26]. To prove Theorem 1.2.2 we need to compute the log canonical thresholds of individual effective divisors. The following two lemmas are rather basic properties of log canonical thresholds but will be useful to compute them. For the proofs the reader is referred to [26] and [30].
Lemma 1.3.1. Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $D=(f=0)$. Suppose that the polynomial f vanishes at the origin O in \mathbb{C}^{n}. Set $d=\operatorname{mult}_{O}(f)$ and let f_{d} denote the degree d homogeneous part of f. Let $T_{0} D=\left(f_{d}=0\right) \subset \mathbb{C}^{n}$ be the tangent cone of D and $\mathbb{P}\left(T_{0} D\right)=\left(f_{d}=0\right) \subset \mathbb{P}^{n-1}$ be the projectivised tangent cone of D. Then
(1) $\frac{1}{d} \leqslant \operatorname{lct}_{O}\left(\mathbb{C}^{n}, D\right) \leqslant \frac{n}{d}$.
(2) The \log pair $\left(\mathbb{P}^{n-1}, \frac{n}{d} \mathbb{P}\left(T_{0} D\right)\right)$ is \log canonical if and only if $\operatorname{lct}_{O}\left(\mathbb{C}^{n}, D\right)=\frac{n}{d}$.
(3) If $\mathbb{P}\left(T_{0} D\right)$ is smooth (or even log canonical) then $\operatorname{lct}_{O}\left(\mathbb{C}^{n}, D\right)=\min \left\{1, \frac{n}{d}\right\}$.

Lemma 1.3.2. Let f be a polynomial in $\mathbb{C}\left[z_{1}, z_{2}\right]$. Suppose that the polynomial defines an irreducible curve C passing through the origin O in \mathbb{C}^{2}. We then have

$$
\operatorname{lct}_{O}\left(\mathbb{C}^{2}, C\right)=\min \left(1, \frac{1}{m}+\frac{1}{n}\right)
$$

where (m, n) is the first pair of Puiseux exponents of f. We also have

$$
\operatorname{lct}_{O}\left(\mathbb{C}^{2},\left(z_{1}^{n_{1}} z_{2}^{n_{2}}\left(z_{1}^{m_{1}}+z_{2}^{m_{2}}\right)=0\right)\right)=\min \left(\frac{1}{n_{1}}, \frac{1}{n_{2}}, \frac{m_{1}+m_{2}}{m_{1} m_{2}+m_{1} n_{2}+m_{2} n_{1}}\right)
$$

where $n_{1}, n_{2}, m_{1}, m_{2}$ are non-negative integers.
Throughout the proof of Theorem 1.2.2, Inversion of Adjunction that enables us to compute \log canonical thresholds on lower dimensional varieties will be frequently utilized. Let X be a normal (but not necessarily projective) variety. Let S be a smooth Cartier divisor on X and B be an effective \mathbb{Q}-Cartier \mathbb{Q}-divisor on X such that $K_{X}+S+B$ is \mathbb{Q}-Cartier and $S \nsubseteq \operatorname{Supp}(B)$.

Theorem 1.3.3. The \log pair $(X, S+B)$ is \log canonical along S if and only if the \log pair $\left(S,\left.B\right|_{S}\right)$ is \log canonical.

In the case when X is a surface, Theorem 1.3 .3 can be stated in terms of local intersection numbers.

Lemma 1.3.4. Suppose that X is a surface. Let P be a smooth point of X such that it is also a smooth point of S. Then the \log pair $(X, S+B)$ is \log canonical at the point P if and only if the local intersection number of B and S at the point P is at most 1. In particular, if the log pair $(X, m S+B)$ is not \log canonical at the point P for $m \leqslant 1$, then $B \cdot S>1$.

Lemma 1.3.5. Let D be an effective \mathbb{Q}-divisor such that $K_{X}+D$ is \mathbb{Q}-Cartier. For a smooth point P of X, the \log pair (X, D) is \log canonical at the point P if $\operatorname{mult}_{P}(D) \leqslant 1$.

Throughout the proof of Theorem 1.2.2, we interrelate Lemma 1.3.5 with Lemma 1.3.4 to get some contradictions. To do so, we need the following lemma that plays the role of a bridge between them.

Lemma 1.3.6. Let D_{1} and D_{2} be effective \mathbb{Q}-divisors on Y with $D_{1} \sim_{\mathbb{Q}} D_{2}$. Suppose that the pair $\left(X, D_{1}\right)$ is not \log canonical at a point $P \in Y$ but the pair $\left(X, D_{2}\right)$ is \log canonical at the point P. Then there is an effective \mathbb{Q}-divisor D on Y such that

- $D \sim_{\mathbb{Q}} D_{1}$;
- at least one irreducible component of D_{2} is not contained in the support of D;
- the pair (X, D) is not \log canonical at the point P.

Proof. Write $D_{2}=\sum_{i=1}^{r} b_{i} C_{i}$ where b_{i} 's are positive rational numbers and C_{i} 's are distinct irreducible and reduced divisors. Also, we write $D_{1}=\Delta+\sum_{i=1}^{r} e_{i} C_{i}$ where e_{i} 's are nonnegative rational numbers and Δ is an effective \mathbb{Q}-divisor whose support contains none of C_{i} 's. Suppose that $e_{i}>0$ for each i. If not, then we put $D=D_{1}$. Let

$$
\alpha=\min \left\{\left.\frac{e_{i}}{b_{i}} \right\rvert\, i=1,2, \ldots, r\right\} .
$$

Then the positive rational number α is less than 1 since $D_{1} \sim_{\mathbb{Q}} D_{2}$. Put

$$
\begin{aligned}
D & =\frac{1}{1-\alpha} D_{1}-\frac{\alpha}{1-\alpha} D_{2} \\
& =\frac{1}{1-\alpha} \Delta+\sum_{i=1}^{r}\left(\frac{e_{i}-\alpha b_{i}}{1-\alpha}\right) C_{i} .
\end{aligned}
$$

It is easy to see that the divisor D satisfies the first two conditions. If the pair (X, D) is \log canonical at the point P, then the pair $\left(X, D_{1}\right)=\left(X,(1-\alpha) D+\alpha D_{2}\right)$ must be log canonical at the point P. Therefore, the divisor D also satisfies the last condition.

In the present paper, we deal with surfaces with at most quotient singularities. However, the statements mentioned so far require smoothness of the ambient space for us to utilize them to the fullest. Fortunately, the following proposition enables us to apply the statements with ease since we have a natural finite morphism of a germ of the origin in \mathbb{C}^{2} to a germ of a quotient singularity that is ramified only at a point.
Proposition 1.3.7 ([26). Let $f: Y \rightarrow X$ be a finite morphism between normal varieties and assume that f is unramified outside a set of codimension two. Let D be an effective \mathbb{Q}-Cartier \mathbb{Q}-divisor. Then a log pair (X, D) is \log canonical (resp. Kawamata log terminal) if and only if the \log pair $\left(Y, f^{*} D\right)$ is \log canonical (resp. Kawamata log terminal).

The following two lemmas will be useful for this paper. The first lemma is just a reformulation of Lemma 1.3 .4 mixed with Proposition 1.3 .7 that we can apply to our cases immediately.

Suppose that X is a quasismooth well-formed hypersurface in $\mathbb{P}=\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ of degree d.
Lemma 1.3.8. Let C be a reduced and irreducible curve on X and D be an effective \mathbb{Q} divisor on X. Suppose that for a given positive rational number λ we have $\lambda \operatorname{mult}_{C}(D) \leqslant 1$. If $\lambda\left(C \cdot D-\left(\operatorname{mult}_{C}(D)\right) C^{2}\right) \leqslant 1$, then the pair $(X, \lambda D)$ is \log canonical at each smooth point P of C not in $\operatorname{Sing}(X)$. Furthermore, if the point P of C is a singular point of X of type $\frac{1}{r}(a, b)$ and $r \lambda\left(C \cdot D-\left(\operatorname{mult}_{C}(D)\right) C^{2}\right) \leqslant 1$, then the pair $(X, \lambda D)$ is \log canonical at P.
Proof. We may write $D=m C+\Omega$, where Ω is an effective divisor whose support does not contain the curve C. Suppose that the pair $(X, \lambda D)$ is not \log canonical at a smooth point P of C not in $\operatorname{Sing}(X)$. Since $\lambda m \leqslant 1$, the pair $(X, C+\lambda \Omega)$ is not \log canonical at the point P. Then by Lemma 1.3.4 we obtain an absurd inequality

$$
1<\lambda \Omega \cdot C=\lambda C \cdot(D-m C) \leqslant 1
$$

Also, if the point P is a singular point of X, then we obtain from Lemma 1.3 .4 and Proposition 1.3.7

$$
\frac{1}{r}<\lambda \Omega \cdot C=\lambda C \cdot(D-m C) \leqslant \frac{1}{r}
$$

This proves the second statement.
Let D be an effective \mathbb{Q}-divisor on X such that

$$
\left.D \sim_{\mathbb{Q}} \mathcal{O}_{\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)}(I)\right|_{X}
$$

The next lemma will be applied to show that the \log pair (X, D) is \log canonical at some smooth points on X.
Lemma 1.3.9. Let k be a positive integer. Suppose that $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(k)\right)$ contains

- at least two different monomials of the form $x^{\alpha} y^{\beta}$,
- at least two different monomials of the form $x^{\gamma} z^{\delta}$.

For a smooth point P of X in the outside of C_{x},

$$
\operatorname{mult}_{P}(D) \leqslant \frac{I k d}{a_{0} a_{1} a_{2} a_{3}}
$$

if either $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(k)\right)$ contains at least two different monomials of the form $x^{\mu} t^{\nu}$ or the point P is not contained in a curve contracted by the projection $\psi: X \rightarrow \mathbb{P}\left(a_{0}, a_{1}, a_{2}\right)$. Here, α, β, γ, δ, μ and ν are non-negative integers.
Proof. The first case follows from [1, Lemma 3.3]. Arguing as in the proof of [1, Corollary 3.4], we can also obtain the second case.

Let us conclude this section by mentioning two results that are never used in this paper, but nevertheless can be used to give shorter proofs of Corollaries 1.2 .3 and 1.2.5. Suppose that X is given by a quasihomogeneous equation

$$
f(x, y, z, t)=0 \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t])
$$

where $\mathrm{wt}(x)=a_{0} \leqslant \mathrm{wt}(y)=a_{1} \leqslant \mathrm{wt}(z)=a_{2} \leqslant \mathrm{wt}(t)=a_{3}$.

Lemma 1.3.10. Suppose that $I=\sum_{i=0}^{3} a_{i}-d>0$. Then

$$
\operatorname{lct}(X) \geqslant\left\{\begin{array}{l}
\frac{a_{0} a_{1}}{d I} \\
\frac{a_{0} a_{2}}{d I} \text { if } f(0,0, z, t) \neq 0 \\
\frac{a_{0} a_{3}}{d I} \text { if } f(0,0,0, t) \neq 0
\end{array}\right.
$$

Proof. See [4, Corollary 5.3] (cf. [25, Proposition 11]).
Lemma 1.3.11. Suppose that $I=\sum_{i=0}^{3} a_{i}-d>0$, the curve $C_{x}=\{x=0\}$ is irreducible and reduced. Then

$$
\operatorname{lct}(X) \geqslant\left\{\begin{array}{l}
\min \left(\frac{a_{1} a_{2}}{d I}, \operatorname{lct}\left(X, \frac{I}{a_{0}} C_{x}\right)\right) \\
\min \left(\frac{a_{1} a_{3}}{d I}, \operatorname{lct}\left(X, \frac{I}{a_{0}} C_{x}\right)\right) \text { if } f(0,0,0, t) \neq 0
\end{array}\right.
$$

Proof. Arguing as in the proof of [25, Proposition 11] and using Lemma 1.3.6, we obtain the required assertion.

1.4. Notation

We reserve the following notation that will be used throughout the paper:

- $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ denotes the well-formed weighted projective space $\operatorname{Proj}(\mathbb{C}[x, y, z, t])$ with weights $\operatorname{wt}(x)=a_{0}, \operatorname{wt}(y)=a_{1}, \operatorname{wt}(z)=a_{2}, \operatorname{wt}(t)=a_{3}$, where we always assume the inequalities $a_{0} \leqslant a_{1} \leqslant a_{2} \leqslant a_{3}$. We may use simply \mathbb{P} instead of $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ when this does not lead to confusion.
- X denotes a quasismooth and well-formed hypersurface in $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ (see Definitions 6.3 and 6.9 in [22], respectively).
- O_{x} is the point in $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ defined by $y=z=t=0$. The points O_{y}, O_{z} and O_{t} are defined in the similar way.
- C_{x} is the curve on X cut out by the equation $x=0$. The curves C_{y}, C_{z} and C_{t} are defined in the similar way.
- $L_{x y}$ is the curve in $\mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ defined by $x=y=0$. The curves $L_{x z}, L_{x t}, L_{y z}, L_{y t}$ and $L_{z t}$ are defined in the similar way.
- Let D be a divisor on X and $P \in X$. Choose an orbifold chart $\pi: \tilde{U} \rightarrow U$ for some neighborhood $P \in U \subset X$. We put $\operatorname{mult}_{P}(D)=\operatorname{mult}_{Q}\left(\pi^{*} D\right)$, where Q is a point on \tilde{U} with $\pi(Q)=P$, and refer to this quantity as the multiplicity of D at P.

1.5. The scheme of the proof

We have 83 familie $\sqrt[2]{ }$ of del Pezzo hypersurfaces in The Big Table. In the present section we explain the methods to compute the global log canonical thresholds of the del Pezzo hypersurfaces in The Big Table.

[^1]Let $X \subset \mathbb{P}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ be a del Pezzo surface of degree d in one of the 83 families (actually, one infinite series has been treated in [15], so we will omit the computations in this case). Set $I=a_{0}+a_{1}+a_{2}+a_{3}-d$. There are two exceptional cases where $a_{0}=a_{1}$. The method for these two cases is a bit different from the other cases. Both cases will be individually dealt with (Lemmas 2.2.4 and 3.1.5).

If $a_{0} \neq a_{1}$, then we will take steps as follows:
Step 1. Using Lemmas 1.3 .1 and 1.3 .2 with Proposition 1.3.7, we compute the log canonical thresholds $\operatorname{lct}\left(X, \frac{I}{a_{0}} C_{x}\right), \operatorname{lct}\left(X, \frac{I}{a_{0}} C_{y}\right), \operatorname{lct}\left(X, \frac{I}{a_{0}} C_{z}\right)$ and $\operatorname{lct}\left(X, \frac{I}{a_{0}} C_{t}\right)$. Set

$$
\lambda=\min \left\{\operatorname{lct}\left(X, \frac{I}{a_{0}} C_{x}\right), \operatorname{lct}\left(X, \frac{I}{a_{0}} C_{y}\right), \operatorname{lct}\left(X, \frac{I}{a_{0}} C_{z}\right), \operatorname{lct}\left(X, \frac{I}{a_{0}} C_{t}\right)\right\} .
$$

Then the global \log canonical threshold $\operatorname{lct}(X)$ is at most λ.
Step 2. We claim that the global \log canonical threshold $\operatorname{lct}(X)$ is equal to λ. To prove this assertion, we suppose $\operatorname{lct}(X)<\lambda$. Then there is an effective \mathbb{Q}-divisor D equivalent to the anticanonical divisor $-K_{X}$ of X such that the \log pair $(X, \lambda D)$ is not \log canonical at some point $P \in X$. In particular, we obtain

$$
\operatorname{mult}_{P}(\lambda D)>\left\{\begin{array}{l}
1 \text { if the point } P \text { is a smooth point of } X, \\
\frac{1}{r} \text { if the point } P \text { is a singular point of } X \text { of type } \frac{1}{r}(a, b) .
\end{array}\right.
$$

from Lemma 1.3.5 and Proposition 1.3.7.
Step 3. We show that the point P cannot be a singular point of X using the following methods.

Method 3.1. (Multiplicity) We may assume that a suitable irreducible component C of C_{x}, C_{y}, C_{z}, and C_{t} is not contained in the support of the divisor D. We derive a possible contradiction from the inequality

$$
C \cdot D \geqslant \operatorname{mult}_{P}(C) \cdot \frac{\operatorname{mult}_{P}(D)}{r}>\frac{\operatorname{mult}_{P}(C)}{r \lambda}
$$

where r is the index of the quotient singular point P. The last inequality follows from the assumption that $(X, \lambda D)$ is not \log canonical at P. This method can be applied to exclude a smooth point.

Method 3.2. (Inversion of Adjunction) We consider a suitable irreducible curve C smooth at P. We then write $D=\mu C+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support does not contain C. We check $\lambda \mu \leqslant 1$. If so, then the log pair $(X, C+\lambda \Omega)$ is not log canonical at the point P either. By Lemma 1.3 .8 we have

$$
\lambda(D-\mu C) \cdot C=\lambda C \cdot \Omega>\frac{1}{r}
$$

We try to derive a contradiction from this inequality. The curve C is taken usually from an irreducible component of C_{x}, C_{y}, C_{z}, or C_{t}. This method can be applied to exclude a smooth point.

Method 3.3. (Weighted Blow Up) Sometimes we cannot exclude a singular point P only with the previous two methods. In such a case, we take a suitable weighted blow up $\pi: Y \rightarrow X$ at the point P. We can write

$$
K_{Y}+D^{Y} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}+\lambda D\right),
$$

where D^{Y} is the \log pull-back of λD by π. Using method 3.1 we obtain that D^{Y} is effective. Then we apply the previous two methods to the pair $\left(Y, D^{Y}\right)$, or repeat this method until we get a contradictory inequality.

Step 4. We show that the point P cannot be a smooth point of X. To do so, we first apply Lemma 1.3.9. However, this method does not work always. If the method fails, then we try to find a suitable pencil \mathcal{L} on X. The pencil has a member F which passes through the point P. We show that the pair $(X, \lambda F)$ is \log canonical at the point P. Then, we may assume that the support of D does not contain at least one irreducible component of F. If the divisor D itself is irreducible, then we use Method 3.1 to exclude the point P. If F is reducible, then we use Method 3.2.

Part 2. Infinite series

2.1. Infinite series with $I=1$

Lemma 2.1.1. Let X be a quasismooth hypersurface of degree $8 n+4$ in $\mathbb{P}(2,2 n+1,2 n+1,4 n+1)$ for a natural number n. Then $\operatorname{lct}(X)=1$.

Proof. The surface X is singular at the point O_{t}, which is of type $\frac{1}{4 n+1}(1,1)$. It has also four singular points $O_{1}, O_{2}, O_{3}, O_{4}$, which are cut out on X by $L_{x t}$. Each O_{i} is a singular point of type $\frac{1}{2 n+1}(1, n)$ on the surface X.

The curve C_{x} is reducible. We see

$$
C_{x}=L_{1}+L_{2}+L_{3}+L_{4},
$$

where L_{i} is a smooth rational curves such that

$$
-K_{X} \cdot L_{i}=\frac{1}{(2 n+1)(4 n+1)},
$$

and $L_{1} \cap L_{2} \cap L_{3} \cap L_{4}=\left\{O_{t}\right\}$. Then

$$
L_{i} \cdot L_{j}=\frac{1}{4 n+1}
$$

for $i \neq j$. Also, we have

$$
L_{i}^{2}=C_{x} \cdot L_{i}-\frac{3}{4 n+1}=\frac{2}{(2 n+1)(4 n+1)}-\frac{3}{4 n+1}=-\frac{6 n+1}{(2 n+1)(4 n+1)} .
$$

It is easy to see $\operatorname{lct}\left(X, \frac{1}{2} C_{x}\right)=1$. Therefore, $\operatorname{lct}(X) \leqslant 1$. Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$.

Since

$$
\frac{(4 n+2)(8 n+4)}{2(2 n+1)^{2}(4 n+1)}=\frac{4}{4 n+1}<1
$$

and $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(4 n+2)\right)$ contains $x^{2 n+1}, y^{2}$ and z^{2}, Lemma 1.3 .9 implies that $P \in C_{x}$.
It follows from Lemma 1.3 .6 that we may assume that $L_{i} \not \subset \operatorname{Supp}(D)$ for some i. Also, $P \in L_{j}$ for some j. Put $D=m L_{j}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{j} \not \subset \operatorname{Supp}(\Omega)$. Since

$$
\frac{1}{(2 n+1)(4 n+1)}=D \cdot L_{i}=\left(m L_{j}+\Omega\right) \cdot L_{i} \geqslant m L_{i} \cdot L_{j}=\frac{m}{4 n+1}
$$

we have $0 \leqslant m \leqslant \frac{1}{2 n+1}$. Since

$$
(2 n+1) \Omega \cdot L_{j}=(2 n+1)\left(D-m L_{j}\right) \cdot L_{j}=(2 n+1) \frac{1+m(6 n+1)}{(2 n+1)(4 n+1)} \leqslant \frac{2}{(2 n+1)}<1
$$

Lemma 1.3 .8 implies the point P must be O_{t}. Note that the inequality

$$
\operatorname{mult}_{O_{t}}(D) \leqslant(4 n+1) D \cdot L_{i}=\frac{1}{2 n+1} \leqslant 1,
$$

shows that the point P cannot be the point O_{t}. This is a contradiction.

2.2. Infinite series with $I=2$

Lemma 2.2.1. Let X be a quasismooth hypersurface of degree $8 n+12$ in $\mathbb{P}(4,2 n+3,2 n+$ $3,4 n+4)$ for a natural number n. Then $\operatorname{lct}(X)=1$.
Proof. The only singularities of X are a singular point O_{t} of index $4 n+4$, two singular points P_{1}, P_{2} of index 4 on $L_{y z}$, and four singular points $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ of index $2 n+3$ on $L_{x t}$.

The curve C_{x} is reduced and splits into four irreducible components L_{1}, \ldots, L_{4}. Each L_{i} passes through Q_{i}. They intersect each other at O_{t}. One can easily see that $\operatorname{lct}\left(X, \frac{1}{2} C_{x}\right)=1$, and hence $\operatorname{lct}(X) \leqslant 1$.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$.

By Lemma 1.3 .6 we may assume that $L_{i} \not \subset \operatorname{Supp}(D)$ for some i. Since

$$
(4 n+4) L_{i} \cdot D=\frac{4 n+4}{(2 n+2)(2 n+3)}<1
$$

for all $n \geqslant 1$, the point P cannot belong to the curve L_{i}.
For $j \neq i$, put $D=\mu L_{j}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{j} \not \subset \operatorname{Supp}(\Omega)$. Since

$$
\frac{\mu}{4 n+4}=\mu L_{i} \cdot L_{j} \leqslant D \cdot L_{i}=\frac{1}{2(n+1)(2 n+3)},
$$

we have

$$
\mu \leqslant \frac{2}{2 n+3} .
$$

Note that

$$
L_{j}^{2}=C_{x} \cdot L_{j}-3 L_{i} \cdot L_{j}=\frac{2}{2(n+1)(2 n+3)}-\frac{3}{4(n+1)}=-\frac{6 n+5}{4(n+1)(2 n+3)} .
$$

By Lemma 1.3.4 the inequality

$$
(2 n+3) \Omega \cdot L_{j}=(2 n+3)\left(D-\mu L_{j}\right) \cdot L_{j}=\frac{2+(6 n+5) \mu}{4(n+1)} \leqslant \frac{4}{2 n+3}<1
$$

for all $n \geqslant 1$ shows that P cannot be contained in L_{j}. Consequently, the point P is located in the outside of C_{x}.

By a suitable coordinate change we may assume that $P_{1}=O_{x}$. Then, the curve C_{t} is reduced and splits into four irreducible components $L_{1}^{\prime}, \ldots, L_{4}^{\prime}$. Each L_{i}^{\prime} passes through the point Q_{i}. They intersect each other at O_{x}. We can easily see that the \log pair $\left(X, \frac{2}{4 n+4} C_{t}\right)$ is \log canonical. By Lemma 1.3 .6 we may assume that $L_{i}^{\prime} \not \subset \operatorname{Supp}(D)$. Since

$$
\operatorname{mult}_{O_{x}}(D) \leqslant 4 L_{i}^{\prime} \cdot D=\frac{2}{2 n+3}<1
$$

for all $n \geqslant 1$, the point P cannot be O_{x}. The point P_{2} can be excluded in a similar way.
Therefore, P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.3.9, we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{2(8 n+12)^{2}}{4(2 n+3)^{2}(4 n+4)} \leqslant 1
$$

for $n \geqslant 1$ since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(8 n+12)\right)$ contains $x^{2 n+3}, y^{4}$ and z^{4}. The obtained contradiction completes the proof.

Lemma 2.2.2. Let X be a quasismooth hypersurface of degree $18 n+6$ in $\mathbb{P}(3,3 n+1,6 n+$ $1,9 n+3)$ for a natural number $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. The only singularities of X are a singular point O_{z} of index $6 n+1$, two singular points P_{1}, P_{2} of index 3 on $L_{y z}$, and two singular points Q_{1}, Q_{2} of index $3 n+1$ on $L_{x z}$.

The curve C_{x} is reduced and splits into two components L_{1} and L_{2} that intersect at O_{z}. It is easy to see that $\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)=1$. Therefore, $\operatorname{lct}(X) \leqslant 1$. Note that

$$
L_{1} \cdot L_{2}=\frac{3}{6 n+1} \text { and } L_{1}^{2}=L_{2}^{2}=-\frac{9 n-3}{(3 n+1)(6 n+1)}
$$

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$.

We may assume that L_{2} is not contained the support of D. The inequality

$$
D \cdot L_{2}=\frac{2}{(3 n+1)(6 n+1)} \leqslant \frac{1}{6 n+1}
$$

shows that the point P cannot belong to the curve L_{2}. Put $D=\mu L_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support does not contain the curve L_{1}. Since

$$
\frac{3 \mu}{6 n+1}=\mu L_{1} \cdot L_{2} \leqslant D \cdot L_{2}=\frac{2}{(3 n+1)(6 n+1)},
$$

we have

$$
0 \leqslant \mu \leqslant \frac{2}{3(3 n+1)}
$$

Lemma 1.3 .8 and the inequality

$$
\Omega \cdot L_{1}=\left(D-\mu L_{1}\right) \cdot L_{1}=\frac{2+\mu(9 n-3)}{(3 n+1)(6 n+1)}<\frac{4}{(3 n+1)(6 n+1)}
$$

show that the point P is located in the outside of L_{1}. Therefore, $P \notin C_{x}$.
The curve C_{y} is irreducible. It is easy to see that the \log pair $\left(X, \frac{2}{3 n+1} C_{y}\right)$ is \log canonical. Therefore, we may assume that the support of D does not contain the curve C_{y}. Note that $P_{1}, P_{2} \in C_{y}$. The inequality

$$
3 D \cdot C_{y}=\frac{4}{6 n+1} \leqslant 1
$$

shows that neither P_{1} not P_{2} can be the point P.
Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.3.9, we get an absurd inequality

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{2(18 n+6)(18 n+3)}{3(3 n+1)(6 n+1)(9 n+3)} \leqslant 1
$$

since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(18 n+3)\right)$ contains $x^{6 n+1}, x^{3 n} y^{3}$ and z^{3}. The obtained contradiction completes the proof.

Lemma 2.2.3. Let X be a quasismooth hypersurface of degree $18 n+3$ in $\mathbb{P}(3,3 n+1,6 n+1,9 n)$ for a natural number $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. The singularities of X are a singular point O_{y} of index $3 n+1$, a singular point O_{t} of index $9 n$, and two singular points Q_{1}, Q_{2} of index 3 on $L_{y z}$.

The curve C_{x} is reduced and irreducible and has the only singularity at O_{t}. It is easy to see that $\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)=1$, and hence $\operatorname{lct}(X) \leqslant 1$. The curve C_{y} is quasismooth. Therefore, the log pair $\left(X, \frac{2}{3 n+1} C_{y}\right)$ is \log canonical.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$. By Lemma 1.3.6 we may assume that neither C_{x} nor C_{y} is contained in $\operatorname{Supp}(D)$.

The inequalities

$$
\begin{gathered}
C_{x} \cdot D<(3 n+1) C_{x} \cdot D=\frac{2}{3 n}<1, \\
\operatorname{mult}_{O_{t}}(D)=\frac{\operatorname{mult}_{O_{t}}\left(C_{x}\right) \operatorname{mult}_{O_{t}}(D)}{3} \leqslant \frac{9 n C_{x} \cdot D}{3}=\frac{2}{3 n+1}<1
\end{gathered}
$$

show that the point P must be located in the outside of C_{x}.
Also, the inequality

$$
3 C_{y} \cdot D=\frac{2}{3 n}<1
$$

implies that neither Q_{1} not Q_{2} can be the point P. Hence P is a smooth point of $X \backslash C_{x}$. We see that $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(9 n+3)\right)$ contains $x^{3 n+1}, y^{3}$ and $x t$. Also, the projection of X from the point O_{z} has only finite fibers. Therefore, Lemma 1.3 .9 implies a contradictory inequality

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{2(18 n+3)(9 n+3)}{3(3 n+1)(6 n+1) \cdot 9 n}=\frac{2}{3 n}<1
$$

The obtained contradiction completes the proof.

Lemma 2.2.4. Let X be a quasismooth hypersurface of degree 12 in $\mathbb{P}(3,3,4,4)$. Then $\operatorname{lct}(X)=$ 1.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
\prod_{i=1}^{4}\left(\alpha_{i} x+\beta_{i} y\right)=\prod_{j=1}^{3}\left(\gamma_{j} z+\delta_{j} t\right)
$$

where $\left[\alpha_{i}: \beta_{i}\right]$ define four distinct points and $\left[\gamma_{j}: \delta_{j}\right]$ define three distinct points in \mathbb{P}^{1}.
Let P_{i} be the point in X given by $z=t=\alpha_{i} x+\beta_{i} y=0$. These are singular point of X of type $\frac{1}{3}(1,1)$. Let Q_{j} be the point in X that is given by $x=y=\gamma_{j} z+\delta_{j} t=0$. Then each of them is a singular point of X of type $\frac{1}{4}(1,1)$.

Let $L_{i j}$ be the curve in X defined by $\alpha_{i} x+\beta_{i} y=\gamma_{j} z+\delta_{j} t=0$, where $i=1, \ldots, 4$ and $j=1, \ldots, 3$.

The divisor C_{i} cut out by the equation $\alpha_{i} x+\beta_{i} y=0$ consists of three smooth curves $L_{i 1}$, $L_{i 2}, L_{i 3}$. These divisors $C_{i}, i=1,2,3,4$, are the only reducible members in the linear system $\left|\mathcal{O}_{X}(3)\right|$. Meanwhile, the divisor B_{j} cut out by $\gamma_{j} z+\delta_{j} t=0$ consists of four smooth curves $L_{1 j}$, $L_{2 j}, L_{3 j}, L_{4 j}$. Note that $L_{i 1} \cap L_{i 2} \cap L_{i 3}=\left\{P_{i}\right\}$ and $L_{1 j} \cap L_{2 j} \cap L_{3 j} \cap L_{4 j}=\left\{Q_{j}\right\}$. We have $L_{i j} \cdot L_{i k}=\frac{1}{3}$ and $L_{j i} \cdot L_{k i}=\frac{1}{4}$ if $k \neq j$. But $L_{i j}^{2}=-\frac{5}{12}$.

Since lct $\left(X, \frac{2}{3} C_{i}\right)=\operatorname{lct}\left(X, \frac{2}{4} B_{j}\right)=1$, we have $\operatorname{lct}(X) \leqslant 1$.
Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair (X, D) is not \log canonical at some point P. For every $i=1, \ldots, 4$, we may assume that the support of the divisor D does not contain at least one curve among $L_{i 1}, L_{i 2}, L_{i 3}$. Suppose $L_{i k} \not \subset \operatorname{Supp}(D)$. Then the inequality

$$
\operatorname{mult}_{P_{i}}(D) \leqslant 3 D \cdot L_{i k}=\frac{1}{2}
$$

implies that none of the points P_{i} can be the point P. For every $j=1,2,3$, we may also assume that the support of the divisor D does not contain at least one curve among $L_{1 j}, L_{2 j}, L_{3 j}, L_{4 j}$. Suppose $L_{l j} \not \subset \operatorname{Supp}(D)$. Then the inequality

$$
\operatorname{mult}_{Q_{j}}(D) \leqslant 4 D \cdot L_{l j}=\frac{2}{3}
$$

implies that none of the points Q_{j} can be the point P. Therefore, the point must be a smooth point of X.

Write $D=\mu L_{i j}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support does not contain $L_{i j}$. If $\mu>0$, then we have $\mu L_{i j} \cdot L_{i k} \leqslant D \cdot L_{i k}$, and hence $\mu \leqslant \frac{1}{2}$. Since

$$
\Omega \cdot L_{i j}=\frac{2+5 \mu}{12}<1
$$

Lemma 1.3.4 implies the point P cannot be on the curve $L_{i j}$. Consequently,

$$
P \notin \bigcup_{i=1}^{4} \bigcup_{j=1}^{3} L_{i j}
$$

There is a unique curve $C \subset X$ cut out by $\lambda x+\mu y=0$, where $[\lambda: \mu] \in \mathbb{P}^{1}$, passing through the point P. Then the curve C is irreducible and quasismooth. Thus, we may assume that C is not contained in the support of D. Then

$$
1<\operatorname{mult}_{P}(D) \leqslant D \cdot C=\frac{1}{2} .
$$

This is a contradiction.
Lemma 2.2.5. Let X be a quasismooth hypersurface of degree $9 n+3$ in $\mathbb{P}(3,3 n, 3 n+1,3 n+1)$ for $n \geqslant 2$. Then $\operatorname{lct}(X)=1$.

Proof. We may assume that the surface X is defined by the equation

$$
x y\left(y-a x^{n}\right)\left(y-b x^{n}\right)+z t(z-c t)=0
$$

where a, b, c are non-zero constants and $b \neq c$. The point O_{y} is a singular point of of index $3 n$ on X. The three points $O_{x}, P_{a}=[1: a: 0: 0], P_{b}=[1: b: 0: 0]$ are singular points of index 3 on X. Also, X has three singular points $O_{z}, O_{t}, P_{c}=[0: 0: c: 1]$ of index $3 n+1$ on $L_{x y}$.

The curve C_{x} consists of three irreducible components $L_{x z}, L_{x t}$ and $L_{c}=\{x=z-c t=0\}$. These three components intersect each other at O_{y}. It is easy to check $\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)=1$. Thus, $\operatorname{lct}(X) \leqslant 1$.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$.

By Lemma 1.3 .6 we may assume that at least one of the components of C_{x} is not contained in $\operatorname{Supp}(D)$. Then, the inequality

$$
3 n L_{x z} \cdot D=3 n L_{x t} \cdot D=3 n L_{c} \cdot D=\frac{2}{3 n+1}<1
$$

implies that the point P cannot be the point O_{y}.
Put $D=\mu L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support does not contain the curve $L_{x z}$. We claim that

$$
\mu \leqslant \frac{2}{3 n+1}
$$

Indeed, if the inequality fails, one of the curves $L_{x t}$ and L_{c} is not contained in $\operatorname{Supp}(D)$. Then either

$$
\frac{\mu}{3 n}=\mu L_{x z} \cdot L_{x t} \leqslant D \cdot L_{x t}=\frac{2}{3 n(3 n+1)}, \text { or } \quad \frac{\mu}{3 n}=\mu L_{x z} \cdot L_{c} \leqslant D \cdot L_{c}=\frac{2}{3 n(3 n+1)}
$$

holds. This is a contradiction. Note that

$$
L_{x z}^{2}=-\frac{6 n-1}{3 n(3 n+1)}
$$

The inequality

$$
\Omega \cdot L_{x z}=\frac{2+(6 n-1) \mu}{3 n(3 n+1)}<\frac{1}{3 n+1}
$$

holds for all $n \geqslant 2$. Therefore, Lemma 1.3 .8 implies the point P cannot belong to $L_{x z}$. By the same way, we can show that $P \notin L_{x t} \cup L_{c}$.

Let C be the curve on X cut out by the equation $z-\alpha t=0$, where α is non-zero constant different from c. Then the curve C is quasismooth and hence $\operatorname{lct}\left(X, \frac{2}{3 n+1} C\right) \geqslant 1$. Therefore, we may assume that the support of D does not contain the curve C. Then

$$
\operatorname{mult}_{O_{x}}(D), \operatorname{mult}_{P_{a}}(D), \operatorname{mult}_{P_{b}}(D) \leqslant 3 D \cdot C=\frac{2}{n} \leqslant 1
$$

for $n \geqslant 2$. Therefore, P cannot be a singular point of X. Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.3.9, we get an absurd inequality

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{2(9 n+3)^{2}}{3 \cdot 3 n(3 n+1)(3 n+1)} \leqslant 1
$$

for $n \geqslant 2$ since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(9 n+3)\right)$ contains $x^{3 n+1}, x y^{3}$ and z^{3}. The obtained contradiction completes the proof.

Lemma 2.2.6. Let X be a quasismooth hypersurface of degree $9 n+6$ in $\mathbb{P}(3,3 n+1,3 n+2,3 n+2)$ for $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. The only singularities of X are a singular point O_{y} of index $3 n+1$, and three singular points $P_{i}, i=1,2,3$, of index $3 n+2$ on $L_{x y}$.

The divisor C_{x} consists of three distinct irreducible and reduced curves L_{1}, L_{2}, L_{3}, where each L_{i} contains the singular point P_{i}. Then $L_{1} \cap L_{2} \cap L_{3}=\left\{O_{y}\right\}$. It is obvious that $\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)=1$, and hence $\operatorname{lct}(X) \leqslant 1$.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$. By Lemma 1.3.6 we may assume that L_{1} is not contained in $\operatorname{Supp}(D)$.

Since

$$
L_{1} \cdot D<(3 n+1) L_{1} \cdot D=\frac{2}{3 n+2}<1
$$

for all $n \geqslant 1$, we see that $P \notin L_{1}$. In particular, we see that $P \neq O_{y}$.
Put $D=\mu L_{2}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{2} \not \subset \operatorname{Supp}(\Omega)$. Then the inequality

$$
\frac{\mu}{3 n+1}=\mu L_{1} \cdot L_{2} \leqslant D \cdot L_{1}=\frac{2}{(3 n+1)(3 n+2)}
$$

implies that $\mu \leqslant \frac{2}{3 n+2}$. The intersection number

$$
L_{1}^{2}=-\frac{6 n+1}{(3 n+1)(3 n+2)}
$$

shows

$$
(3 n+2) \Omega \cdot L_{2}=(3 n+2)\left(D-\mu L_{2}\right) \cdot L_{2}=\frac{2+\mu(6 n+1)}{(3 n+1)} \leqslant \frac{6}{(3 n+2)}
$$

for all $n \geqslant 1$. Therefore, Lemma 1.3 .8 excludes all the smooth point on L_{2} in the case where $n \geqslant 1$ and the singular point P_{2} in the case where $n \geqslant 2$. For the case $n=1$, let C_{2} be the unique curve in the pencil $\left|\mathcal{O}_{X}(5)\right|$ that passes through the point P_{2}. Then the divisor C_{2} consists of two distinct irreducible and reduced curve L_{2} and R_{2}. The curve R_{2} is singular at the point
P_{2}. Moreover, the \log pair $\left(X, \frac{2}{5} C_{2}\right)$ is \log canonical at the point P_{2}. By Lemma 1.3.6, we may assume that $R_{2} \not \subset \operatorname{Supp}(D)$. Then the inequality

$$
2 \operatorname{mult}_{P_{2}}(D) \leqslant \operatorname{mult}_{P_{2}}(D) \operatorname{mult}_{P_{2}}\left(R_{2}\right) \leqslant 5 D \cdot R_{2}=2
$$

excludes the point P_{2} in the case where $n=1$. By the same method, we can show $P \notin L_{3}$.
Hence the point P must be a smooth point in $X \backslash C_{x}$. For the case $n \geqslant 2$, we can use Lemma 1.3 .9 to get a contradiction

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{2(9 n+6)^{2}}{3(3 n+1)(3 n+2)(3 n+2)}=\frac{6}{3 n+1}<1,
$$

since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(9 n+6)\right)$ contains $x^{3 n+2}, y^{3} x$ and z^{3}. For the case $n=1$, let R_{P} be the unique curve in the pencil $\left|\mathcal{O}_{X}(5)\right|$ that passes through the point P. The \log pair $\left(X, \frac{2}{5} R_{P}\right)$ is \log canonical at the point P. By Lemma 1.3.6, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of R_{P}. Note that either R_{P} is irreducible or $P_{k} \in R_{P}$ for some $k=1,2,3$. If R_{P} is irreducible, then we can obtain a contradiction

$$
1<\operatorname{mult}_{P}(D) \leqslant D \cdot R_{P}=\frac{1}{2}
$$

Thus, $P_{k} \in R_{P}$. Then R_{P} consists of two distinct irreducible curves L_{k} and Z. Since we already showed that P is located in the outside of L_{k}, the point P must belong to the curve Z. We have

$$
L_{k}^{2}=-\frac{7}{20}, \quad L_{k} \cdot Z=\frac{3}{5}, \quad Z^{2}=\frac{2}{5}
$$

Put $D=m Z+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $Z \not \subset \operatorname{Supp}(\Delta)$. If $m>0$, then

$$
\frac{3 m}{5}=m Z \cdot L_{k} \leqslant D \cdot L_{k}=\frac{1}{10}
$$

and hence $\mu \leqslant \frac{1}{6}$. Then Lemma 1.3 .8 gives us a contradiction

$$
1<\Delta \cdot Z=\frac{2-2 m}{5}<1
$$

Lemma 2.2.7. Let X be a quasismooth hypersurface of degree $12 n+6$ in $\mathbb{P}(4,2 n+1,4 n+$ $2,6 n+1)$ for $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. We may assume that the surface X is defined by the equation

$$
x t^{2}+x^{2 n+1} z+a x^{2 n+1} y^{2}-\left(z-a_{1} y^{2}\right)\left(z-a_{2} y^{2}\right)\left(z-a_{3} y^{2}\right)=0,
$$

where a_{1}, a_{2}, a_{3} are distinct constants and a is a constant.
The only singularities of X are a singular point O_{x} of index 4, a singular point O_{t} of index $6 n+1$, a singular point $Q=[1: 0: 1: 0]$ of index 2 , and three singular points $P_{1}=\left[0: 1: a_{1}: 0\right]$, $P_{2}=\left[0: 1: a_{2}: 0\right], P_{3}=\left[0: 1: a_{3}: 0\right]$ of index $2 n+1$.

The divisor C_{x} consists of three distinct irreducible curves $L_{i}=\left\{x=z-a_{i} y^{2}=0\right\}, i=1,2,3$. Note that each L_{i} passes through the point P_{i} and $L_{1} \cap L_{2} \cap L_{3}=\left\{O_{t}\right\}$. We can easily check $\operatorname{lct}\left(X, \frac{1}{2} C_{x}\right)=1$, and hence $\operatorname{lct}(X) \leqslant 1$.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$.

By Lemma 1.3 .6 we may assume that L_{1} is not contained in $\operatorname{Supp}(D)$. Since

$$
(6 n+1) L_{1} \cdot D=\frac{2}{2 n+1}<1
$$

the point P is located in the outside of L_{1}.
Put $D=\mu L_{2}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{2} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\frac{2 \mu}{6 n+1}=\mu L_{1} \cdot L_{2} \leqslant D \cdot L_{2}=\frac{2}{(2 n+1)(6 n+1)}
$$

and hence $\mu \leqslant \frac{1}{2 n+1}$. Since

$$
L_{2}^{2}=-\frac{8 n}{(2 n+1)(6 n+1)}
$$

we have

$$
(2 n+1) \Omega \cdot L_{2}=(2 n+1)\left(D-\mu L_{2}\right) \cdot L_{2}=\frac{2+8 n \mu}{6 n+1} \leqslant \frac{2}{2 n+1}<1
$$

for all $n \geqslant 1$. Then Lemma 1.3 .8 excludes all the points on L_{2}. Furthermore, the same method works for L_{3}.

The curve C_{y} is quasismooth. Thus the \log pair $\left(X, \frac{2}{2 n+1} C_{y}\right)$ is log canonical. By Lemma 1.3.6 we may assume that C_{y} is not contained in $\operatorname{Supp}(D)$. Then the inequality

$$
4 C_{y} \cdot D=\frac{6}{6 n+1}<1
$$

implies that the point P is neither O_{x} nor Q. Hence P is a smooth point of $X \backslash C_{x}$. However, Lemma 1.3 .9 gives us

$$
\operatorname{mult}_{P}(D) \leqslant \frac{144 n(2 n+1)}{8(2 n+1)^{2}(6 n+1)}<1
$$

since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(12 n)\right)$ contains $x^{3 n}, y^{4} x^{n-1}$ and $z^{2} x^{n-1}$. This is a contradiction.

2.3. Infinite series with $I=4$

Lemma 2.3.1. Let X be a quasismooth hypersurface of degree $18 n+15$ in $\mathbb{P}(6,6 n+3,6 n+$ $5,6 n+5)$ for $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. We may assume that the surface X is defined by the equation

$$
\left(z-a_{1} t\right)\left(z-a_{2} t\right)\left(z-a_{3} t\right)+x y\left(y^{2}-x^{2 n+1}\right)=0
$$

where a_{1}, a_{2}, a_{3} are distinct constants. The only singularities of X are a singular point O_{x} of index 6 , a singular point O_{y} of index $6 n+3$, a singular point $Q=[1: 1: 0: 0]$ of index 3 , and three singular points $P_{i}=\left[0: 0: a_{i}: 1\right], i=1,2,3$, of index $6 n+5$.

The divisor C_{x} consists of three distinct irreducible curves $L_{i}=\left\{x=z-a_{i} t=0\right\}, i=1,2,3$. Note that each L_{i} passes through the point P_{i} and $L_{1} \cap L_{2} \cap L_{3}=\left\{O_{y}\right\}$. We can easily check $\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)=1$, and hence $\operatorname{lct}(X) \leqslant 1$.

The divisor C_{y} consists of three distinct irreducible curves $L_{i}^{\prime}=\left\{y=z-a_{i} t=0\right\}, i=1,2,3$. Each L_{i}^{\prime} passes through the point P_{i} and $L_{1}^{\prime} \cap L_{2}^{\prime} \cap L_{3}^{\prime}=\left\{O_{x}\right\}$. The log pair $\left(X, \frac{4}{6 n+3} C_{y}\right)$ is \log canonical.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$.

For a general member C in $\left|\mathcal{O}_{X}(6 n+5)\right|$, we have

$$
\operatorname{mult}_{Q}(D) \leqslant 3 D \cdot C=\frac{6}{6 n+3}<1
$$

Therefore the point P cannot be the point Q.
By Lemma 1.3 .6 we may assume that L_{1} and L_{1}^{\prime} are not contained in $\operatorname{Supp}(D)$. The two inequalities $(6 n+5) D \cdot L_{1}=\frac{4}{6 n+3}<1$ and $6 D \cdot L_{1}^{\prime}=\frac{4}{6 n+5}<1$ show that the point P is located in the outside of $L_{1} \cup L_{1}^{\prime}$.

Write $D=\mu L_{2}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{2} \not \subset \operatorname{Supp}(\Omega)$. Then

$$
\frac{\mu}{6 n+3}=\mu L_{1} \cdot L_{2} \leqslant D \cdot L_{1}=\frac{4}{(6 n+3)(6 n+5)},
$$

and hence $\mu \leqslant \frac{4}{6 n+5}$. Note that

$$
L_{2}^{2}=-\frac{12 n+4}{(6 n+3)(6 n+5)} .
$$

Therefore, we have

$$
(6 n+5) \Omega \cdot L_{2}=(6 n+5)\left(D-\mu L_{2}\right) \cdot L_{2}=\frac{4+(12 n+4) \mu}{6 n+3} \leqslant \frac{12}{6 n+5}
$$

Therefore, Lemma 1.3 .8 excludes all the smooth point on L_{2} in the case where $n \geqslant 1$ and the singular point P_{2} in the case where $n \geqslant 2$. For the case $n=1$, let C_{2} be the unique curve in the pencil $\left|\mathcal{O}_{X}(11)\right|$ that passes through the point P_{2}. Then the divisor C_{2} consists of three distinct irreducible and reduced curve L_{2}, L_{2}^{\prime} and R_{2}. The \log pair $\left(X, \frac{4}{11} C_{2}\right)$ is \log canonical at the point P_{2}. If $\mu=0$, then the inequality above immediately excludes the point P_{2} for the case $n=1$. Therefore we may assume that either $L_{2}^{\prime} \not \subset \operatorname{Supp}(D)$ or $R_{2} \not \subset \operatorname{Supp}(D)$. In the former case, the intersection number

$$
D \cdot L_{2}^{\prime}=\frac{2}{33}
$$

shows that the point P cannot be P_{2}. In the latter case, the intersection number

$$
D \cdot R_{2}=\frac{1}{11}
$$

excludes the point P_{2}. By the same method, we can show $P \notin L_{3}$.
Hence the point P must be a smooth point in $X \backslash C_{x}$. For the case $n \geqslant 2$, we can use Lemma 1.3.9 to get a contradiction

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{4(18 n+15) \cdot 6(6 n+5)}{6(6 n+3)(6 n+5)(6 n+5)}=\frac{4}{2 n+1}<1,
$$

since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(6(6 n+5))\right.$ contains $x^{6 n+5}, y^{6} x^{2}$ and z^{6}. For the case $n=1$, let R_{P} be the unique curve in the pencil $\left|\mathcal{O}_{X}(11)\right|$ that passes through the point P. The \log pair $\left(X, \frac{4}{11} R_{P}\right)$ is \log canonical at the point P. By Lemma 1.3.6, we may assume that $\operatorname{Supp}(D)$ does not contain at
least one irreducible component of R_{P}. Note that either R_{P} is irreducible or $P_{k} \in R_{P}$ for some $k=1,2,3$. However, if R_{P} is irreducible, then we can obtain a contradiction

$$
1<\operatorname{mult}_{P}(D) \leqslant D \cdot R_{P}=\frac{2}{9}
$$

Thus, $P_{k} \in R_{P}$. Then R_{P} consists of three distinct irreducible curves L_{k}, L_{k}^{\prime} and Z. We have

$$
D \cdot L_{k}^{\prime}=\frac{2}{33}, \quad D \cdot Z=\frac{4}{33}, \quad L_{k}^{\prime 2}=-\frac{13}{66}, \quad Z^{2}=-\frac{4}{33} .
$$

Put $D=m_{1} Z+m_{2} L_{k}^{\prime}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support contains neither Z nor L_{k}^{\prime}. Since the pair (X, D) is \log canonical at the point P_{k}, we have $m_{1}, m_{2} \leqslant 1$. Since we already showed that P is located in the outside of L_{k}, the point P must belong to either L_{k}^{\prime} or Z. However, Lemma 1.3 .8 shows that the pair (X, D) is \log canonical at the point P since

$$
\left(D-m_{1} Z\right) \cdot Z=\frac{4+4 m_{1}}{33}<1, \quad\left(D-m_{2} L_{k}^{\prime}\right) \cdot L_{k}^{\prime}=\frac{4+13 m_{2}}{66}<1
$$

This is a contradiction.
Lemma 2.3.2. Let X be a quasismooth hypersurface of degree $36 n+24$ in $\mathbb{P}(6,6 n+5,12 n+$ $8,18 n+9)$ for $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. We may assume that the surface X is defined by the equation

$$
z^{3}+y^{3} t+x t^{2}-x^{6 n+4}+a x^{2 n+1} y^{2} z=0
$$

where a is a constant. The only singularities of X are a singular point O_{y} of index $6 n+5$, a singular point O_{t} of index $18 n+9$, a singular point $Q=[1: 0: 0: 1]$ of index 3 , and a singular point $Q^{\prime}=[1: 0: 1: 0]$ of index 2 .

The curve C_{x} is reduced and irreducible with mult $O_{t}\left(C_{x}\right)=3$. Clearly, $\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)=1$, and hence $\operatorname{lct}(X) \leqslant 1$. The curve C_{y} is quasismooth, and hence the \log pair $\left(X, \frac{4}{6 n+5} C_{y}\right)$ is \log canonical.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(36 n+30)\right)$ contains $x^{6 n+5}, y^{6}$ and $z^{3} x$, Lemma 1.3 .9 implies

$$
\operatorname{mult}_{P}(D) \leqslant \frac{4(36 n+24)(36 n+30)}{6(6 n+5)(12 n+8)(18 n+9)}<1 .
$$

Therefore, the point P cannot be a smooth point in the outside of C_{x}.
By Lemma 1.3 .6 we may assume that neither C_{x} nor C_{y} is contained in $\operatorname{Supp}(D)$. Then the inequality

$$
3 D \cdot C_{y}=\frac{2}{6 n+3} \leqslant 1
$$

implies that the point P is neither Q nor Q^{\prime}. One the other hand, the inequality

$$
(6 n+5) D \cdot C_{x}=\frac{4}{6 n+3}<1
$$

shows that the point P can be neither a smooth point on C_{x} nor the point O_{y}. Therefore, it must be O_{t}. However, this is a contradiction since

$$
\operatorname{mult}_{O_{t}}(D)=\frac{\operatorname{mult}_{O_{t}}(D) \operatorname{mult}_{O_{t}}\left(C_{x}\right)}{3} \leqslant \frac{18 n+9}{3} D \cdot C_{x}=\frac{4}{6 n+5}<1 .
$$

The obtained contradiction completes the proof.
Lemma 2.3.3. Let X be a quasismooth hypersurface of degree $36 n+30$ in $\mathbb{P}(6,6 n+5,12 n+$ $8,18 n+15)$ for $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.
Proof. We may assume that the surface X is defined by the equation

$$
\left(t-a_{1} y^{3}\right)\left(t-a_{2} y^{3}\right)+x z^{3}-x^{6 n+5}+a x^{2 n+1} y^{2} z=0,
$$

where $a_{1} \neq a_{2}$ and a are constants. The only singularities of X are a singular point O_{z} of index $12 n+8$, a singular point $Q=[1: 0: 1: 0]$ of index 2 , a singular point $Q^{\prime}=[1: 0: 0: 1]$ of index 3 , and two singular points $P_{1}=\left[0: 1: 0: a_{1}\right], P_{2}=\left[0: 1: 0: a_{2}\right]$ of index $6 n+5$.

The curve C_{x} consists of two distinct irreducible curves $L_{i}=\left\{x=t-a_{i} y^{3}=0\right\}, i=1,2$. Each L_{i} passes through the point P_{i}. These two curves meet each other at the point O_{z}. It is easy to see $\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)=1$.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$.

By Lemma 1.3 .6 we may assume that L_{1} is not contained in $\operatorname{Supp}(D)$. Then the inequality

$$
(12 n+8) D \cdot L_{1}=\frac{4}{6 n+5}<1
$$

shows that the point P must be located in the outside of L_{1}.
Write $D=\mu L_{2}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{2} \not \subset \operatorname{Supp}(\Omega)$. Then, the inequality

$$
\frac{3 \mu}{12 n+8}=\mu L_{2} \cdot L_{1} \leqslant D \cdot L_{1}=\frac{1}{(3 n+2)(6 n+5)},
$$

implies

$$
\mu \leqslant \frac{4}{3(6 n+5)}
$$

Note that

$$
L_{2}^{2}=-\frac{18 n+9}{(12 n+8)(6 n+5)} .
$$

Since

$$
(6 n+5) \Omega \cdot L_{2}=\frac{4+(18 n+9) \mu}{12 n+8}<\frac{4}{6 n+5}
$$

Lemma 1.3.8 excludes all the points of $L_{2} \backslash\left\{O_{z}\right\}$. Consequently, the point P is in the outside of C_{x}.

Meanwhile, the curve C_{y} is quasismooth, and hence the \log pair $\left(X, \frac{4}{6 n+5} C_{y}\right)$ is \log canonical. Lemma 1.3.6 enables us to assume that C_{y} is not contained in $\operatorname{Supp}(D)$. Then the inequality

$$
3 C_{y} \cdot D=\frac{1}{3 n+2} \leqslant 1,
$$

excludes the singular points Q and Q^{\prime}.

Hence P is a smooth point of $X \backslash C_{x}$. Applying Lemma 1.3.9, we see that

$$
1<\operatorname{mult}_{P}(D) \leqslant \frac{4(36 n+30)(3(12 n+8)+6)}{6(6 n+5)(12 n+8)(18 n+15)}<1
$$

because $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(3(12 n+8)+6)\right)$ contains $x^{6 n+5}, y^{6}$ and $z^{3} x$. The obtained contradiction completes the proof.

2.4. Infinite series with $I=6$

Lemma 2.4.1. Let X be a quasismooth hypersurface of degree $12 n+23$ in $\mathbb{P}(8,4 n+5,4 n+$ $7,4 n+9)$ for $n \geqslant 3$. Then $\operatorname{lct}(X)=1$.

Proof. The surface X can be given by the equation

$$
z^{2} t+y t^{2}+x y^{3}+x^{n+2} z=0
$$

The surface X is singular only at O_{x}, O_{y}, O_{z} and O_{t}.
The curve C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of the irreducible curve $L_{x t}$ (resp. $L_{y z}, L_{y z}, L_{x t}$) and a residual curve $R_{x}=\left\{x=z^{2}+y t=0\right\}$ (resp. $R_{y}=\left\{y=x^{n+2}+z t=0\right\}$, $R_{z}=\left\{z=t^{2}+x y^{2}=0\right\}$, $R_{t}=\left\{t=y^{3}+x^{n+1} z=0\right\}$). These two curves intersect each other at O_{y} (resp. O_{t}, O_{x}, O_{z}).

We can easily see that

$$
\begin{aligned}
\operatorname{lct}\left(X, \frac{3}{4} C_{x}\right) & =1, \quad \operatorname{lct}\left(X, \frac{6}{4 n+5} C_{y}\right)=\frac{(n+3)(4 n+5)}{12(n+2)} \\
\operatorname{lct}\left(X, \frac{6}{4 n+7} C_{z}\right) & =\frac{4 n+7}{9}, \quad \operatorname{lct}\left(X, \frac{6}{4 n+9} C_{t}\right)=\frac{(4 n+9)(n+4)}{6(3 n+6)}
\end{aligned}
$$

Therefore, $\operatorname{lct}(X) \leqslant 1$.
Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$.

We have the following intersection numbers:

$$
\begin{gathered}
L_{x t} \cdot D=\frac{6}{(4 n+5)(4 n+7)}, \quad L_{y z} \cdot D=\frac{6}{8(4 n+9)}, \quad R_{x} \cdot D=\frac{12}{(4 n+5)(4 n+9)}, \\
R_{y} \cdot D=\frac{6(n+2)}{(4 n+7)(4 n+9)}, \quad R_{z} \cdot D=\frac{12}{8(4 n+5)}, \quad R_{t} \cdot D=\frac{18}{8(4 n+7)}, \\
L_{x t} \cdot R_{x}=\frac{2}{4 n+5}, \quad L_{x t} \cdot R_{t}=\frac{3}{4 n+7}, \quad L_{y z} \cdot R_{y}=\frac{n+2}{4 n+9}, \quad L_{y z} \cdot R_{z}=\frac{1}{4}, \\
L_{x t}^{2}=-\frac{8 n+6}{(4 n+5)(4 n+7)}, \quad L_{y z}^{2}=-\frac{4 n+11}{8(4 n+9)}, \quad R_{x}^{2}=-\frac{8 n+2}{(4 n+5)(4 n+9)}, \\
R_{y}^{2}=-\frac{2 n+4}{(4 n+7)(4 n+9)}, \quad R_{z}^{2}=\frac{1}{2(4 n+5)}, \quad R_{t}^{2}=\frac{12 n+3}{8(4 n+7)} .
\end{gathered}
$$

By Lemma 1.3 .6 we may assume that either $L_{x t} \not \subset \operatorname{Supp}(D)$ or $R_{x} \not \subset \operatorname{Supp}(D)$. Then at least one of the inequalities

$$
\operatorname{mult}_{O_{y}}(D) \leqslant(4 n+5) L_{x t} \cdot D=\frac{6}{4 n+7}, \quad \operatorname{mult}_{O_{y}}(D) \leqslant(4 n+5) R_{x} \cdot D=\frac{12}{4 n+9}
$$

holds. Therefore, the point P cannot be the point O_{y}. We also may assume that either $L_{y z} \not \subset$ $\operatorname{Supp}(D)$ or $R_{z} \not \subset \operatorname{Supp}(D)$. Then at least one of the inequalities

$$
\operatorname{mult}_{O_{x}}(D) \leqslant 8 L_{y z} \cdot D=\frac{6}{4 n+9}, \quad \operatorname{mult}_{O_{x}}(D) \leqslant \frac{8}{2} R_{z} \cdot D=\frac{6}{4 n+5}
$$

holds. Note that the curve R_{z} is singular at the point O_{x}. Therefore, the point P cannot be the point O_{x}. We also may assume that either $L_{x t} \not \subset \operatorname{Supp}(D)$ or $R_{t} \not \subset \operatorname{Supp}(D)$. Then at least one of the inequalities

$$
\operatorname{mult}_{O_{z}}(D) \leqslant(4 n+7) L_{x t} \cdot D=\frac{6}{4 n+5}, \operatorname{mult}_{O_{z}}(D) \leqslant \frac{4 n+7}{3} R_{t} \cdot D=\frac{3}{4}
$$

holds. Note that the curve R_{t} has multiplicity 3 at the point O_{z} if $n \geqslant 2$. Therefore, the point P cannot be the point O_{z}.

Write $D=m_{1} L_{x t}+m_{2} L_{y z}+m_{3} R_{x}+m_{4} R_{y}+m_{5} R_{z}+m_{6} R_{t}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains none of $L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$.

If $m_{1}>0$, then $m_{3}=0$. Therefore, the inequality

$$
\frac{2 m_{1}}{4 n+5}=m_{1} L_{x t} \cdot R_{x} \leqslant D \cdot R_{x}=\frac{12}{(4 n+5)(4 n+9)}
$$

shows $0 \leqslant m_{1} \leqslant \frac{6}{4 n+9}$. By Lemma 1.3.8 the inequality

$$
\left(D-m_{1} L_{x t}\right) \cdot L_{x t}=\frac{6+m_{1}(8 n+6)}{(4 n+5)(4 n+7)} \leqslant \frac{18}{(4 n+7)(4 n+9)}<1
$$

implies that the point P cannot be a smooth point on $L_{x t}$.
If $m_{2}>0$, then $R_{z} \not \subset \operatorname{Supp}(D)$. Therefore, the inequality

$$
\frac{m_{2}}{4}=m_{2} L_{y z} \cdot R_{z} \leqslant D \cdot R_{z}=\frac{3}{2(4 n+5)}
$$

shows $0 \leqslant m_{2} \leqslant \frac{6}{4 n+5}$. By Lemma 1.3 .8 the inequality

$$
\left(D-m_{2} L_{y z}\right) \cdot L_{y z}=\frac{6+m_{2}(4 n+11)}{8(4 n+9)} \leqslant \frac{6(n+2)}{(4 n+5)(4 n+9)}<1
$$

implies that the point P cannot be a smooth point on $L_{y z}$.
If $m_{3}>0$, then $m_{1}=0$, and hence

$$
\frac{2 m_{3}}{4 n+5}=m_{3} L_{x t} \cdot R_{x} \leqslant D \cdot L_{x t}=\frac{6}{(4 n+5)(4 n+7)} .
$$

Therefore, $0 \leqslant m_{3} \leqslant \frac{3}{4 n+7}$. The inequality

$$
\left(D-m_{3} R_{x}\right) \cdot R_{x}=\frac{12+m_{3}(8 n+2)}{(4 n+5)(4 n+9)} \leqslant \frac{18}{(4 n+7)(4 n+9)}<1
$$

implies that the point P cannot be a smooth point on R_{x}. Moreover, this inequality shows that the point P cannot be the point O_{t} since $n \geqslant 3$.

If $m_{4}>0$, then we may assume that $m_{2}=0$. We then obtain

$$
\frac{m_{4}(n+2)}{4 n+9}=m_{4} R_{y} \cdot L_{y z} \leqslant D \cdot L_{y z}=\frac{3}{4(4 n+9)} .
$$

Therefore, $0 \leqslant m_{4} \leqslant \frac{3}{4(n+2)}$. The inequality

$$
\left(D-m_{4} R_{y}\right) \cdot R_{y}=\frac{6(n+2)+2 m_{4}(n+2)}{(4 n+7)(4 n+9)} \leqslant \frac{3}{2(4 n+7)}<1
$$

implies that the point P cannot be a smooth point on R_{y}.
Since the pair (X, D) is \log canonical at the point O_{x} and the curve R_{z} contains the point O_{x}, we have $m_{5} \leqslant 1$. By Lemma 1.3.8, the inequality

$$
\left(D-m_{5} R_{z}\right) \cdot R_{z} \leqslant D \cdot R_{z}=\frac{3}{2(4 n+5)}<1
$$

shows that the point P cannot be a smooth point on R_{z}.
The pair (X, D) is \log canonical at the point O_{x} and the curve R_{t} contains the point O_{x}. Thus $m_{6} \leqslant 1$. By Lemma 1.3.8, the inequality

$$
\left(D-m_{6} R_{t}\right) \cdot R_{t} \leqslant D \cdot R_{t}=\frac{9}{4(4 n+7)}<1
$$

implies that the point P cannot be a smooth point of R_{t}.
Consider the pencil \mathcal{L} defined by the equations $\lambda x y^{2}+\mu t^{2}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. Note that the curve $L_{x t}$ is the only base component of the pencil \mathcal{L}. There is a unique divisor C_{α} in \mathcal{L} passing through the point P. This divisor must be defined an equation $x y^{2}+\alpha t^{2}=0$, where α is a non-zero constant, since the point P is located in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$. Note that the curve C_{y} does not contain any component of C_{α}. Therefore, to see all the irreducible components of C_{α}, it is enough to see the affine curve

$$
\left\{\begin{array}{l}
x+\alpha t^{2}=0 \\
z^{2} t+t^{2}+x+x^{n+2} z=0
\end{array}\right\} \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[x, z, t]) .
$$

This is isomorphic to the plane affine curve defined by the equation

$$
t\left\{z^{2}+(1-\alpha) t^{2}+(-\alpha)^{n+2} t^{2 n+1} z\right\}=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[z, t])
$$

Thus, if $\alpha \neq 1$, then the divisor C_{α} consists of two reduced and irreducible curves $L_{x t}$ and Z_{α}. If $\alpha=1$, then it consists of three reduced and irreducible curves $L_{x t}, R_{z}, R$. Moreover, Z_{α} and R contain the point P and they are smooth at the point P.

Suppose that $\alpha \neq 1$. It is easy to check

$$
D \cdot Z_{\alpha}=\frac{3(12 n+19)}{2(4 n+5)(4 n+7)} .
$$

We also see that

$$
Z_{\alpha}^{2}=C_{\alpha} \cdot Z_{\alpha}-L_{x t} \cdot Z_{\alpha} \geqslant C_{\alpha} \cdot Z_{\alpha}-\left(L_{x t}+R_{x}\right) \cdot Z_{\alpha}=\frac{4 n+5}{3} D \cdot Z_{\alpha}>0
$$

since Z_{α} is different from the curve R_{x}. Put $D=\epsilon Z_{\alpha}+\Xi$, where Ξ is an effective \mathbb{Q}-divisor such that $Z_{\alpha} \not \subset \operatorname{Supp}(\Xi)$. Since the pair (X, D) is \log canonical at the point O_{y} and the curve Z_{α} passes through the point O_{y}, we have $\epsilon \leqslant 1$. But

$$
\left(D-\epsilon Z_{\alpha}\right) \cdot Z_{\alpha} \leqslant D \cdot Z_{\alpha}=\frac{3(12 n+19)}{2(4 n+5)(4 n+7)}<1
$$

and hence Lemma 1.3 .8 implies that the point P cannot belong to the curve Z_{α}.
Suppose that $\alpha=1$. Then we have

$$
D \cdot R=\frac{6(2 n+3)}{(4 n+5)(4 n+7)} .
$$

Since R is different from $L_{y z}$ and R_{x},

$$
R^{2}=C_{\alpha} \cdot R-L_{x t} \cdot R-R_{z} \cdot R \geqslant C_{\alpha} \cdot R-\left(L_{x t}+R_{x}\right) \cdot R-\left(L_{y z}+R_{z}\right) \cdot R \geqslant \frac{4 n+3}{6} D \cdot R>0
$$

Put $D=\epsilon_{1} R+\Xi^{\prime}$, where Ξ^{\prime} is an effective \mathbb{Q}-divisor such that $R \not \subset \operatorname{Supp}\left(\Xi^{\prime}\right)$. Since the curve R passes through the point O_{y} at which the pair (X, D) is \log canonical, we have $\epsilon_{1} \leqslant 1$. Since

$$
\left(D-\epsilon_{1} R\right) \cdot R \leqslant D \cdot R=\frac{6(2 n+3)}{(4 n+5)(4 n+7)}<1
$$

Lemma 1.3 .8 implies that the point P cannot belong to R.
Lemma 2.4.2. Let X be a quasismooth hypersurface of degree 47 in $\mathbb{P}(8,13,15,17)$. Then $\operatorname{lct}(X)=1$.
Proof. If we exclude the point O_{t}, then the proof of Lemma 2.4.1 works for this case. Thus we suppose that $P=O_{t}$. Then $L_{y z} \not \subset \operatorname{Supp}(D)$; otherwise we would have a contradictory inequality

$$
\frac{3}{4 \cdot 17}=D \cdot L_{y z} \geqslant \operatorname{mult}_{P}(D)>\frac{1}{17}
$$

By Lemma 1.3.6, we may assume that $R_{y} \not \subset \operatorname{Supp}(D)$. Put

$$
D=m L_{y z}+c R_{x}+\Omega
$$

where $m>0$ and $c \geqslant 0$, and Ω is an effective \mathbb{Q}-divisor whose support contains neither $L_{y z}$ nor R_{x}. Then

$$
\frac{24}{15 \cdot 17}=D \cdot R_{y}=\left(m L_{y z}+c R_{x}+\Omega\right) \cdot R_{y} \geqslant \frac{4 m}{17}+\frac{\text { mult }_{O_{t}}(D)-m}{17}>\frac{3 m+1}{17}
$$

and hence

$$
m<\frac{1}{5} .
$$

Then it follows from Lemma 1.3 .8 that

$$
\frac{6+19 m}{8 \cdot 17}=\left(D-m L_{y z}\right) \cdot L_{y z}>\frac{1}{17},
$$

and hence

$$
\frac{2}{19}<m
$$

On the other hand, if $c>0$, then

$$
\frac{6}{13 \cdot 15}=D \cdot L_{x t} \geqslant c R_{x} \cdot L_{x t}=\frac{2 c}{13} .
$$

Therefore, $0 \leqslant c \leqslant \frac{1}{5}$.

Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up at the point O_{t} with weights $(6,7)$. Let E be the exceptional curve of π. Also we let $\bar{\Omega}, \bar{L}_{y z}$ and \bar{R}_{x} be the proper transforms of $\Omega, L_{y z}$ and R_{x}, respectively. Then

$$
K_{\bar{X}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)-\frac{4}{17} E, \bar{L}_{y z} \sim_{\mathbb{Q}} \pi^{*}\left(L_{y z}\right)-\frac{7}{17} E, \bar{R}_{x} \sim_{\mathbb{Q}} \pi^{*}\left(R_{x}\right)-\frac{6}{17} E, \bar{\Omega} \sim_{\mathbb{Q}} \pi^{*}(\Omega)-\frac{a}{17} E,
$$

where a is a non-negative rational number.
The curve E contains two singular points Q_{7} and Q_{6} of \bar{X}. The point Q_{7} is a singular point of type $\frac{1}{7}(1,3)$ and the point Q_{6} is a singular point of type $\frac{1}{6}(1,1)$. Then the point Q_{7} is contained in \bar{R}_{x} but not in $\bar{L}_{y z}$, on the other hand, Q_{6} is contained in $\bar{L}_{y z}$ but not in \bar{R}_{x}. We also see that $\bar{L}_{y z} \cap \bar{R}_{x}=\varnothing$. The log pull back of the log pair (X, D) is the \log pair

$$
\left(\bar{X}, \bar{\Omega}+m \bar{L}_{y z}+c \bar{R}_{x}+\frac{4+a+7 m+6 c}{17} E\right) .
$$

This pair must have non-log canonical singularity at some point $Q \in E$. Then

$$
\begin{aligned}
& 0 \leqslant \bar{R}_{x} \cdot \bar{\Omega}=R_{x} \cdot \Omega+\frac{6 a}{17^{2}} E^{2}=\frac{12-13 m+18 c}{13 \cdot 17}-\frac{a}{7 \cdot 17}, \\
& 0 \leqslant \bar{L}_{y z} \cdot \bar{\Omega}=L_{y z} \cdot \Omega+\frac{7 a}{17^{2}} E^{2}=\frac{6+19 m-8 c}{8 \cdot 17}-\frac{a}{6 \cdot 17},
\end{aligned}
$$

and hence $0 \leqslant 84-13 a+126 c-91 m$ and $0 \leqslant 18-4 a-24 c+57 m$. In particular, we see that $a \leqslant \frac{259}{40}$. Then $4+a+7 m+6 c<17$ since $m \frac{1}{5}$ and $c \leqslant \frac{1}{5}$.

Suppose that the point Q is neither Q_{6} nor Q_{7}. Then the point Q must be located in the outside of $\bar{L}_{y z}$ and \bar{R}_{x}. By Lemma 1.3.8, we have

$$
\frac{a}{42}=-\frac{a}{17} E^{2}=\bar{\Omega} \cdot E>1,
$$

and hence $a>42$. This is a contradiction since $a<\frac{259}{40}$. Therefore, either $Q=Q_{6}$ or $Q=Q_{7}$.
Suppose that $Q=Q_{7}$. Then $Q \notin \bar{L}_{y z}$. Hence, it follows from Lemma 1.3.8 that

$$
\frac{1}{7} \leqslant\left(\bar{\Omega}+m \bar{L}_{y x}+\frac{4+a+7 m+6 c}{17} E\right) \cdot \bar{R}_{x}=\frac{136+204 c}{7 \cdot 13 \cdot 17},
$$

and hence $c>\frac{5}{12}$. But $c \leqslant \frac{1}{5}$. This is a contradiction.
Finally, we suppose that $Q=Q_{6}$. Then $Q \notin \bar{R}_{x}$. It follows from Lemma 1.3.8 that

$$
\frac{1}{6} \leqslant\left(\bar{\Omega}+c \bar{R}_{x}+\frac{4+a+7 m+6 c}{17} E\right) \cdot \bar{L}_{y z}=\frac{34+85 m}{3 \cdot 8 \cdot 17},
$$

and hence $m>\frac{2}{5}$. This contradiction completes the proof.
Lemma 2.4.3. Let X be a quasismooth hypersurface of degree 35 in $\mathbb{P}(8,9,11,13)$. Then $\operatorname{lct}(X)=1$.

Proof. If we exclude the points O_{z} and O_{t}, then the proof of Lemma 2.4.1 works also for this case.

Suppose that $P=O_{z}$. Then $L_{x t} \subset \operatorname{Supp}(D)$, since otherwise we would have an absurd inequality

$$
\frac{6}{9 \cdot 11}=D \cdot L_{x t}>\frac{1}{11} .
$$

We may assume that $M_{t} \not \subset \operatorname{Supp}(D)$ by Lemma 1.3.6. Put

$$
D=m L_{x t}+c M_{y}+\Omega
$$

where $m>0$ and $c \geqslant 0$, and Ω is an effective \mathbb{Q}-divisor whose support contains neither $L_{x t}$ nor R_{y}. Then

$$
\frac{18}{8 \cdot 11}=D \cdot R_{t}=\left(m L_{x t}+c R_{y}+\Omega\right) \cdot R_{t} \geqslant \frac{3 m}{11}+\frac{2\left(\operatorname{mult}_{O_{z}}(D)-m\right)}{11}>\frac{m+2}{11},
$$

and hence $m<\frac{1}{4}$. Note that mult $O_{z}\left(R_{t}\right)=2$. It follows from Lemma 1.3.8 that

$$
\frac{6+14 m}{9 \cdot 11}=\left(D-m L_{x t}\right) \cdot L_{x t}>\frac{1}{11} .
$$

Therefore, $\frac{3}{14}<m<\frac{1}{4}$. On the other hand, if $c>0$, then

$$
\frac{6}{8 \cdot 13}=D \cdot L_{y z} \geqslant c R_{y} \cdot L_{y z}=\frac{3 c}{13},
$$

and hence $c \leqslant \frac{1}{4}$.
Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up at the point O_{z} with weights (3,2). Let E be the exceptional curve of π and let $\bar{\Omega}, \bar{L}_{x t}$ and \bar{R}_{y} be the proper transforms of $\Omega, L_{x t}$ and R_{y}, respectively. Then

$$
K_{\bar{X}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)-\frac{6}{11} E, \bar{L}_{x t} \sim_{\mathbb{Q}} \pi^{*}\left(L_{x t}\right)-\frac{3}{11} E, \bar{R}_{y} \sim_{\mathbb{Q}} \pi^{*}\left(R_{y}\right)-\frac{2}{11} E, \bar{\Omega} \sim_{\mathbb{Q}} \pi^{*}(\Omega)-\frac{a}{11} E .
$$

where a is a non-negative rational number.
The curve E contains two singular points Q_{2} and Q_{3} of \bar{X}. The point Q_{2} is a singular point of type $\frac{1}{2}(1,1)$. It is contained in $\bar{L}_{x t}$ but not in \bar{R}_{y}. On the other hand, the point Q_{3} is a singular point of type $\frac{1}{3}(2,1)$. It is contained in \bar{R}_{y} but not in $\bar{L}_{x t}$. But $\bar{L}_{x t} \cap \bar{R}_{y}=\varnothing$.

The log pull back of the \log pair (X, D) is the log pair

$$
\left(\bar{X}, \bar{\Omega}+m \bar{L}_{x t}+c \bar{R}_{y}+\frac{6+a+3 m+2 c}{11} E\right),
$$

which must have non-log canonical singularity at some point $Q \in E$. We have

$$
\begin{aligned}
& 0 \leqslant \bar{\Omega} \cdot \bar{R}_{y}=\frac{18+6 c}{11 \cdot 13}-\frac{m}{11}-\frac{a}{33} \\
& 0 \leqslant \bar{\Omega} \cdot \bar{L}_{x t}=\frac{6+14 m}{9 \cdot 11}-\frac{c}{11}-\frac{a}{22} .
\end{aligned}
$$

Then, $a \leqslant \frac{12+28 m}{9}<\frac{19}{9}$ since $m<\frac{1}{4}$. Also, we obtain $6+a+3 m+2 c<11$ since $c \leqslant \frac{1}{4}$.
Suppose that the point Q is neither Q_{2} nor Q_{3}. Then $Q \notin \bar{L}_{x t} \cup \bar{R}_{y}$. By Lemma 1.3.4, we have

$$
\frac{a}{2 \cdot 3}=-\frac{a}{11} E^{2}=\bar{\Omega} \cdot E>1,
$$

and hence $a>6$. This contradicts to the inequality $a<\frac{19}{9}$. Therefore, we see that either $Q=Q_{2}$ or $Q=Q_{3}$.

Suppose that $Q=Q_{2}$. Then $Q \notin \bar{R}_{y}$. Lemma 1.3 .8 shows that

$$
\frac{1}{2}<\left(\bar{\Omega}+c \bar{R}_{y}+\frac{6+a+3 m+2 c}{11} E\right) \cdot \bar{L}_{x t}=\frac{66+55 m}{2 \cdot 9 \cdot 11}
$$

and hence $m>\frac{3}{5}$. But $m<\frac{1}{4}$. This is a contradiction.
Thus, the point Q must be Q_{3}. Then $Q \notin \bar{L}_{x t}$. It follows from Lemma 1.3.8 that

$$
\frac{1}{3}<\left(\bar{\Omega}+m \bar{L}_{x t}+\frac{6+a+3 m+2 c}{11} E\right) \cdot \bar{R}_{y}=\frac{132+44 c}{13 \cdot 33} .
$$

Therefore, $c>\frac{1}{4}$. But we have seen $c \leqslant \frac{1}{4}$. The obtained contradiction shows that $P \neq O_{z}$. The point P must be the point O_{t}. Then $L_{y z} \not \subset \operatorname{Supp}(D)$ since otherwise we would have

$$
\frac{6}{8 \cdot 13}=D \cdot L_{y z}>\frac{1}{13} .
$$

By Lemma 1.3.6, we may assume that $R_{y} \not \subset \operatorname{Supp}(D)$. Put

$$
D=m L_{y z}+c R_{x}+\Omega
$$

where $m>0$ and $c \geqslant 0$, and Ω is an effective \mathbb{Q}-divisor whose support contains neither $L_{y z}$ nor R_{x}. Then

$$
\frac{18}{11 \cdot 13}=D \cdot R_{y}=\left(m L_{y z}+c R_{x}+\Omega\right) \cdot R_{y} \geqslant \frac{3 m}{13}+\frac{\operatorname{mult}_{O_{t}}(D)-m}{13}>\frac{2 m+1}{13}
$$

and hence $m<\frac{7}{22}$. On the other hand, Lemma 1.3 .8 implies

$$
\frac{6+15 m}{8 \cdot 13}=\left(D-m L_{y z}\right) \cdot L_{y z}>\frac{1}{13},
$$

and hence $\frac{2}{15}<m<\frac{7}{22}$. If $c>0$, then

$$
\frac{6}{9 \cdot 11}=D \cdot L_{x t}=c R_{x} \cdot L_{x t} \geqslant \frac{2 c}{9} .
$$

Therefore, $c \leqslant \frac{3}{11}$.
Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up at the point O_{t} with weights (5,2). Let E be the exceptional curve of π. Let $\bar{\Omega}, \bar{L}_{y z}$ and \bar{R}_{x} be the proper transforms of $\Omega, L_{y z}$ and R_{x}, respectively. Then

$$
K_{\bar{X}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)-\frac{6}{13} E, \bar{L}_{y z} \sim_{\mathbb{Q}} \pi^{*}\left(L_{y z}\right)-\frac{2}{13} E, \bar{R}_{x} \sim_{\mathbb{Q}} \pi^{*}\left(R_{x}\right)-\frac{5}{13} E, \bar{\Omega} \sim_{\mathbb{Q}} \pi^{*}(\Omega)-\frac{a}{13} E,
$$

where a is a non-negative rational number.
The curve E contains two singular points Q_{5} and Q_{2} of \bar{X}. The point Q_{5} is a singular point of type $\frac{1}{5}(1,1)$. It belongs to $\bar{L}_{y z}$ but not to \bar{R}_{x}. The point Q_{2} is a singular point of type $\frac{1}{2}(1,1)$.
It belongs to \bar{R}_{x} but not to $\bar{L}_{y z}$. Note that $\bar{L}_{y z} \cap \bar{R}_{x}=\varnothing$.
The log pull back of the \log pair (X, D) is the log pair

$$
\left(\bar{X}, \bar{\Omega}+m \bar{L}_{y z}+c \bar{R}_{x}+\frac{6+a+2 m+5 c}{13} E\right) .
$$

It must have non-log canonical singularity at some point $Q \in E$. We have

$$
\begin{aligned}
& 0 \leqslant \bar{\Omega} \cdot \bar{R}_{x}=\frac{12+10 c}{9 \cdot 13}-\frac{m}{13}-\frac{a}{26}, \\
& 0 \leqslant \bar{\Omega} \cdot \bar{L}_{y z}=\frac{6+15 m}{8 \cdot 13}-\frac{c}{13}-\frac{a}{65} .
\end{aligned}
$$

Therefore, $30+75 m \geqslant 40 c+8 a$ and $24+20 c \geqslant 18 m+9 a$. In particular, we see that $a \leqslant \frac{240}{77}$. Then $6+a+2 m+5 c<13$ since $c \leqslant \frac{3}{11}$ and $m \leqslant \frac{7}{22}$.

Suppose that $Q \neq Q_{2}$ and $Q \neq Q_{5}$. Then $Q \notin \bar{L}_{y z} \cup \bar{R}_{x}$. By Lemma 1.3.8, we have

$$
\frac{a}{10}=-\frac{a}{13} E^{2}=\bar{\Omega} \cdot E>1,
$$

and hence $a>10$. This is a contradiction since $a<\frac{240}{77}$. Therefore, the point Q is either the point Q_{2} or the point Q_{5}.

Suppose that $Q=Q_{2}$. Then $Q \notin \bar{L}_{y z}$. It follows from Lemma 1.3 .8 that

$$
\frac{1}{2}<\left(\bar{\Omega}+m \bar{L}_{y z}+\frac{6+a+2 m+5 c}{13} E\right) \cdot \bar{R}_{x}=\frac{78+65 c}{9 \cdot 26},
$$

and hence $c>\frac{3}{5}$. However, $c \leqslant \frac{3}{11}$. Thus, the point Q must be Q_{5}. Then $Q \notin \bar{R}_{x}$. Again, Lemma 1.3 .8 shows that

$$
\begin{gathered}
\frac{1}{5}<\left(\bar{\Omega}+c \bar{R}_{x}+\frac{6+a+2 m+5 c}{13} E\right) \cdot \bar{L}_{y z}=\frac{78+91 m}{5 \cdot 8 \cdot 13} \\
\frac{1}{5}<\left(\bar{\Omega}+m \bar{L}_{y z}\right) \cdot E=\frac{a}{10}+\frac{m}{5} .
\end{gathered}
$$

Therefore, $m>\frac{2}{7}$ and $a+2 m>2$. In particular, $\frac{2}{7}<m<\frac{7}{22}$.
Let $\psi: \tilde{X} \rightarrow \bar{X}$ be the weighted blow up at the point Q_{5} with weights $(1,1)$. Let G be the exceptional curve of ψ and let $\tilde{\Omega}, \tilde{L}_{y z}, \tilde{R}_{x}$ and \tilde{E} be the proper transforms of $\Omega, L_{y z}, R_{x}$ and E, respectively. Then

$$
K_{\tilde{X}} \sim_{\mathbb{Q}} \psi^{*}\left(K_{\bar{X}}\right)-\frac{3}{5} G, \tilde{L}_{y z} \sim_{\mathbb{Q}} \psi^{*}\left(\bar{L}_{y z}\right)-\frac{1}{5} G, \tilde{E} \sim_{\mathbb{Q}} \psi^{*}(E)-\frac{1}{5} G, \tilde{\Omega} \sim_{\mathbb{Q}} \psi^{*}(\bar{\Omega})-\frac{b}{5} G,
$$

where b is a non-negative rational number.
The surface is smooth along G. The log pull back of (X, D) is the log pair

$$
\left(\tilde{X}, \tilde{\Omega}+m \tilde{L}_{y z}+c \tilde{R}_{x}+\frac{6+a+2 m+5 c}{13} \tilde{E}+\theta G\right)
$$

where

$$
\theta=\frac{15 m+45+a+13 b+5 c}{65}
$$

Then the \log pair is not \log canonical at some point $O \in G$. We have

$$
\begin{gathered}
0 \leqslant \tilde{E} \cdot \tilde{\Omega}=\frac{a}{10}-\frac{b}{5}, \\
0 \leqslant \tilde{L}_{y z} \cdot \tilde{\Omega}=\frac{6+15 m}{8 \cdot 13}-\frac{c}{13}-\frac{a}{65}-\frac{b}{5}
\end{gathered}
$$

and hence $30+75 m \geqslant 8(a+13 b+5 c)$ and $a \geqslant 2 b$. In particular, we obtain

$$
\theta=\frac{15 m+45+a+13 b+5 c}{65} \leqslant \frac{195 m+390}{8 \cdot 65} \leqslant \frac{195 \cdot 7+390 \cdot 22}{8 \cdot 22 \cdot 65}<1
$$

since $m \leqslant \frac{7}{22}$.
Suppose that $O \notin \tilde{E} \cup \tilde{L}_{y z}$. Then it follows from Lemma 1.3 .8 that

$$
b=-\frac{b}{5} G^{2}=\tilde{\Omega} \cdot G>1
$$

However, this gives an absurd inequality $104<104 b \leqslant 30+75 m-8 a-40 c \leqslant 30+75 m<104$ since $m \leqslant \frac{7}{22}$. Therefore, $O \in \tilde{E} \cup \tilde{L}_{y z}$. Note that $\tilde{E} \cap \tilde{L}_{y z}=\varnothing$.

Suppose that $O \in \tilde{L}_{y z}$. Then it follows from Lemma 1.3.8 that

$$
1<\left(\tilde{\Omega}+c \tilde{R}_{x}+\frac{6+a+2 m+5 c}{13} \tilde{E}+\theta G\right) \cdot \tilde{L}_{y z}=(\tilde{\Omega}+\theta G) \cdot \tilde{L}_{y z}=\frac{3 m+6}{8}
$$

and hence $m>\frac{2}{3}$. But $m \leqslant \frac{7}{22}$. Thus, we see that $O \in \tilde{E}$. Lemma 1.3 .8 implies that

$$
\begin{gathered}
1<\left(\tilde{\Omega}+\frac{6+a+2 m+5 c}{13} \tilde{E}\right) \cdot G=b+\frac{6+a+2 m+5 c}{13} \\
1<(\tilde{\Omega}+\theta G) \cdot \tilde{E}=\frac{a}{10}-\frac{b}{5}+\theta
\end{gathered}
$$

Therefore, we obtain $13 b+a+2 m+5 c>7$ and $3 a+2 c+6 m>8$.
Let $\phi: \hat{X} \rightarrow \tilde{X}$ be the blow up at the point O. Let F be the exceptional curve of ϕ. Let $\hat{\Omega}$, $\hat{L}_{y z}, \hat{R}_{x}, \hat{E}$ and \hat{G} be the proper transforms of $\Omega, L_{y z}, R_{x}, E$ and G, respectively. Then

$$
K_{\hat{X}} \sim_{\mathbb{Q}} \phi^{*}\left(K_{\tilde{X}}\right)+F, \hat{G} \sim_{\mathbb{Q}} \phi^{*}(G)-F, \hat{E} \sim_{\mathbb{Q}} \phi^{*}(\tilde{E})-F, \hat{\Omega} \sim_{\mathbb{Q}} \phi^{*}(\tilde{\Omega})-d F,
$$

where d is a non-negative rational number. The \log pull back of (X, D) is the log pair

$$
\left(\hat{X}, \hat{\Omega}+m \hat{L}_{y z}+c \hat{R}_{x}+\frac{6+a+2 m+5 c}{13} \hat{E}+\theta \hat{G}+\nu F\right)
$$

where

$$
\nu=\frac{65 d+25 m+6 a+13 b+30 c+10}{65} .
$$

It is not \log canonical at some point $A \in F$. We have

$$
\begin{gathered}
0 \leqslant \hat{E} \cdot \hat{\Omega}=\frac{a}{10}-\frac{b}{5}-d, \\
0 \leqslant \hat{G} \cdot \hat{\Omega}=b-d,
\end{gathered}
$$

and hence $b \geqslant d$ and $a \geqslant 2 b+10 d$. In particular,

$$
\begin{aligned}
\nu & =\frac{65 d+25 m+6 a+13 b+30 c+10}{65}= \\
& =\frac{13(5 d+b)+25 m+6 a+30 c+10}{65} \leqslant \\
& \leqslant \frac{5 a+10 m+12 c+4}{26} \leqslant \\
& \leqslant \frac{6+8 c}{9}<1
\end{aligned}
$$

since we have $24+20 c \geqslant 18 m+9 a$ and $c \leqslant \frac{3}{11}$.
Suppose that $A \notin \hat{E} \cup \hat{G}$. Then Lemma 1.3 .8 shows that $d=\hat{\Omega} \cdot F>1$. This is impossible since

$$
10 d \leqslant a-2 b \leqslant a \leqslant \frac{240}{77} .
$$

Thus, we see that $A \in \hat{E} \cup \hat{G}$. Note that $\hat{E} \cap \hat{G}=\varnothing$.
Suppose that $A \in \hat{E}$. Then it follows from Lemma 1.3 .8 that

$$
\frac{a}{10}-\frac{b}{5}-d+\nu=(\hat{\Omega}+\nu F) \cdot \hat{E}>1
$$

which implies that $5 a+10 m+12 c>22$. However, this inequality with $24+20 c \geqslant 18 m+9 a$ gives

$$
\frac{9}{5}(22-12 c)<\frac{9}{5}(5 a+10 m) \leqslant 24+20 c
$$

and hence $\frac{3}{8}<c$. But $c \leqslant \frac{3}{11}$. Thus, the point A cannot belong to \hat{E}. Then $A \in \hat{G}$. By Lemma 1.3.8, we see that

$$
b-d+\nu=(\hat{\Omega}+\nu F) \cdot \hat{G}>1
$$

and hence $6 a+25 m+30 c+78 b>55$. But

$$
55<25 m+6 a+78 b+3 c=25 m+\frac{3}{4}(8 a+104 b+40 c) \leqslant 25 m+\frac{3}{4}(30+75 m)<55
$$

since $8 a+104 b+40 c \leqslant 30+75 m$ and $m \leqslant \frac{7}{22}$. The obtained contradiction completes the proof.

Lemma 2.4.4. Let X be a quasismooth hypersurface of degree $12 n+35$ in $\mathbb{P}(9,3 n+8,3 n+$ $11,6 n+13)$ for $n \geqslant 1$. Then $\operatorname{lct}(X)=1$.

Proof. The surface X can be defined by the equation

$$
z^{2} t+y^{3} z+x t^{2}+x^{n+3} y=0
$$

It is singular only at the points O_{x}, O_{y}, O_{z} and O_{t}.
The curve C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of two irreducible and reduced curves $L_{x z}$ (resp. $L_{y t}$, $\left.L_{x z}, L_{y t}\right)$ and $R_{x}=\left\{x=z t+y^{3}=0\right\}\left(\right.$ resp. $R_{y}=\left\{y=z^{2}+x t=0\right\}, R_{z}=\left\{z=t^{2}+x^{n+2} y=0\right\}$, $R_{t}=\left\{t=y^{2} z+x^{n+3}=0\right\}$). These two curves intersect at the point $O_{t}\left(\right.$ resp. $\left.O_{x}, O_{y}, O_{z}\right)$.

It is easy to see that $\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)=1$ is less than each of the numbers

$$
\operatorname{lct}\left(X, \frac{6}{3 n+8} C_{y}\right), \quad \operatorname{lct}\left(X, \frac{6}{3 n+11} C_{z}\right), \quad \operatorname{lct}\left(X, \frac{6}{6 n+13} C_{t}\right) .
$$

We have the following intersection numbers.

$$
\begin{gathered}
-L_{x z} \cdot K_{X}=\frac{6}{(3 n+8)(6 n+13)}, \quad-L_{y t} \cdot K_{X}=\frac{2}{3(3 n+11)}, \quad-R_{x} \cdot K_{X}=\frac{18}{(3 n+11)(6 n+13)}, \\
-R_{y} \cdot K_{X}=\frac{4}{3(6 n+13)}, \quad-R_{z} \cdot K_{X}=\frac{4}{3(3 n+8)}, \quad-R_{t} \cdot K_{X}=\frac{6(n+3)}{(3 n+8)(3 n+11)}, \\
L_{x z} \cdot R_{x}=\frac{3}{6 n+13}, \quad L_{y t} \cdot R_{y}=\frac{2}{9}, \quad L_{x z} \cdot R_{z}=\frac{2}{3 n+8}, \quad L_{y t} \cdot R_{t}=\frac{n+3}{3 n+11}, \\
L_{x z}^{2}=-\frac{9 n+15}{(3 n+8)(6 n+13)}, \quad L_{y t}^{2}=-\frac{3 n+14}{9(3 n+11)}, \quad R_{x}^{2}=-\frac{9 n+6}{(3 n+11)(6 n+13)}, \\
R_{y}^{2}=-\frac{6 n+10}{9(6 n+13)}, \quad R_{z}^{2}=\frac{6 n+4}{9(3 n+8)}, \quad R_{t}^{2}=\frac{(n+3)(3 n+5)}{(3 n+8)(3 n+11)} .
\end{gathered}
$$

Now we suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$.

By Lemma 1.3 .6 we may assume that $\operatorname{Supp}(D)$ does not contain either the curve $L_{y t}$ or the curve R_{y}. Since these two curves intersect at the point O_{x}, the inequalities

$$
\begin{aligned}
L_{y t} \cdot D & =\frac{2}{3(3 n+11)}<\frac{1}{9} \\
R_{y} \cdot D & =\frac{4}{3(6 n+13)}<\frac{1}{9}
\end{aligned}
$$

show that the point P cannot be the point O_{x}.
By Lemma 1.3.6 we may assume that $\operatorname{Supp}(D)$ does not contain either the curve $L_{x z}$ or the curve R_{z}. Therefore, one of the following inequalities must hold:

$$
\begin{gathered}
\operatorname{mult}_{O_{y}}(D) \leqslant(3 n+8) L_{x z} \cdot D=\frac{6}{6 n+13}<1, \\
\operatorname{mult}_{O_{y}}(D) \leqslant \frac{3 n+8}{2} R_{z} \cdot D=\frac{2}{3} .
\end{gathered}
$$

Therefore, the point P cannot be the point O_{y}.
Suppose that $P=O_{z}$. If $L_{y t} \not \subset \operatorname{Supp}(D)$, then we get an absurd inequality

$$
\frac{6}{9(3 n+11)}=L_{y t} \cdot D>\frac{1}{3 n+11} .
$$

Therefore $\operatorname{Supp}(D)$ must contain the curve $L_{y t}$. By Lemma 1.3.6 we may assume that $M_{t} \not \subset$ $\operatorname{Supp}(D)$. Put $D=\mu L_{y t}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support does not contain the curve $L_{y t}$. Then

$$
\frac{6(n+3)}{(3 n+8)(3 n+11)}=D \cdot R_{t} \geqslant \mu L_{y t} \cdot R_{t}+\frac{\left(\operatorname{mult}_{P}(D)-\mu\right) \operatorname{mult}_{P}\left(R_{t}\right)}{3 n+11}>\frac{\mu(n+3)}{3 n+11}+\frac{2(1-\mu)}{3 n+11},
$$

and hence

$$
\mu<\frac{2}{(3 n+8)(n+1)} .
$$

On the other hand, Theorem 1.3 .3 shows

$$
\frac{1}{3 n+11}<\Omega \cdot L_{y t}=D \cdot L_{y t}-\mu L_{y t}^{2}=\frac{6+\mu(3 n+14)}{9(3 n+11)} .
$$

It implies $\frac{3}{3 n+14}<\mu$. Consequently, the point P cannot be the point O_{z}.
Suppose that $P=O_{t}$. Since $L_{x z} \cdot D<\frac{1}{6 n+13}$, the curve $L_{x z}$ must be contained in $\operatorname{Supp}(D)$. Then, we may assume that $R_{x} \not \subset \operatorname{Supp}(D)$. Put $D=\mu L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support does not contain the curve $L_{x z}$. Then

$$
\frac{18}{(3 n+11)(6 n+13)}=D \cdot R_{x} \geqslant \mu L_{x z} \cdot R_{x}+\frac{\operatorname{mult}_{P}(D)-\mu}{6 n+13}>\frac{1+2 \mu}{6 n+13},
$$

and hence

$$
\mu<\frac{7-3 n}{6 n+22} .
$$

However, Theorem 1.3.3 implies

$$
\frac{1}{6 n+13}<\Omega \cdot L_{x z}=D \cdot L_{x z}-\mu L_{x z}^{2}=\frac{6+(9 n+15) \mu}{(3 n+8)(6 n+13)},
$$

and hence $\frac{3 n+2}{9 n+15}<\mu$. This is a contradiction. Therefore, the point P cannot be the point O_{t}.
Write $D=a L_{x z}+b R_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support contains neither $L_{x z}$ nor R_{x}. Since the log pair (X, D) is \log canonical at the point O_{t}, we have $0 \leqslant a, b \leqslant 1$. Then by Theorem 1.3.3 the following two inequalities

$$
\begin{aligned}
& \left(b R_{x}+\Delta\right) \cdot L_{x z}=\left(D-a L_{x z}\right) \cdot L_{x z}=\frac{6+a(9 n+15)}{(3 n+8)(6 n+13)}<1 \\
& \left(a L_{x z}+\Delta\right) \cdot R_{x}=\left(D-b R_{x}\right) \cdot R_{x}=\frac{18+b(9 n+6)}{(3 n+11)(6 n+13)}<1
\end{aligned}
$$

show that the point P cannot belong to the curve C_{x}. By the same way, we can show $P \notin$ $C_{y} \cup C_{z} \cup C_{t}$.

Consider the pencil \mathcal{L} defined by the equations $\lambda x t+\mu z^{2}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. Note that the curve $L_{x z}$ is the only base component of the pencil \mathcal{L}. There is a unique divisor C_{α} in \mathcal{L} passing through the point P. This divisor must be defined an equation $x t+\alpha z^{2}=0$, where α is a non-zero constant, since the point P is located in the outside of $C_{x} \cup C_{z} \cup C_{t}$. Note that the curve C_{t} does not contain any component of C_{α}. Therefore, to see all the irreducible components of C_{α}, it is enough to see the affine curve

$$
\left\{\begin{array}{l}
x+\alpha z^{2}=0 \\
z^{2}+y^{3} z+x+x^{n+3} y=0
\end{array}\right\} \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[x, y, z])
$$

This is isomorphic to the plane affine curve defined by the equation

$$
z\left\{(1-\alpha) z+y^{3}+(-\alpha)^{n+3} y z^{2 n+5}\right\}=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

Thus, if $\alpha \neq 1$, then the divisor C_{α} consists of two reduced and irreducible curves $L_{x z}$ and Z_{α}. If $\alpha=1$, then it consists of three reduced and irreducible curves $L_{x z}, R_{y}, R$. Moreover, Z_{α} and R are smooth at the point P.

Suppose that $\alpha \neq 1$. Then we have

$$
D \cdot Z_{\alpha}=\frac{2(24 n+61)}{3(3 n+8)(6 n+13)} .
$$

Since Z_{α} is different from R_{x},

$$
Z_{\alpha}^{2}=C_{\alpha} \cdot Z_{\alpha}-L_{x z} \cdot Z_{\alpha} \geqslant C_{\alpha} \cdot Z_{\alpha}-\left(L_{x z}+R_{x}\right) \cdot Z_{\alpha}=\frac{6 n+13}{6} D \cdot Z_{\alpha}>0
$$

Put $D=\epsilon Z_{\alpha}+\Xi$, where Ξ is an effective \mathbb{Q}-divisor such that $Z_{\alpha} \not \subset \operatorname{Supp}(\Xi)$. Since the pair (X, D) is \log canonical at the point O_{t} and the curve Z_{α} passes through the point O_{t}, we have $\epsilon \leqslant 1$. But

$$
\left(D-\epsilon Z_{\alpha}\right) \cdot Z_{\alpha} \leqslant D \cdot Z_{\alpha}=\frac{2(24 n+61)}{3(3 n+8)(6 n+13)}<1
$$

and hence Lemma 1.3 .8 implies that the point P cannot belong to the curve Z_{α}.
Suppose that $\alpha=1$. We have

$$
D \cdot R=\frac{6(2 n+5)}{(3 n+8)(6 n+13)} .
$$

Since R is different from R_{x} and $L_{y t}$,
$R^{2}=C_{\alpha} \cdot R-L_{x z} \cdot R-R_{y} \cdot R \geqslant C_{\alpha} \cdot R-\left(L_{x z}+R_{x}\right) \cdot R-\left(L_{y t}+R_{y}\right) \cdot R=\frac{3 n+5}{6} D \cdot D>0$.
Put $D=\epsilon_{1} R+\Xi^{\prime}$, where Ξ^{\prime} is an effective \mathbb{Q}-divisor such that $R \not \subset \operatorname{Supp}\left(\Xi^{\prime}\right)$. Since the curve R passes through the point O_{t} at which the pair (X, D) is \log canonical, $\epsilon_{1} \leqslant 1$. Since

$$
\left(D-\epsilon_{1} R\right) \cdot R \leqslant D \cdot R=\frac{6(2 n+5)}{(3 n+8)(6 n+13)}<1
$$

Lemma 1.3 .8 implies that the point P cannot belong to R.

Part 3. Sporadic cases

3.1. Sporadic cases with $I=1$

Lemma 3.1.1. Let X be a quasismooth hypersurface of degree 10 in $\mathbb{P}(1,2,3,5)$. Then

$$
\operatorname{lct}(X)=\left\{\begin{array}{l}
1 \text { if } C_{x} \text { has an ordinary double point } \\
\frac{7}{10} \text { if } C_{x} \text { has a non-ordinary double point. }
\end{array}\right.
$$

Proof. The surface X is singular only at the point O_{z}. The curve C_{x} is reduced and irreducible. Moreover, we have

$$
\operatorname{lct}\left(X, C_{x}\right)=\left\{\begin{array}{l}
1 \text { if the curve } C_{x} \text { has an ordinary double point at the point } O_{z} \\
\frac{7}{10} \text { if the curve } C_{x} \text { has a non-ordinary double point at the point } O_{z} .
\end{array}\right.
$$

Suppose that $\operatorname{lct}(X)<\operatorname{lct}\left(X, C_{x}\right)$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$. By Lemma 1.3.6 we may assume that the support of D does not contain the curve C_{x}. Also Lemma 1.3 .9 shows that $P \in C_{x}$. However, we obtain absurd inequalities

$$
\frac{1}{3}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\operatorname{mult}_{P}(D)>1 \text { if } P \neq O_{z} \\
\frac{\operatorname{mult}_{P}(D)}{3}>\frac{1}{3} \text { if } P=O_{z} .
\end{array}\right.
$$

Therefore, $\operatorname{lct}(X)=\operatorname{lct}\left(X, C_{x}\right)$.
Lemma 3.1.2. Let X be the quasismooth hypersurface defined by a quasihomogeneous polynomial $f(x, y, z, t)$ of degree 15 in $\mathbb{P}(1,3,5,7)$. Then

$$
\operatorname{lct}(X)=\left\{\begin{array}{l}
1 \text { if } f(x, y, z, t) \text { contains } y z t \\
\frac{8}{15} \text { if } f(x, y, z, t) \text { does not contain } y z t
\end{array}\right.
$$

Proof. The surface X is singular only at the point O_{t}. The curve C_{x} is reduced and irreducible. It is easy to check

$$
\operatorname{lct}\left(X, C_{x}\right)=\left\{\begin{array}{l}
1 \text { if } f(x, y, z, t) \text { contains } y z t, \\
\frac{8}{15} \text { if } f(x, y, z, t) \text { does not contain } y z t .
\end{array}\right.
$$

The proof is exactly the same as the proof of Lemma 3.1.1. The contradictory inequalities

$$
\frac{1}{7}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\operatorname{mult}_{P}(D)>1 \text { if } P \neq O_{t} \\
\frac{\operatorname{mult}_{P}(D)}{7}>\frac{1}{7} \text { if } P=O_{t}
\end{array}\right.
$$

complete the proof.
Lemma 3.1.3. Let X be a quasismooth hypersurface of degree 16 in $\mathbb{P}(1,3,5,8)$. Then $\operatorname{lct}(X)=$ 1.

Proof. The surface X is singular only at the points O_{y} and O_{z}. The former is a singular point of type $\frac{1}{3}(1,1)$ and the latter is of type $\frac{1}{5}(1,1)$.

The curve C_{x} consists of two distinct irreducible curves L_{1} and L_{2}. It is easy to see that $\operatorname{lct}\left(X, C_{x}\right)=1$.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair (X, D) is not \log canonical at some point $P \in X$. By Lemma 1.3.6 we may assume that the support of D does not contain the curve L_{1} without loss of generality. Moreover, Lemma 1.3.9 implies $P \in C_{x}$.

We have

$$
D \cdot L_{1}=D \cdot L_{2}=\frac{1}{15},
$$

and $L_{1} \cap L_{2}=\left\{O_{y}, O_{z}\right\}$. We also have

$$
L_{1}^{2}=L_{2}^{2}=-\frac{7}{15}, \quad L_{1} \cdot L_{2}=\frac{8}{15} .
$$

Since $5 D \cdot L_{1}=\frac{1}{3}$, the point P cannot belong to L_{1}. Therefore, the point P is a smooth point on L_{2}. Put

$$
D=m L_{2}+\Omega
$$

where Ω is an effective \mathbb{Q}-divisor such that $L_{2} \not \subset \operatorname{Supp}(\Omega)$. Since the \log pair (X, D) is \log canonical at O_{y}, we must have $m \leqslant 1$. Then it follows from Lemma 1.3 .8 that

$$
1<\Omega \cdot L_{2}=\left(D-m L_{2}\right) \cdot L_{2}=\frac{1+7 m}{15}
$$

This gives us $m>2$. This is a contradiction. Consequently, $\operatorname{lct}(X)=1$.
Lemma 3.1.4. Let X be a quasismooth hypersurface of degree 18 in $\mathbb{P}(2,3,5,9)$. Then

$$
\operatorname{lct}(X)=\left\{\begin{array}{l}
2 \text { if } C_{y} \text { has a tacnodal point } \\
\frac{11}{6} \text { if } C_{y} \text { has no tacnodal points. }
\end{array}\right.
$$

Proof. The surface X is singular at the point O_{z}. This is a singular point of type $\frac{1}{5}(1,2)$. The surface X also has two singular points O_{1} and O_{2} that are cut out by the equations $x=z=0$. These are of type $\frac{1}{3}(1,1)$ on the surface X.

The curves C_{x} and C_{y} are reduced and irreducible. The curve C_{y} is always singular at the point O_{z}. We can see $\operatorname{lct}\left(X, C_{x}\right)=1$ and

$$
\operatorname{lct}\left(X, C_{y}\right)=\left\{\begin{array}{l}
\frac{3}{4} \text { if } C_{y} \text { has a tacnodal singularity at the point } O_{z} \\
\frac{11}{18} \text { if } C_{y} \text { has a non-tacnodal singularity at the point } O_{z}
\end{array}\right.
$$

Therefore, if C_{y} has a tacnodal singularity at the point O_{z}, then

$$
2=\operatorname{lct}\left(X, \frac{1}{2} C_{x}\right)<\operatorname{lct}\left(X, \frac{1}{3} C_{y}\right)=\frac{9}{4} .
$$

If C_{y} has a non-tacnodal singularity at the point O_{z}, then

$$
2=\operatorname{lct}\left(X, \frac{1}{2} C_{x}\right)>\operatorname{lct}\left(X, \frac{1}{3} C_{y}\right)=\frac{11}{6} .
$$

Let $\epsilon=\min \left\{\operatorname{lct}\left(X, \frac{1}{2} C_{x}\right), \operatorname{lct}\left(X, \frac{1}{3} C_{y}\right)\right\}$. Then $\operatorname{lct}(X) \leqslant \epsilon$.
Suppose that $\operatorname{lct}(X)<\epsilon$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair $(X, \epsilon D)$ is not \log canonical at some point $P \in X$. By Lemma 1.3.6, we may assume that the support of the divisor D contains neither the curve C_{x} nor the curve C_{y}.

The inequalities

$$
\operatorname{mult}_{O_{z}}(\epsilon D) \leqslant \frac{\epsilon}{2} \operatorname{mult}_{O_{z}}(D) \operatorname{mult}_{O_{z}}\left(C_{y}\right) \leqslant 5 D \cdot C_{y}=1
$$

imply that the point P cannot be the point O_{z}. If the point P is a smooth point on C_{y}, then we have obtain a contradictory inequalities

$$
\frac{1}{5}=D \cdot C_{y} \geqslant \operatorname{mult}_{P}(D)>\frac{1}{\epsilon} \geqslant \frac{1}{2} .
$$

Therefore, the point P is located in the outside of the curve C_{y}.

Suppose that $P \in C_{x}$. Then we obtain the following contradictory inequalities

$$
\frac{2}{15}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\operatorname{mult}_{P}(D)>\frac{1}{2} \text { if } P \in X \backslash \operatorname{Sing}(X) \\
\frac{\operatorname{mult}_{P}(D)}{3}>\frac{1}{6} \text { if } P=O_{1} \text { or } P=O_{2}
\end{array}\right.
$$

Therefore, $P \notin C_{x} \cup C_{y}$. Then P is a smooth point. There is a unique curve C in the pencil $\left|-5 K_{X}\right|$ passing through the point P. The curve C is a hypersurface in $\mathbb{P}(1,2,3)$ of degree 6 such that the natural projection

$$
C \longrightarrow \mathbb{P}(1,2) \cong \mathbb{P}^{1}
$$

is a double cover. Thus, we have mult $P_{P}(C) \leqslant 2$. In particular, the \log pair $\left(X, \frac{\epsilon}{5} C\right)$ is \log canonical. Thus, it follows from Lemma 1.3 .6 that we may assume that the support of the divisor D does not contain one of the irreducible components of the curve C. Then

$$
\frac{1}{3}=D \cdot C \geqslant \operatorname{mult}_{P}(D)>\frac{1}{2}
$$

in the case when C is irreducible (but possibly non-reduced). Therefore, the curve C must be reducible and reduced. Then

$$
C=C_{1}+C_{2},
$$

where C_{1} and C_{2} are irreducible and reduced smooth rational curves such that

$$
C_{1}^{2}=C_{2}^{2}=-\frac{2}{3}, \quad C_{1} \cdot C_{2}=\frac{3}{2}
$$

Without loss of generality we may assume that $P \in C_{1}$. Put

$$
D=m C_{1}+\Omega,
$$

where Ω is an effective \mathbb{Q}-divisor such that $C_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then $C_{2} \not \subset \operatorname{Supp}(\Omega)$ and

$$
\frac{1}{6}=D \cdot C_{2}=\left(m C_{1}+\Omega\right) \cdot C_{2} \geqslant m C_{1} \cdot C_{2}=\frac{3 m}{2}
$$

and hence $m \leqslant \frac{1}{9}$. Thus, it follows from Lemma 1.3 .8 that

$$
\frac{1+4 m}{6}=\left(D-m C_{1}\right) \cdot C_{1}=\Omega \cdot C_{1}>\frac{1}{\epsilon} \geqslant \frac{1}{2} .
$$

Therefore, $m>\frac{1}{2}$. But $m \leqslant \frac{1}{9}$. Consequently, $\operatorname{lct}(X)=\epsilon$.

Lemma 3.1.5. Let X be a quasismooth hypersurface of degree 15 in $\mathbb{P}(3,3,5,5)$. Then $\operatorname{lct}(X)=$ 2.

Proof. The surface X has five singular points O_{1}, \ldots, O_{5} of type $\frac{1}{3}(1,1)$. They are cut out by the equations $z=t=0$. The surface also has three singular points Q_{1}, Q_{2}, Q_{3} of type $\frac{1}{5}(1,1)$. These three points are cut out by the equations $x=y=0$.

Let C_{i} be the curve in the pencil $\left|-3 K_{X}\right|$ passing through the point O_{i}, where $i=1, \ldots, 5$. The curve C_{i} consists of three reduced and irreducible smooth rational curves

$$
C_{i}=L_{1}^{i}+L_{2}^{i}+L_{3}^{i}
$$

The curve L_{j}^{i} contains the point Q_{j}. Furthermore, $L_{1}^{i} \cap L_{2}^{i} \cap L_{3}^{i}=\left\{O_{i}\right\}$. We see that

$$
-K_{X} \cdot L_{j}^{i}=\frac{1}{15}, \quad\left(L_{j}^{i}\right)^{2}=-\frac{7}{15}, \quad L_{j}^{i} \cdot L_{k}^{i}=\frac{1}{3}
$$

where $j \neq k$.
Note that $\operatorname{lct}\left(X, C_{i}\right)=\frac{2}{3}$. Thus $\operatorname{lct}(X) \leqslant 2$.
Suppose that $\operatorname{lct}(X)<2$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $(X, 2 D)$ is not \log canonical at some point $P \in X$. Then, $\operatorname{mult}_{P}(D)>\frac{1}{2}$.

Suppose that $P \notin C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \cup C_{5}$. Then P is a smooth point of X. There is a unique curve $C \in\left|-3 K_{X}\right|$ passing through point P. Then C is different from the curves C_{1}, \ldots, C_{5} and hence C is irreducible. Furthermore, the \log pair (X, C) is \log canonical. Thus, it follows from Lemma 1.3.6 that we may assume that $C \not \subset \operatorname{Supp}(D)$. Then we obtain an absurd inequality

$$
\frac{1}{5}=D \cdot C \geqslant \operatorname{mult}_{P}(D)>\frac{1}{2},
$$

since the \log pair $(X, 2 D)$ is not \log canonical at the point P. Therefore, $P \in C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \cup C_{5}$. However, we may assume that $P \in C_{1}$ without loss of generality. Furthermore, by Lemma 1.3.6, we may assume that $L_{i}^{1} \not \subset \operatorname{Supp}(D)$ for some $i=1,2,3$.

Since

$$
\frac{1}{5}=3 D \cdot L_{i}^{1} \geqslant \operatorname{mult}_{O_{1}}(D)
$$

the point P cannot be the point O_{1}.
Without loss of generality, we may assume that $P \in L_{1}^{1}$.
Let Z be the curve in the pencil $\left|-5 K_{X}\right|$ passing through the point Q_{1}. Then

$$
Z=Z_{1}+Z_{2}+Z_{3}+Z_{4}+Z_{5}
$$

where Z_{i} is a reduced and irreducible smooth rational curve. The curve Z_{i} contains the point O_{i}. Moreover, $Z_{1} \cap Z_{2} \cap Z_{3} \cap Z_{4} \cap Z_{5}=\left\{Q_{1}\right\}$. It is easy to check $\operatorname{lct}(X, Z)=\frac{2}{5}$. By Lemma 1.3.6, we may assume that $Z_{k} \not \subset \operatorname{Supp}(D)$ for some $k=1, \ldots, 5$. Then

$$
\frac{1}{3}=5 D \cdot Z_{k} \geqslant \operatorname{mult}_{Q_{1}}(D)
$$

and hence the point P cannot be the point Q_{1}.
Thus, the point P is a smooth point on L_{1}^{1}. Put

$$
D=m L_{1}^{1}+\Omega
$$

where Ω is an effective \mathbb{Q}-divisor such that $L_{1}^{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{1}{15}=D \cdot L_{i}^{1}=\left(m L_{1}^{1}+\Omega\right) \cdot L_{i}^{1} \geqslant m L_{1}^{1} \cdot L_{i}^{1}=\frac{m}{3},
$$

and hence $m \leqslant \frac{1}{5}$. Then it follows from Lemma 1.3 .8 that

$$
\frac{1+7 m}{15}=\left(D-m L_{1}^{1}\right) \cdot L_{1}^{1}=\Omega \cdot L_{1}^{1}>\frac{1}{2} .
$$

This implies that $m>\frac{13}{14}$. But $m \leqslant \frac{1}{5}$. The obtained contradiction completes the proof.
Lemma 3.1.6. Let X be a quasismooth hypersurface of degree 25 in $\mathbb{P}(3,5,7,11)$. Then $\operatorname{lct}(X)=\frac{21}{10}$.

Proof. The curve C_{x} is irreducible and reduced. It is easy to see that $\operatorname{lct}\left(X, \frac{1}{3} C_{x}\right)=\frac{21}{10}$. Therefore, $\operatorname{lct}(X) \leqslant \frac{21}{10}$.

Suppose that $\operatorname{lct}(X)<\frac{21}{10}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair $\left(X, \frac{21}{10} D\right)$ is not \log canonical at some point $P \in X$. We may assume that the support of D does not contain the curve C_{x} by Lemma 1.3.6.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(21)\right)$ contains $x^{7}, x^{2} y^{3}, z^{3}$, by Lemma 1.3 .9 we have

$$
\operatorname{mult}_{P}(D) \leqslant \frac{21 \cdot 25}{3 \cdot 5 \cdot 7 \cdot 11}<\frac{10}{21}
$$

if P is a smooth point in the outside of the curve C_{x}. Thus, either $P=O_{x}$ or $P \in C_{x}$. If $P \in C_{x}$, then we obtain a contradictory inequalities

$$
\frac{5}{77}=D \cdot C_{x} \geqslant\left\{\begin{array}{l}
\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{x}\right)=\operatorname{mult}_{P}(D)>\frac{10}{21} \text { if } P \in X \backslash \operatorname{Sing}(X), \\
\frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{x}\right)}{7}=\frac{\operatorname{mult}_{P}(D)}{7}>\frac{10}{147} \text { if } P=O_{z} \\
\frac{\operatorname{mult}_{P}(D) \operatorname{mult}_{P}\left(C_{x}\right)}{11}=\frac{2 \operatorname{mult}_{P}(D)}{11}>\frac{20}{231} \text { if } P=O_{t}
\end{array}\right.
$$

Therefore, we see that $P=O_{x}$.
Since the curve C_{y} is irreducible and the \log pair $\left(X, \frac{1}{5} C_{y}\right)$ is \log canonical at the point O_{x}, we may assume that the support of D does not contain the curve C_{y}. Then

$$
\frac{10}{63}<\frac{\text { mult }_{O_{x}}(D)}{3} \leqslant D \cdot C_{y}=\frac{25}{231}<\frac{10}{63}
$$

This is a contradiction.
Lemma 3.1.7. Let X be a quasismooth hypersurface of degree 28 in $\mathbb{P}(3,5,7,14)$. Then $\operatorname{lct}(X)=\frac{9}{4}$.
Proof. The surface X is singular at the point O_{x} and the point O_{y}. The former is a singular point of type $\frac{1}{3}(1,1)$ and the latter is of type $\frac{1}{5}(1,2)$. Let O_{1} and O_{2} be the two points cut out on X by the equations $x=y=0$. The points O_{1} and O_{2} are singular points of type $\frac{1}{7}(3,5)$ on the surface X.

The curve C_{x} consists of two reduced and irreducible smooth rational curves L_{1} and L_{2}. These two curves intersect each other only at the point O_{y}. Each curve L_{i} contains the singular point O_{i}. We have

$$
-K_{X} \cdot L_{i}=\frac{1}{35}, \quad L_{1} \cdot L_{2}=\frac{2}{5}, \quad L_{1}^{2}=L_{2}^{2}=-\frac{11}{35} .
$$

Since $\operatorname{lct}\left(X, C_{x}\right)=\frac{3}{4}, \operatorname{lct}(X) \leqslant \frac{9}{4}$.
Suppose that $\operatorname{lct}(X)<\frac{9}{4}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair $\left(X, \frac{9}{4} D\right)$ is not \log canonical at some point $P \in X$.

If P is a smooth point in the outside of C_{x}, then

$$
\operatorname{mult}_{P}(D) \leqslant \frac{588}{1470}<\frac{4}{9}
$$

by Lemma 1.3.9 since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(21)\right)$ contains $x^{7}, z^{3}, x^{2} y^{3}$. Therefore, either P belongs to the curve C_{x} or $P=O_{x}$.

By Lemma 1.3.6 we may assume that $L_{i} \not \subset \operatorname{Supp}(D)$ for some $i=1,2$. Similarly, we may assume that $C_{y} \not \subset \operatorname{Supp}(D)$ since $\left(X, C_{y}\right)$ is \log canonical and the curve C_{y} is irreducible.

The inequalities

$$
\operatorname{mult}_{O_{x}}(D) \leqslant 3 D \cdot C_{y}=\frac{2}{7}<\frac{4}{9}
$$

show that the point P cannot be the point O_{x}. Therefore, the point P belongs to the curve C_{x}.
The inequalities

$$
\operatorname{mult}_{O_{y}}(D) \leqslant 5 D \cdot L_{i}=\frac{1}{7}<\frac{4}{9}
$$

show that the point P cannot be the point O_{y}.
Without loss of generality, we may assume that $P \in L_{1}$. Put $D=m L_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{1}{35}=D \cdot L_{2}=\left(m L_{1}+\Omega\right) \cdot L_{2} \geqslant m L_{1} \cdot L_{2}=\frac{2 m}{5}
$$

and hence $m \leqslant \frac{1}{14}$. Then Lemma 1.3 .8 implies an absurd inequality

$$
\frac{5}{98} \geqslant \frac{1+11 m}{35}=\left(D-m L_{1}\right) \cdot L_{1}=\Omega \cdot L_{1}>\left\{\begin{array}{l}
\frac{4}{9} \text { if } P \neq O_{1} \\
\frac{4}{63} \text { if } P=O_{1}
\end{array}\right.
$$

The obtained contradiction completes the proof.
Lemma 3.1.8. Let X be a quasismooth hypersurface of degree 36 in $\mathbb{P}(3,5,11,18)$. Then $\operatorname{lct}(X)=\frac{21}{10}$.

Proof. The surface X is singular at the points O_{y} and O_{z}. It is also singular at two points P_{1} and P_{2} on the curve $L_{y z}$. These two points P_{1} and P_{2} are contained in C_{y}.

The curve C_{x} is irreducible and reduced. It is easy to see that $\operatorname{lct}\left(X, \frac{1}{3} C_{x}\right)=\frac{21}{10}$. Also, the curve C_{y} is always irreducible and the pair $\left(X, \frac{21}{5 \cdot 10} C_{y}\right)$ is \log canonical. We see that $\operatorname{lct}(X) \leqslant \frac{21}{10}$.

Suppose that $\operatorname{lct}(X)<\frac{21}{10}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{21}{10} D\right)$ is not \log canonical at some point $P \in X$. By Lemma 1.3.6, we may assume that the support of D contains neither the curve C_{x} nor C_{y}.

Then the following inequalities

$$
\begin{aligned}
\operatorname{mult}_{O_{y}}(D) & \leqslant 5 D \cdot C_{x}
\end{aligned}=\frac{5 \cdot 3 \cdot 36}{3 \cdot 5 \cdot 11 \cdot 18}<\frac{10}{21}, ~=\frac{11 \cdot 3 \cdot 36}{3 \cdot 5 \cdot 11 \cdot 18}<\frac{10}{21}, ~ \begin{aligned}
& \operatorname{mult}_{O_{z}}(D) \leqslant 11 D \cdot C_{x}= \\
& \operatorname{mult}_{P_{i}}(D) \leqslant 3 D \cdot C_{y}=\frac{3 \cdot 5 \cdot 36}{3 \cdot 5 \cdot 11 \cdot 18}<\frac{10}{21}
\end{aligned}
$$

show that the point P is a smooth point P on X. Furthermore, the first two inequalities also show that the point P cannot belong to the curve C_{x}. Therefore, the point P is a smooth point in the outside of the curve C_{x}.

However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(39)\right)$ contains $x^{13}, x^{3} y^{6}, x^{2} z^{3}$, by Lemma 1.3.9 we have

$$
\frac{10}{21}<\operatorname{mult}_{P}(D) \leqslant \frac{36 \cdot 39}{3 \cdot 5 \cdot 11 \cdot 18}<\frac{10}{21}
$$

The obtained contradiction completes the proof.
Lemma 3.1.9. Let X be a quasismooth hypersurface of degree 56 in $\mathbb{P}(5,14,17,21)$. Then $\operatorname{lct}(X)=\frac{25}{8}$.
Proof. The surface X is singular at the points O_{x}, O_{z} and O_{t}. The first point is a singular point of type $\frac{1}{5}(2,1)$, the second of type $\frac{1}{17}(7,2)$, the last of type $\frac{1}{21}(5,17)$. There is one more singular point O of type $\frac{1}{7}(5,3)$ on $L_{x z}$ that is different from the singular point O_{t}.

The curve C_{x} (resp. C_{y}) consists of two reduced and irreducible curves $L_{x y}$ and R_{x} (resp. R_{y}). The curve $L_{x y}$ intersects the curve R_{x} at the point O_{z}. The curve R_{x} is singular at the point O_{z}. On the other hand, it intersects the curve R_{y} at the point O_{t}. The curve R_{y} is singular at O_{t}. We have

$$
L_{x y}^{2}=-\frac{37}{357}, \quad L_{x y} \cdot R_{x}=\frac{2}{17}, \quad R_{x}^{2}=-\frac{9}{119}, \quad L_{x y} \cdot R_{y}=\frac{1}{7}, \quad R_{y}^{2}=\frac{9}{35} .
$$

It is easy to check $\operatorname{lct}\left(X, C_{x}\right)=\frac{5}{8}$ and $\operatorname{lct}\left(X, C_{y}\right)=\frac{3}{7}$, and hence $\operatorname{lct}(X) \leqslant \frac{25}{8}$.
Suppose that $\operatorname{lct}(X)<\frac{25}{8}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair $\left(X, \frac{25}{8} D\right)$ is not \log canonical at some point $P \in X$. By Lemma 1.3.6 we may assume that either the support of the divisor D does not contain the curve $L_{x y}$ or it contains neither R_{x} nor R_{y}.

Suppose that $P \notin C_{x} \cup C_{y}$. Then P is a smooth point and

$$
\operatorname{mult}_{P}(D) \leqslant \frac{4}{21}<\frac{8}{25}
$$

by Lemma 1.3 .9 since the natural projection $X \rightarrow \mathbb{P}(5,14,17)$ is a finite morphism outside of the curve C_{y} and $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(85)\right)$ contains monomials $x^{17}, z^{5}, x^{3} y^{5}$. This is a contradiction. Thus, the point P must belong to $C_{x} \cup C_{y}$.

The curve C_{z} is irreducible and the \log pair $\left(X, \frac{25}{8.17} C_{z}\right)$ is \log canonical. By Lemma 1.3 .6 we may assume that $C_{z} \not \subset \operatorname{Supp}(D)$. Then

$$
\frac{8}{25}>\frac{4}{21}=5 D \cdot C_{z} \geqslant \operatorname{mult}_{O_{x}}(D)
$$

and hence the point P cannot be O_{x}.
Suppose that $P \in L_{x y}$. Put $D=m L_{x y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x y} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{1}{119}=D \cdot R_{x}=\left(m L_{x y}+\Omega\right) \cdot R_{x} \geqslant m L_{x y} \cdot R_{x}=\frac{2 m}{17}
$$

and hence $m \leqslant \frac{1}{14}$. Then it follows from Lemma 1.3 .8 that

$$
\frac{1+37 m}{357}=\left(D-m L_{x y}\right) \cdot L_{x y}=\Omega \cdot L_{x y}>\left\{\begin{array}{l}
\frac{8}{525} \text { if } P=O_{t}, \\
\frac{8}{425} \text { if } P=O_{z}, \\
\frac{8}{25} \text { if } P \neq O_{z} \text { and } P \neq O_{t} .
\end{array}\right.
$$

This implies $m>\frac{3}{25}$. But $m \leqslant \frac{1}{14}$. The obtained contradiction implies that $P \notin L_{x y}$.

Suppose that $P \in R_{x}$. Put $D=a R_{x}+\Upsilon$, where Υ is an effective \mathbb{Q}-divisor such that $R_{x} \not \subset \operatorname{Supp}(\Upsilon)$. If $a \neq 0$, then

$$
\frac{1}{357}=D \cdot L_{x y}=\left(a R_{x}+\Upsilon\right) \cdot L_{x y} \geqslant a L_{x y} \cdot R_{x}=\frac{2 a}{17},
$$

and hence $a \leqslant \frac{1}{42}$. Then it follows from Lemma 1.3 .8 that

$$
\frac{1+9 a}{119}=\left(D-a R_{x}\right) \cdot R_{x}=\Upsilon \cdot R_{x}>\left\{\begin{array}{l}
\frac{8}{175} \text { if } P=O \\
\frac{8}{25} \text { if } P \neq O
\end{array}\right.
$$

This is impossible because $a \leqslant \frac{1}{42}$. Thus, we see that $P \notin C_{x}$.
We see that $P \in R_{y}$ and $P \in X \backslash \operatorname{Sing}(X)$. Put $D=b R_{y}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $R_{y} \not \subset \operatorname{Supp}(\Delta)$. If $b \neq 0$, then

$$
\frac{1}{357}=D \cdot L_{x y}=\left(b R_{y}+\Delta\right) \cdot L_{x y} \geqslant b L_{x y} \cdot R_{y}=\frac{b}{7}
$$

and hence $b \leqslant \frac{1}{51}$. Then it follows from Lemma 1.3 .8 that

$$
\frac{1+9 b}{35}=\left(D-b R_{y}\right) \cdot R_{y}=\Delta \cdot R_{y}>\frac{8}{25}
$$

This is impossible because $b \leqslant \frac{1}{51}$. The obtained contradiction completes the proof.
Lemma 3.1.10. Let X be a quasismooth hypersurface of degree 81 in $\mathbb{P}(5,19,27,31)$. Then $\operatorname{lct}(X)=\frac{25}{6}$.

Proof. The curve C_{x} is irreducible and reduced. Moreover, the curve C_{x} is smooth outside of the singular locus of the surface X. It is easy to see that $\operatorname{lct}\left(X, \frac{1}{5} C_{x}\right)=\frac{25}{6}$. Hence, we have $\operatorname{lct}(X) \leqslant \frac{25}{6}$. The curve C_{y} is irreducible and reduced. The \log pair $\left(X, \frac{1}{19} C_{y}\right)$ is \log canonical.

Suppose that $\operatorname{lct}(X)<\frac{25}{6}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{25}{6} D\right)$ is not \log canonical at some point $P \in X$. We may assume that the support of D contains neither C_{x} nor C_{y} by Lemma 1.3.6.

The inequality

$$
31 D \cdot C_{x}=\frac{3}{19}<\frac{6}{25}
$$

shows that the point P cannot be on the curve C_{x}. On the other hand, the inequality

$$
5 D \cdot C_{y}=\frac{3}{31}<\frac{6}{25}
$$

shows that the point P cannot be on the curve C_{y}. In particular, the point P cannot be the point O_{x}.

Therefore, the point P must be a smooth point in the outside of C_{x}. However, Lemma 1.3.9 implies

$$
\operatorname{mult}_{P}(D) \leqslant \frac{190 \cdot 81}{5 \cdot 19 \cdot 27 \cdot 31}<\frac{6}{25}
$$

since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(190)\right)$ contains $x^{38}, x^{11} z, y^{10}$. This is a contradiction.

Lemma 3.1.11. Let X be a quasismooth hypersurface of degree 100 in $\mathbb{P}(5,19,27,50)$. Then $\operatorname{lct}(X)=\frac{25}{6}$.
Proof. The surface X is singular at the points O_{y} and O_{z}. Also, it is singular at two points P_{1} and P_{2} on $L_{y z}$. The point O_{y} is a singular point of type $\frac{1}{19}(2,3)$ on X. The point O_{z} is of type $\frac{1}{27}(5,23)$. The last two points are of type $\frac{1}{5}(2,1)$.

The curve C_{x} is irreducible and reduced. It is easy to see that $\operatorname{lct}\left(X, \frac{1}{5} C_{x}\right)=\frac{25}{6}$. Therefore, $\operatorname{lct}(X) \leqslant \frac{25}{6}$. The curve C_{z} is irreducible and reduced. The \log pair $\left(X, \frac{25}{6 \cdot 27} C_{z}\right)$ is \log canonical.

Suppose that $\operatorname{lct}(X)<\frac{25}{6}$. Then it follows from Lemma 1.3 .6 that there is an effective \mathbb{Q} divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that $C_{x}, C_{z} \not \subset \operatorname{Supp}(D)$ and the pair $\left(X, \frac{25}{6} D\right)$ is not \log canonical at some point $\stackrel{Q}{P} \in X$.

The inequality

$$
27 D \cdot C_{x}=\frac{2}{19}<\frac{6}{25}
$$

shows that the point P cannot be on the curve C_{x}. On the other hand, the inequality

$$
5 D \cdot C_{z}=\frac{2}{19}<\frac{6}{25}
$$

shows that the point P cannot be on the curve C_{z}. In particular, the point P can be neither the point P_{1} nor the point P_{2}.

Consequently, the point P must be a smooth point in the outside of C_{x}. However, $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(270)\right)$ contains $x^{54}, x^{16} y^{10}, z^{10}$. Then, Lemma 1.3 .9 implies a contradictory inequality

$$
\frac{6}{25}<\operatorname{mult}_{P}(D) \leqslant \frac{270 \cdot 100}{5 \cdot 19 \cdot 27 \cdot 50}<\frac{6}{25} .
$$

Lemma 3.1.12. Let X be a quasismooth hypersurface of degree 81 in $\mathbb{P}(7,11,27,37)$. Then $\operatorname{lct}(X)=\frac{49}{12}$.

Proof. The surface X is singular only at the points O_{x}, O_{y} and O_{t}.
The curve C_{x} is irreducible and reduced. It is easy to see that $\operatorname{lct}\left(X, \frac{1}{7} C_{x}\right)=\frac{49}{12}$, and hence $\operatorname{lct}(X) \leqslant \frac{49}{12}$. The curve C_{y} is irreducible and reduced. Moreover, the \log pair $\left(X, \frac{49}{11 \cdot 12} C_{y}\right)$ is \log canonical.

Suppose that $\operatorname{lct}(X)<\frac{49}{12}$. By Lemma 1.3.6, there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the support of D contains neither the curve C_{x} nor the curve C_{y}, and the log pair $\left(X, \frac{49}{12} D\right)$ is not log canonical at some point $P \in X$.

The three inequalities

$$
\begin{gathered}
11 D \cdot C_{x}=\frac{3}{37}<\frac{12}{49}, \\
7 D \cdot C_{y}=\frac{3}{37}<\frac{12}{49}, \\
\operatorname{mult}_{O_{t}}(D)=\frac{\operatorname{mult}_{O_{t}}(D) \operatorname{mult}_{O_{t}}\left(C_{x}\right)}{3} \leqslant \frac{37}{3} D \cdot C_{x}=\frac{1}{11}<\frac{12}{49}
\end{gathered}
$$

show that the point P is a smooth point in the outside of C_{x}.

However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(189)\right)$ contains $x^{27}, x^{16} y^{7}, z^{7}$, Lemma 1.3 .9 implies an absurd inequalities

$$
\frac{12}{49}<\operatorname{mult}_{P}(D) \leqslant \frac{189 \cdot 81}{7 \cdot 11 \cdot 27 \cdot 37}<\frac{12}{49}
$$

Therefore, $\operatorname{lct}(X)=\frac{49}{12}$.
Lemma 3.1.13. Let X be a quasismooth hypersurface of degree 88 in $\mathbb{P}(7,11,27,44)$. Then $\operatorname{lct}(X)=\frac{35}{8}$.
Proof. The surface X is singular at the points O_{x} and O_{z}. The former is a singular point of type $\frac{1}{7}(3,1)$ and the latter is of type $\frac{1}{27}(11,17)$. The surface is also singular at the points O_{1} and O_{2} on $L_{x z}$. They are of type $\frac{1}{11}(7,5)$.

The curve C_{x} consists of two smooth rational curves L_{1} and L_{2}. Each curve L_{i} contains the singular point O_{i}. The curves L_{1} and L_{2} intersects each other only at the point O_{z}. We have

$$
L_{1}^{2}=L_{2}^{2}=-\frac{37}{297}, \quad L_{1} \cdot L_{2}=\frac{4}{27} .
$$

It is easy to check $\operatorname{lct}\left(X, \frac{1}{7} C_{x}\right)=\frac{35}{8}$. Meanwhile, the curve C_{y} is irreducible and reduced. Also, the log pair $\left(X, \frac{35}{88} C_{y}\right)$ is \log canonical.

Suppose that $\operatorname{lct}(X)<\frac{35}{8}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair $\left(X, \frac{35}{8} D\right)$ is not \log canonical at some point $P \in X$. By Lemma 1.3 .6 we may assume that the support of D contains neither C_{y} nor L_{2} without loss of generality.

The inequality

$$
27 D \cdot L_{2}=\frac{1}{11}<\frac{8}{35}
$$

shows that the point P is located in the outside of L_{2}. The inequality

$$
7 D \cdot C_{y}=\frac{2}{27}<\frac{8}{35}
$$

implies that the point P cannot be O_{x}. Write

$$
D=m L_{1}+\Omega
$$

where Ω is an effective \mathbb{Q}-divisor such that $L_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{1}{297}=D \cdot L_{2}=\left(m L_{1}+\Omega\right) \cdot L_{2} \geqslant m L_{1} \cdot L_{2}=\frac{4 m}{27}
$$

and hence $m \leqslant \frac{1}{44}$. Then

$$
\left(D-m L_{1}\right) \cdot L_{1}=\frac{1+37 m}{297} \leqslant \frac{3}{484}<\frac{8}{35 \cdot 11},
$$

and hence Lemma 1.3 .8 implies that the point P cannot be on the curve L_{1}. Therefore, the point P is a smooth point in the outside of C_{x}. However, Lemma 1.3 .9 shows

$$
\operatorname{mult}_{P}(D) \leqslant \frac{2}{11}<\frac{8}{35}
$$

since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(189)\right)$ contains monomials $x^{27}, z^{7}, x^{16} y^{7}$. This is a contradiction.

Lemma 3.1.14. Let X be a quasismooth hypersurface of degree 60 in $\mathbb{P}(9,15,17,20)$. Then $\operatorname{lct}(X)=\frac{21}{4}$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
x z^{3}+x^{5} y-y^{4}+t^{3}=0 .
$$

Note that the surface X is singular at O_{x} and O_{z}. It is also singular at the point $P_{1}=[1: 1: 0: 0]$ and the point $P_{2}=[0: 1: 0: 1]$.

The curves C_{x}, C_{y}, and C_{z} are irreducible and reduced. We have

$$
\operatorname{lct}\left(X, \frac{1}{9} C_{x}\right)=\frac{21}{4}, \quad \operatorname{lct}\left(X, \frac{1}{15} C_{y}\right)=10, \quad \operatorname{lct}\left(X, \frac{1}{17} C_{z}\right)=17
$$

The curve C_{x} is singular at the point O_{z} with multiplicity 3.
Suppose that $\operatorname{lct}(X)<\frac{21}{4}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{21}{4} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of D contains none of the curves C_{x}, C_{y}, C_{z}.

The three inequalities

$$
\begin{aligned}
\frac{17}{3} D \cdot C_{x} & =\frac{17 \cdot 9 \cdot 60}{3 \cdot 9 \cdot 15 \cdot 17 \cdot 20}<\frac{4}{21}, \\
9 D \cdot C_{y} & =\frac{9 \cdot 15 \cdot 60}{9 \cdot 15 \cdot 17 \cdot 20}<\frac{4}{21}, \\
3 D \cdot C_{z} & =\frac{3 \cdot 17 \cdot 60}{9 \cdot 15 \cdot 17 \cdot 20}<\frac{4}{21}
\end{aligned}
$$

imply that the point P is located in the outside of $C_{x} \cup C_{y} \cup C_{z}$.
Let \mathcal{L} be the pencil on X that is cut out by the equations

$$
\lambda z^{3}+\mu x^{4} y=0
$$

where $[\lambda: \mu] \in \mathbb{P}^{1}$. Then the base locus of the pencil \mathcal{L} consists of the points P_{2} and O_{x}. Let C be the unique curve in \mathcal{L} that passes through the point P. Then C is cut out on X by an equation

$$
x^{4} y=\alpha z^{3},
$$

where α is a non-zero constant, since the point P is located in the outside of $C_{x} \cup C_{y} \cup C_{z}$. The curve C is smooth outside of the points P_{2} and O_{x} by the Bertini theorem because C is isomorphic to a general curve in the pencil \mathcal{L} unless $\alpha=-1$. In the case when $\alpha=-1$, the curve C is smooth outside the points P_{2} and O_{x} as well.

We claim that the curve C is irreducible. If so, then we may assume that the support of D does not contain the curve C and hence we obtain a contradiction

$$
\frac{4}{21}<\operatorname{mult}_{Q}(D) \leqslant D \cdot C=\frac{51 \cdot 60}{9 \cdot 15 \cdot 17 \cdot 20}<\frac{4}{21} .
$$

For the irreducibility of the curve C, we may consider the curve C as a surface in \mathbb{C}^{4} defined by the equations $t^{3}+y^{4}+(1+\alpha) x z^{3}=0$ and $x^{4} y=\alpha z^{3}$. This surface is isomorphic to the surface in \mathbb{C}^{4} defined by the equations $t^{3}+y^{4}+\beta x z^{3}=0$ and $x^{4} y=z^{3}$, where $\beta=1$ or 0 . Then, we consider the surface in \mathbb{P}^{4} defined by the equations $t^{3} w+y^{4}+\beta x z^{3}=0$ and $x^{4} y=z^{3} w^{2}$. We take the affine piece defined by $t \neq 1$. This affine piece is isomorphic to the surface defined by the equation $x^{4} y+z^{3}\left(y^{4}+\beta x z^{3}\right)^{2}=0$ in \mathbb{C}^{3}. If $\beta=1$, the surface is irreducible. If $\beta=0$,
then it has an extra component defined by $y=0$. However, this component originates from the hyperplane $w=0$ in \mathbb{P}^{4}. Therefore, the surface in \mathbb{C}^{4} defined by the equations $t^{3}+y^{4}=0$ and $x^{4} y=z^{3}$ is also irreducible.
Lemma 3.1.15. Let X be a quasismooth hypersurface of degree 69 in $\mathbb{P}(9,15,23,23)$. Then $\operatorname{lct}(X)=6$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
z t(z-t)+x y\left(y^{3}-x^{5}\right)=0 .
$$

The surface X is singular at three distinct points $O_{x}, O_{y}, P_{1}=[1: 1: 0: 0]$. Also, it is singular at three distinct points $O_{z}, O_{t}, Q_{1}=[0: 0: 1: 1]$.

The curve C_{x} consists of three distinct curves $L_{x z}, L_{x t}$ and $R_{x}=\{x=z-t=0\}$ that intersect altogether at the point O_{y}. Similarly, the curve C_{y} consists of three curves $L_{y z}, L_{y t}$ and $R_{y}=\{y=z-t=0\}$ that intersect altogether at the point O_{x}. The curve C_{z} consists of $L_{x z}, L_{y z}$, and $R_{z}=\left\{z=y^{3}-x^{5}=0\right\}$. The curve R_{z} is singular at the point O_{t} with multiplicity 3. The curve C_{t} consists of $L_{x t}, L_{y t}$ and $R_{t}=\left\{t=y^{3}-x^{5}=0\right\}$. The curve R_{t} is singular at the point O_{z} with multiplicity 3 .

Note that $\operatorname{lct}\left(X, \frac{1}{9} C_{x}\right)=6$. The log pairs $\left(X, \frac{6}{15} C_{y}\right),\left(X, \frac{6}{23} C_{z}\right)$ and $\left(X, \frac{6}{23} C_{t}\right)$ are log canonical.
Suppose that $\operatorname{lct}(X)<6$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $(X, 6 D)$ is not \log canonical at some point $P \in X$. Lemma 1.3 .6 implies that we may assume that the support of D contains neither R_{x} nor R_{y} by a linear coordinate change. Furthermore, we may assume that the support of D does not contain at least one component of C_{z}. Also, it may be assumed not to contain at least one component of C_{t}.

The inequalities

$$
\begin{gathered}
15 D \cdot R_{x}=\frac{15 \cdot 23 \cdot 9}{9 \cdot 15 \cdot 23 \cdot 23}=\frac{1}{23}<\frac{1}{6}, \\
23 D \cdot R_{y}=\frac{23 \cdot 23 \cdot 15}{9 \cdot 15 \cdot 23 \cdot 23}=\frac{1}{9}<\frac{1}{6}
\end{gathered}
$$

show that the point P is located in the outside of $R_{x} \cup R_{y}$.
Then the inequalities

$$
23 D \cdot L_{x z}=\frac{1}{15}<\frac{1}{6}, \quad 23 D \cdot L_{y z}=\frac{1}{9}<\frac{1}{6}, \quad \frac{23}{3} D \cdot R_{z}=\frac{1}{9}<\frac{1}{6}
$$

show that mult ${ }_{O_{t}}(D)<\frac{1}{6}$, and hence the point P cannot be the point O_{t}. By the same way, we can show that $P \neq O_{z}$.

Write $D=m R_{z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $R_{z} \not \subset \operatorname{Supp}(\Omega)$. Then $m \leqslant \frac{1}{6}$ since $(X, 6 D)$ is \log canonical at O_{t}. We have

$$
R_{z} \cdot\left(L_{x z}+L_{y z}\right)=\frac{8}{23}, \quad R_{z} \cdot D=\frac{1}{69},
$$

and hence $R_{z}^{2}=-\frac{1}{69}$. Then

$$
\Omega \cdot R_{z}=D \cdot R_{z}-m R_{z}^{2}=\frac{1+m}{3 \cdot 23} \leqslant \frac{7}{6 \cdot 3 \cdot 23}<\frac{1}{3 \cdot 6} .
$$

Lemma 1.3 .8 implies that the point P cannot belong to R_{z}. In particular, the point P cannot be the point P_{1}.

Write $D=a L_{x z}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support does not contain the curve $L_{x z}$. Then $a \leqslant \frac{1}{6}$. Then

$$
\Omega \cdot L_{x z}=6\left(D \cdot L_{x z}-a L_{x z}^{2}\right)=\frac{6 \cdot(1+37 a)}{345} \leqslant \frac{6+37}{345}=\frac{43}{345}<1,
$$

because $L_{x z}^{2}=-\frac{37}{345}$. Thus, we see that $P \notin L_{x z}$. Similarly, we can show that $P \notin L_{y z}$. Thus, we see that $P \notin C_{z}$. In the same way, we can see that P is not contained in the curves C_{t} and $\{z-t=0\}$.

Therefore, the point P is a smooth point in the outside of $C_{z} \cup C_{t} \cup\{z-t=0\}$. Let E be the unique curve on X such that E is given by the equation $z=\lambda t$ and $P \in E$, where λ is a non-zero constant different from 1 . Then E is quasismooth and hence irreducible. Therefore, we may assume that the support of D does not contain the curve E. Then

$$
\operatorname{mult}_{P}(D) \leqslant D \cdot E=\frac{23 \cdot 69}{9 \cdot 15 \cdot 23 \cdot 23}<\frac{1}{6}
$$

This is a contradiction.
Lemma 3.1.16. Let X be a quasismooth hypersurface of degree 127 in $\mathbb{P}(11,29,39,49)$. Then $\operatorname{lct}(X)=\frac{33}{4}$.
Proof. We may assume that the hypersurface X is defined by the equation

$$
z^{2} t+y t^{2}+x y^{4}+x^{8} z=0
$$

The singularities of X consist of a singular point of type $\frac{1}{11}(7,5)$ at O_{x}, a singular point of type $\frac{1}{29}(1,2)$ at O_{y}, a singular point of type $\frac{1}{39}(11,29)$ at O_{z}, and a singular point of type $\frac{1}{49}(11,39)$ at O_{t}.

The curve C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of two irreducible curves $L_{x t}$ (resp. $L_{y z}, L_{y z}, L_{x t}$) and $R_{x}=\left\{x=z^{2}+y t=0\right\}$ (resp. $R_{y}=\left\{y=x^{8}+z t=0\right\}, R_{z}=\left\{z=t^{2}+x y^{3}=0\right\}$, $\left.R_{t}=\left\{t=y^{4}+x^{7} z=0\right\}\right)$. We can see that

$$
L_{x t} \cap R_{x}=\left\{O_{y}\right\}, L_{y z} \cap R_{y}=\left\{O_{t}\right\}, \quad L_{y z} \cap R_{z}=\left\{O_{x}\right\}, L_{x t} \cap R_{t}=\left\{O_{z}\right\} .
$$

It is easy to check $\operatorname{lct}\left(X, \frac{1}{11} C_{x}\right)=\frac{33}{4}$. The log pairs $\left(X, \frac{33}{4 \cdot 29} C_{y}\right),\left(X, \frac{33}{4 \cdot 39} C_{z}\right)$ and $\left(X, \frac{33}{4 \cdot 49} C_{t}\right)$ are \log canonical.

Suppose that $\operatorname{lct}(X)<\frac{33}{4}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair $\left(X, \frac{33}{4} D\right)$ is not \log canonical at some point $P \in X$.

By Lemma 1.3.6, we may assume that the support of D does not contain $L_{x t}$ or R_{x}. Then one of the following two inequalities must hold:

$$
\begin{aligned}
& \frac{4}{33}>\frac{1}{39}=29 L_{x t} \cdot D \geqslant \operatorname{mult}_{O_{y}}(D) \\
& \frac{4}{33}>\frac{2}{49}=29 R_{x} \cdot D \geqslant \operatorname{mult}_{O_{y}}(D)
\end{aligned}
$$

Therefore, the point P cannot be the point O_{y}. For the same reason, one of two inequalities

$$
\begin{aligned}
& \frac{4}{33}>\frac{1}{49}=11 L_{y z} \cdot D \geqslant \operatorname{mult}_{O_{x}}(D) \\
& \frac{4}{33}>\frac{2}{29}=11 R_{z} \cdot D \geqslant \operatorname{mult}_{O_{x}}(D)
\end{aligned}
$$

must hold, and hence the point P cannot be the point O_{x}. Since R_{t} is singular at the point O_{z} with multiplicity 4 , we can apply the same method to C_{t}, i.e., one of the following inequalities must be satisfied:

$$
\begin{gathered}
\frac{4}{33}>\frac{1}{29}=39 L_{x t} \cdot D \geqslant \operatorname{mult}_{O_{z}}(D) \\
\frac{4}{33}>\frac{1}{11}=\frac{39}{4} R_{t} \cdot D \geqslant \frac{1}{4} \operatorname{mult}_{O_{z}}(D) \operatorname{mult}_{O_{z}}\left(R_{t}\right)=\operatorname{mult}_{O_{z}}(D) .
\end{gathered}
$$

Thus, the point P cannot be O_{z}.
Write $D=\mu R_{x}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $R_{x} \not \subset \operatorname{Supp}(\Omega)$. If $\mu>0$, then $L_{x t}$ is not contained in the support of D. Thus,

$$
\frac{2}{29} \mu=\mu R_{x} \cdot L_{x t} \leqslant D \cdot L_{x t}=\frac{1}{29 \cdot 39},
$$

and hence $\mu \leqslant \frac{1}{78}$. We have

$$
49 \Omega \cdot R_{x}=49\left(D \cdot R_{x}-\mu R_{x}^{2}\right)=\frac{2+76 \mu}{29}<\frac{4}{33} .
$$

Then Lemma 1.3 .8 shows that the point P cannot belong to R_{x}. In particular, the point P cannot be O_{t}.

Put $D=\epsilon L_{x t}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $L_{x t} \not \subset \operatorname{Supp}(\Delta)$. Since $\left(X, \frac{33}{4} D\right)$ is \log canonical at the point $O_{y}, \epsilon \leqslant \frac{4}{33}$ and hence

$$
\Delta \cdot L_{x t}=D \cdot L_{x t}-\epsilon L_{x t}^{2}=\frac{1+67 \epsilon}{29 \cdot 39}<\frac{4}{33} .
$$

Then Lemma 1.3 .8 implies that the point P cannot belong to $L_{x t}$.
Consequently, the point P must be a smooth point in the outside of C_{x}. Then an absurd inequality

$$
\frac{4}{33}<\operatorname{mult}_{P}(D) \leqslant \frac{539 \cdot 127}{11 \cdot 29 \cdot 39 \cdot 49}<\frac{4}{33}
$$

follows from Lemma 1.3 .9 since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(539)\right)$ contains $x^{20} y^{11}, x^{49}, x^{10} z^{11}$ and t^{11}. The obtained contradiction completes the proof.

Lemma 3.1.17. Let X be a quasismooth hypersurface of degree 256 in $\mathbb{P}(11,49,69,128)$. Then $\operatorname{lct}(X)=\frac{55}{6}$.
Proof. The curve C_{x} is irreducible and reduced. Moreover, it is easy to see lct $\left(X, \frac{1}{11} C_{x}\right)=\frac{55}{6}$. The curve C_{y} is also irreducible and reduced and the \log pair $\left(X, \frac{1}{49} C_{y}\right)$ is \log canonical.

Suppose that $\operatorname{lct}(X)<\frac{55}{6}$. By Lemma 1.3.6, there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that $C_{x}, C_{y} \not \subset \operatorname{Supp}(D)$ and the \log pair $\left(X, \frac{55}{6} D\right)$ is not \log canonical at some point $P \in X$.

The inequalities

$$
\begin{aligned}
& 69 D \cdot C_{x}=\frac{69 \cdot 11 \cdot 256}{11 \cdot 49 \cdot 69 \cdot 128}<\frac{6}{55} \\
& 11 D \cdot C_{y}=\frac{11 \cdot 49 \cdot 256}{11 \cdot 49 \cdot 69 \cdot 128}<\frac{6}{55}
\end{aligned}
$$

imply that the point P is a smooth point in the outside of C_{x}. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(759)\right)$ contains $x^{69}, x^{20} y^{11}, z^{11}$, we obtain

$$
\operatorname{mult}_{P}(D) \leqslant \frac{759 \cdot 256}{11 \cdot 49 \cdot 69 \cdot 128}<\frac{6}{55}
$$

from Lemma 1.3.9, This is a contradiction.
Lemma 3.1.18. Let X be a quasismooth hypersurface of degree 127 in $\mathbb{P}(13,23,35,57)$. Then $\operatorname{lct}(X)=\frac{65}{8}$.
Proof. We may assume that the hypersurface X is given by the equation

$$
z^{2} t+y^{4} z+x t^{2}+x^{8} y=0
$$

The only singularities of X are a singular point of type $\frac{1}{13}(9,5)$ at O_{x}, a singular point of type $\frac{1}{23}(13,11)$ at O_{y}, a singular point of type $\frac{1}{35}(13,23)$ at O_{z}, and a singular point of type $\frac{1}{57}(23,35)$ at O_{t}.

The curve C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of two irreducible curves $L_{x z}$ (resp. $L_{y t}, L_{x z}, L_{y t}$) and $R_{x}=\left\{x=y^{4}+z t=0\right\}$ (resp. $R_{y}=\left\{y=z^{2}+x t=0\right\}, R_{z}=\left\{z=t^{2}+x^{7} y=0\right\}$, $R_{t}=\left\{t=y^{3} z+x^{8}=0\right\}$). We can see that

$$
L_{x t} \cap R_{x}=\left\{O_{t}\right\}, L_{y z} \cap R_{y}=\left\{O_{x}\right\}, \quad L_{y z} \cap R_{z}=\left\{O_{y}\right\}, L_{x t} \cap R_{t}=\left\{O_{z}\right\} .
$$

It is easy to check $\operatorname{lct}\left(X, \frac{1}{13} C_{x}\right)=\frac{65}{8}$. The log pairs $\left(X, \frac{65}{8.23} C_{y}\right),\left(X, \frac{65}{8.35} C_{z}\right)$ and $\left(X, \frac{65}{8.57} C_{t}\right)$ are log canonical.

Suppose that $\operatorname{lct}(X)<\frac{65}{8}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair $\left(X, \frac{65}{8} D\right)$ is not \log canonical at some point $P \in X$.

By Lemma 1.3.6, we may assume that the support of D does not contain $L_{x z}$ or R_{x}. Then one of the following two inequalities must hold:

$$
\begin{aligned}
& \frac{8}{65}>\frac{1}{23}=57 L_{x z} \cdot D \geqslant \operatorname{mult}_{O_{t}}(D) \\
& \frac{8}{65}>\frac{4}{35}=57 R_{x} \cdot D \geqslant \operatorname{mult}_{O_{t}}(D)
\end{aligned}
$$

Therefore, the point P cannot be the point O_{t}. For the same reason, one of two inequalities

$$
\begin{aligned}
& \frac{8}{65}>\frac{1}{35}=13 L_{y t} \cdot D \geqslant \operatorname{mult}_{O_{x}}(D) \\
& \frac{8}{65}>\frac{2}{57}=13 R_{y} \cdot D \geqslant \operatorname{mult}_{O_{x}}(D)
\end{aligned}
$$

must hold, and hence the point P cannot be the point O_{x}.
To apply the same method to C_{z} and C_{t}, we note that R_{z} is singular at O_{y} with multiplicity 2 and R_{t} is singular at O_{z} with multiplicity 3 . Then we can see that one inequality from each of the pairs

$$
\begin{gathered}
\frac{8}{65}>\frac{1}{13}=35 L_{y t} \cdot D \geqslant \operatorname{mult}_{O_{z}}(D) \\
\frac{8}{65}>\frac{8}{23 \cdot 3}=\frac{35}{3} R_{t} \cdot D \geqslant \frac{1}{3} \operatorname{mult}_{O_{z}}(D) \operatorname{mult}_{O_{z}}\left(R_{t}\right)=\operatorname{mult}_{O_{z}}(D)
\end{gathered}
$$

$$
\begin{gathered}
\frac{8}{65}>\frac{1}{57}=23 L_{x z} \cdot D \geqslant \operatorname{mult}_{O_{y}}(D) \\
\frac{8}{65}>\frac{1}{13}=\frac{23}{2} R_{z} \cdot D \geqslant \frac{1}{2} \operatorname{mult}_{O_{y}}(D) \operatorname{mult}_{O_{y}}\left(R_{z}\right)=\operatorname{mult}_{O_{y}}(D)
\end{gathered}
$$

must be satisfied. Therefore, the point P can be neither O_{y} nor O_{z}.
To apply Lemma 1.3.8 to $L_{x z}$ and R_{x}, we compute

$$
L_{x z}^{2}=-\frac{79}{23 \cdot 57}, \quad R_{x}^{2}=-\frac{88}{35 \cdot 57} .
$$

Put $D=a L_{x z}+b R_{x}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x z}, R_{x} \not \subset \operatorname{Supp}(\Omega)$. Then $a, b \leqslant \frac{8}{65}$ since the \log pair $\left(X, \frac{65}{8} D\right)$ is \log canonical at the point O_{t}. Therefore,

$$
\begin{gathered}
D \cdot L_{x z}-a L_{x z}^{2}=\frac{1+79 a}{23 \cdot 57}<\frac{8}{65}, \\
D \cdot R_{x}-b R_{x}^{2}=\frac{4+88 b}{35 \cdot 57}<\frac{8}{65} .
\end{gathered}
$$

Then, Lemma 1.3 .8 implies that the point P is a smooth point in the outside of C_{x}.
Applying Lemma 1.3.9, we see that

$$
\frac{8}{65}<\operatorname{mult}_{P}(D) \leqslant \frac{741 \cdot 127}{13 \cdot 23 \cdot 35 \cdot 57}<\frac{8}{65},
$$

since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(455)\right)$ contains $x^{35}, x^{12} y^{13}, z^{13}$ and the point P is in the outside of $L_{x z}$. The obtained contradiction completes the proof.

Lemma 3.1.19. Let X be a quasismooth hypersurface of degree 256 in $\mathbb{P}(13,35,81,128)$. Then $\operatorname{lct}(X)=\frac{91}{10}$.
Proof. We may assume that the surface X is given by the equation

$$
t^{2}+y^{5} z+x z^{3}+x^{17} y=0
$$

It has a singular point of type $\frac{1}{13}(3,11)$ at O_{x}, a singular point of type $\frac{1}{35}(13,23)$ at O_{y}, and a singular point of type $\frac{1}{81}(35,47)$ at O_{z}.

The curve C_{x} is reduced and irreducible. The curve is singular at the point O_{z}. It is easy to check that $\operatorname{lct}\left(X, C_{x}\right)=\frac{7}{10}$. Therefore, $\operatorname{lct}(X) \leqslant \frac{91}{10}$. The curve C_{y} is also reduced and irreducible. The curve C_{y} is singular only at O_{x}. Moreover, the \log pair $\left(X, \frac{91}{10 \cdot 35} C_{y}\right)$ is \log canonical.

Suppose that $\operatorname{lct}(X)<\frac{91}{10}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $\left(X, \frac{91}{10} D\right)$ is not \log canonical at some point $P \in X$. By Lemma 1.3.6 we may assume neither C_{x} nor C_{y} is contained in $\operatorname{Supp}(D)$.

The following two inequalities show that the point P is located in the outside of $C_{x} \cup C_{y}$:

$$
\begin{aligned}
& \frac{81}{2} C_{x} \cdot D=\frac{1}{35}<\frac{10}{91} \\
& \frac{13}{2} C_{x} \cdot D=\frac{1}{81}<\frac{10}{91} .
\end{aligned}
$$

However, applying Lemma 1.3.9, we can obtain

$$
\operatorname{mult}_{P}(D) \leqslant \frac{1053 \cdot 256}{13 \cdot 35 \cdot 81 \cdot 128}<\frac{10}{91}
$$

since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(1053)\right)$ contains $x^{81}, x^{11} y^{26}$ and z^{13}. This is a contradiction.

3.2. Sporadic cases with $I=2$

Lemma 3.2.1. Let X be the quasismooth hypersurface defined by a quasihomogeneous polynomial $f(x, y, z, t)$ of degree 12 in $\mathbb{P}(2,3,4,5)$. Then

$$
\operatorname{lct}(X)=\left\{\begin{array}{l}
1 \text { if } f(x, y, z, t) \text { contains the term } y z t, \\
\frac{7}{12} \text { if } f(x, y, z, t) \text { does not contain the term } y z t .
\end{array}\right.
$$

Proof. We may assume

$$
f(x, y, z, t)=z\left(z-x^{2}\right)\left(z-\epsilon x^{2}\right)+y^{4}+x t^{2}+a y z t+b x y^{2} z+c x^{2} y t+d x^{3} y^{2},
$$

where $\epsilon(\neq 0,1), a, b, c, d$ are constants. Note that X is singular at the point O_{t} and three points $Q_{1}=[1: 0: 0: 0], Q_{2}=[1: 0: 1: 0], Q_{3}=[1: 0: \epsilon: 0]$. The curve C_{x} always is irreducible and reduced. We can easily check that

$$
\operatorname{lct}\left(X, C_{x}\right)=\left\{\begin{array}{l}
1 \text { if } a \neq 0 \\
\frac{7}{12} \text { if } a=0
\end{array}\right.
$$

Suppose that $\operatorname{lct}(X)<\lambda:=\operatorname{lct}\left(X, C_{x}\right)$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $(X, \lambda D)$ is not \log canonical at some point $P \in X$. We may assume that the curve C_{x} is not contained in the support of D.

First, we consider the case where $a=0$. Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(6)\right)$ contains x^{3}, y^{2}, and $x z$, Lemma 1.3 .9 implies that for a smooth point $O \in X \backslash C_{x}$

$$
\operatorname{mult}_{O}(D)<\frac{2 \cdot 12 \cdot 6}{2 \cdot 3 \cdot 4 \cdot 5}<\frac{12}{7} .
$$

Therefore, the point P cannot be a smooth point in $X \backslash C_{x}$. Since the curve C_{x} is not contained in the support of D and it is singular at O_{t} with multiplicity 3 , the inequality

$$
\frac{5}{3} D \cdot C_{x}=\frac{5 \cdot 2 \cdot 2 \cdot 12}{3 \cdot 2 \cdot 3 \cdot 4 \cdot 5}<\frac{12}{7}
$$

implies that the point P is located in the outside of C_{x}. Thus, the point P must be one of the point Q_{1}, Q_{2}, Q_{3}. The curve C_{y} is quasismooth. Therefore, we may assume that the support of D does not contain the curve C_{y}. Then the inequality

$$
\operatorname{mult}_{Q_{i}}(D) \leqslant 2 D \cdot C_{y}=\frac{2 \cdot 2 \cdot 3 \cdot 12}{2 \cdot 3 \cdot 4 \cdot 5}<\frac{12}{7}
$$

gives us a contradiction.
From now we consider the case where $a \neq 0$. Note that the curve C_{x} is not contained in the support of D and it is singular at O_{t} with multiplicity 2 . Since

$$
\frac{5}{2} D \cdot C_{x}=\frac{5 \cdot 2 \cdot 2 \cdot 12}{2 \cdot 2 \cdot 3 \cdot 4 \cdot 5}=1
$$

the point P is located in the outside of C_{x}.
The curve C_{z} is irreducible and the \log pair $\left(X, \frac{1}{2} C_{z}\right)$ is \log canonical. Therefore, we may assume that the support of D does not contain the curve C_{z}. The curve C_{z} is singular at the point Q_{1}. The inequality

$$
\operatorname{mult}_{Q_{1}}(D) \leqslant D \cdot C_{z}=\frac{2 \cdot 4 \cdot 12}{2 \cdot 3 \cdot 4 \cdot 5}<1
$$

implies that P cannot be the point Q_{1}. We consider the curves $C_{z-x^{2}}$ defined by $z=x^{2}$ and $C_{z-\epsilon x^{2}}$ defined by $z=\epsilon x^{2}$. Then by coordinate changes we can see that they have the same properties as that of C_{z}. Moreover, we can see that the point P can be neither Q_{2} nor Q_{3}. Therefore, the point P must be located in the outside of $C_{x} \cup C_{z} \cup C_{z-x^{2}} \cup C_{z-\epsilon x^{2}}$.

Let \mathcal{L} be the pencil on X defined by $\lambda x^{2}+\mu z=0$, where $[\lambda: \mu] \in \mathbb{P}^{1}$. Let C the curve in \mathcal{L} that passes through the point P. Then it is cut out by $z=\alpha x^{2}$, where $\alpha \neq 0,1, \epsilon$. The curve C is isomorphic to the curve in $\mathbb{P}(2,3,5)$ defined by

$$
x^{6}+y^{4}+x t^{2}+\beta x^{2} y t+\gamma x^{3} y^{2}=0,
$$

where β and γ are constants. We can easily see that the curve C is irreducible. Moreover, we can check mult $P_{P}(C) \leqslant 2$ and hence the \log pair $\left(X, \frac{1}{2} C\right)$ is \log canonical. Therefore, we may assume that the support of D does not contain the curve C. Then, the inequality

$$
\operatorname{mult}_{P}(D) \leqslant D \cdot C=\frac{2 \cdot 4 \cdot 12}{2 \cdot 3 \cdot 4 \cdot 5}<1
$$

gives us a contradiction.
Lemma 3.2.2. Let X be a quasismooth hypersurface of degree 14 in $\mathbb{P}(2,3,4,7)$. Then $\operatorname{lct}(X)=$ 1.

Proof. We may assume that X is defined by the quasihomogeneous equation

$$
t^{2}-y^{2} z^{2}+x\left(z-\beta_{1} x^{2}\right)\left(z-\beta_{2} x^{2}\right)\left(z-\beta_{3} x^{2}\right)+\epsilon x y^{2}\left(y^{2}-\gamma x^{3}\right)
$$

where $\epsilon \neq 0, \beta_{1}, \beta_{2}, \beta_{3}, \gamma$ are constants. Note that X is singular at the points O_{y}, O_{z} and three points $Q_{1}=\left[1: 0: \beta_{1}: 0\right], Q_{2}=\left[1: 0: \beta_{2}: 0\right], Q_{3}=\left[1: 0: \beta_{3}: 0\right]$. The constants β_{1}, β_{2} and β_{3} are distinct since X is quasismooth. The curve C_{x} consists of two irreducible reduced curves C_{-} and C_{+}. However, the curves C_{y} and C_{z} are irreducible. We can easily see that $\operatorname{lct}\left(X, C_{x}\right)=1$, $\operatorname{lct}\left(X, \frac{2}{3} C_{y}\right)=\frac{3}{2}$ and $\operatorname{lct}\left(X, \frac{1}{2} C_{z}\right)>1$.

Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair (X, D) is not \log canonical at some point $P \in X$. Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(6)\right)$ contains x^{3}, y^{2} and $x z$, Lemma 1.3.9 implies that the point P is either a singular point of X or a point of C_{x}. Furthermore, C_{y} is irreducible and hence we may assume that the support of D does not contain the curve C_{y}. Hence the equality

$$
2 C_{y} \cdot D=\frac{2 \cdot 3 \cdot 2 \cdot 14}{2 \cdot 3 \cdot 4 \cdot 5}=1
$$

implies that $P \neq Q_{i}$ for each $i=1,2,3$. In particular, the point P must belong to C_{x}.
We have the following intersection numbers:

$$
C_{x} \cdot C_{-}=C_{x} \cdot C_{+}=\frac{1}{6}, \quad C_{-} \cdot C_{+}=\frac{7}{12}, \quad C_{-}^{2}=C_{+}^{2}=-\frac{5}{12} .
$$

We may assume that the support of D cannot contain either C_{-}or C_{+}. If D does not contain the curve C_{+}, then we obtain

$$
\begin{aligned}
& \operatorname{mult}_{O_{y}}(D) \leqslant 4 D \cdot C_{+}=\frac{2}{3}<1, \\
& \operatorname{mult}_{O_{z}}(D) \leqslant 4 D \cdot C_{+}=\frac{2}{3}<1 .
\end{aligned}
$$

On the other hand, if D does not contain the curve C_{-}, then we obtain

$$
\begin{aligned}
& \operatorname{mult}_{O_{y}}(D) \leqslant 4 D \cdot C_{-}=\frac{2}{3}<1 \\
& \operatorname{mult}_{O_{z}}(D) \leqslant 4 D \cdot C_{-}=\frac{2}{3}<1
\end{aligned}
$$

Therefore, the point P must be in $C_{x} \backslash \operatorname{Sing}(X)$.
We write $D=m C_{+}+\Omega$, where the support of Ω does not contain the curve C_{+}. Then $m \geqslant \frac{2}{7}$ since $D \cdot C_{-} \geqslant m C_{+} \cdot C_{-}$. Then we see $C_{+} \cdot D-m C_{+}^{2}<1$. By the same method, we also obtain $C_{-} \cdot D-m C_{-}^{2}<1$. Then Lemma 1.3 .8 completes the proof.

Lemma 3.2.3. Let X be a quasismooth hypersurface of degree 20 in $\mathbb{P}(3,4,5,10)$. Then $\operatorname{lct}(X)=\frac{3}{2}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}=y^{5}+z^{4}+x^{5} z+\epsilon_{1} x y^{3} z+\epsilon_{2} x^{2} y z^{2}+\epsilon_{3} x^{4} y^{2}
$$

where $\epsilon_{i} \in \mathbb{C}$. Note that the surface X is singular only at the point $O_{x}, O=[0: 1: 0: 1]$, $P_{1}=[0: 0: 1: 1]$ and $P_{2}=[0: 0: 1:-1]$.

The curves C_{x}, C_{y} and C_{z} are irreducible. Moreover, we have

$$
\frac{3}{2}=\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{4} C_{y}\right)=2
$$

and hence $\operatorname{lct}(X) \leqslant \frac{3}{2}$. We also see that $\operatorname{lct}\left(X, \frac{2}{5} C_{z}\right)>\frac{3}{2}$.
Suppose that $\operatorname{lct}(X)<\frac{3}{2}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{3}{2} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D does not contain the curves C_{x}, C_{y} and C_{z}.

Suppose that $P \notin C_{x} \cup C_{y} \cup C_{z}$. Then we consider the pencil \mathcal{L} on X cut out by the equations $\lambda y^{2}+\mu x z=0,[\lambda: \mu] \in \mathbb{P}^{1}$. There is a unique member Z in the pencil \mathcal{L} with $P \in Z$. The curve Z is cut out by an equation of the form $\alpha y^{2}+x z$, where α is a non-zero constant. There is a natural double cover $\omega: Z \rightarrow C$, where C is the curve in $\mathbb{P}(3,4,5)$ given by the equation $\alpha y^{2}+x z$. The curve C is quasismooth and $\omega(P)$ is a smooth point of $\mathbb{P}(3,4,5)$. Thus, we see that $\operatorname{mult}_{P}(Z) \leqslant 2$, the curve Z consists of at most 2 components, each component of Z is a smooth rational curve. In particular, $\left(X, \frac{3}{8} Z\right)$ is \log canonical. Therefore, we may assume that Supp (D) does not contain at least one irreducible component of Z. Thus, if Z is irreducible, then we obtain an absurd inequality

$$
\frac{8}{15}=D \cdot Z \geqslant \operatorname{mult}_{P}(D) \geqslant \frac{2}{3}
$$

So, we see that $Z=Z_{1}+Z_{2}$, where Z_{1} and Z_{2} are smooth irreducible rational curves. Then

$$
Z_{1}^{2}=Z_{2}^{2}=-\frac{4}{15}, \quad Z_{1} \cdot Z_{2}=\frac{4}{3}
$$

Without loss of generality we may assume that $P \in Z_{1}$. Put $D=m Z_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $Z_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{4}{15}=D \cdot Z_{2} \geqslant m Z_{1} \cdot Z_{2}=\frac{4 m}{3}
$$

and hence $m \leqslant \frac{1}{5}$. On the other hand, Lemma 1.3 .8 shows that

$$
\frac{4+4 m}{15}=\left(D-m Z_{1}\right) \cdot Z_{1}=\Omega \cdot Z_{1}>\frac{2}{3},
$$

and hence $m>\frac{3}{2}$. This is a contradiction. Therefore, $P \in C_{x} \cup C_{y} \cup C_{z}$.
The inequalities

$$
D \cdot C_{x}=\frac{1}{5}<\frac{2}{3}, \quad D \cdot C_{y}=\frac{4}{15}<\frac{2}{3}, \quad D \cdot C_{z}=\frac{1}{3}<\frac{2}{3}
$$

imply that the point P must be a singular point of X.
The curve C_{z} is singular at the point O_{x}. Thus, we have

$$
\frac{1}{2}=\frac{3}{2} D \cdot C_{z} \geqslant \frac{\operatorname{mult}_{O_{x}}(D) \operatorname{mult}_{O_{x}}\left(C_{z}\right)}{2}=\operatorname{mult}_{O_{x}}(D) .
$$

Therefore, the point P cannot be O_{x}.
Also, we have

$$
\frac{2}{5}=2 D \cdot C_{x} \geqslant \operatorname{mult}_{O}(D)
$$

This inequality shows that the point P cannot be the point O. Consequently, the point P must be either P_{1} or P_{2}.

Without loss of generality we may assume that $P=P_{1}$. Note that $C_{x} \cap C_{y}=\left\{P_{1}, P_{2}\right\}$.
Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up at the point P_{1} with weights (3,4). Let E be the exceptional curve of π and let \bar{D}, \bar{C}_{x} and \bar{C}_{y} be the proper transforms of D, C_{x} and C_{y}, respectively. Then

$$
K_{\bar{X}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)+\frac{2}{5} E, \bar{C}_{x} \sim_{\mathbb{Q}} \pi^{*}\left(C_{x}\right)-\frac{3}{5} E, \bar{C}_{y} \sim_{\mathbb{Q}} \pi^{*}\left(C_{y}\right)-\frac{4}{5} E, \bar{D} \sim_{\mathbb{Q}} \pi^{*}(D)-\frac{a}{5} E,
$$

where a is a non-negative rational number. The curve E contains one singular point Q_{3} of type $\frac{1}{3}(1,1)$ and one singular point of Q_{4} of type $\frac{1}{4}(1,1)$ on the surface \bar{X}. The point Q_{3} is contained in \bar{C}_{y} but not in \bar{C}_{x}. On the other hand, the point Q_{4} is contained in \bar{C}_{x} but not in \bar{C}_{y}. The intersection $\bar{C}_{x} \cap \bar{C}_{y}$ consists of a single point that dominates the point P_{2}.

The \log pull back of the \log pair $\left(X, \frac{3}{2} D\right)$ is the \log pair

$$
\left(\bar{X}, \frac{3}{2} \bar{D}+\frac{3 a-4}{10} E\right) .
$$

This is not \log canonical at some point $Q \in E$. We see that

$$
0 \leqslant \bar{C}_{x} \cdot \bar{D}=C_{x} \cdot D+\frac{3 a}{25} E^{2}=\frac{1}{5}-\frac{a}{20},
$$

and hence $a \leqslant 4$. In particular,

$$
\frac{3 a-4}{10}<1 .
$$

This implies that the \log pull back of the \log pair $\left(X, \frac{3}{2} D\right)$ is \log canonical in a punctured neighborhood of the point Q.

If $a \leqslant \frac{4}{3}$, then the \log pair $\left(\bar{X}, \frac{3}{2} \bar{D}\right)$ is not \log canonical at Q as well. We then obtain

$$
\frac{a}{12}=\bar{D} \cdot E>\left\{\begin{array}{l}
\frac{2}{3} \text { if } Q \neq Q_{3} \text { and } Q \neq Q_{4} \\
\frac{2}{3} \cdot \frac{1}{3} \text { if } Q=Q_{3} \\
\frac{2}{3} \cdot \frac{1}{4} \text { if } Q=Q_{4} .
\end{array}\right.
$$

In particular, we have $a>2$. This contradicts the assumption $a \leqslant \frac{4}{3}$. Therefore, $a>\frac{4}{3}$ and the \log pull back of the \log pair $\left(X, \frac{3}{2} D\right)$ is effective. Then

$$
\operatorname{mult}_{Q}(\bar{D})>\frac{2}{3}\left(1-\frac{3 a-4}{10}\right)=\frac{14-3 a}{15} .
$$

Since $\bar{D} \cdot E=\frac{a}{12} \leqslant \frac{2}{3}$, Lemma 1.3.8 implies that the point Q cannot be a smooth point. Therefore, the point Q is either Q_{3} or Q_{4}. However, two inequalities

$$
\begin{aligned}
& \frac{4}{5}-\frac{a}{5}=4 \bar{D} \cdot \bar{C}_{x} \geqslant \operatorname{mult}_{Q_{4}}(\bar{D})>\frac{14-3 a}{15} \\
& \frac{4}{5}-\frac{a}{5}=3 \bar{D} \cdot \bar{C}_{y} \geqslant \operatorname{mult}_{Q_{3}}(\bar{D})>\frac{14-3 a}{15}
\end{aligned}
$$

give us a contradiction.
Lemma 3.2.4. Let X be a quasismooth hypersurface of degree 30 in $\mathbb{P}(3,4,10,15)$. Then $\operatorname{lct}(X)=\frac{3}{2}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}=z^{3}-y^{5} z-x^{10}+\epsilon_{1} x^{2} y z^{2}+\epsilon_{2} x^{2} y^{6}+\epsilon_{3} x^{4} y^{2} z+\epsilon_{4} x^{6} y^{3},
$$

where $\epsilon_{i} \in \mathbb{C}$. The surface X is singular at the points $O_{y}, O_{2}=[0: 1: 1: 0], O_{5}=[0: 0: 1: 1]$, $P_{1}=[1: 0: 0: 1]$ and $P_{2}=[1: 0: 0:-1]$.

The curves C_{x} and C_{y} are irreducible. Moreover, we have

$$
\frac{3}{2}=\operatorname{lct}\left(X, \frac{2}{3} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{4} C_{y}\right)=2 .
$$

Suppose that $\operatorname{lct}(X)<\frac{3}{2}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{3}{2} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains neither C_{x} nor C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(20)\right)$ contains the monomials $y^{5}, y^{2} x^{4}, z^{2}$, it follows from Lemma 1.3 .9 that the point P is either a singular point of X or a smooth point in C_{y}. However, the point P cannot belong to C_{y} since $\frac{2}{3}=5 D \cdot C_{y}$. Therefore, the point P must be either the point O_{y} or
O_{2}. On the other hand, we have $4 D \cdot C_{x}=\frac{2}{5}$. This means that the pair $\left(X, \frac{3}{2} D\right)$ is \log canonical at the points O_{y} and O_{2}. Consequently, $\operatorname{lct}(X)=\frac{3}{2}$.
Lemma 3.2.5. Let X be a quasismooth hypersurface of degree 57 in $\mathbb{P}(5,13,19,22)$. Then $\operatorname{lct}(X)=\frac{25}{12}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y t^{2}+x y^{4}+x^{7} t+\epsilon x^{5} y z=0
$$

where $\epsilon \in \mathbb{C}$. The surface X is singular only at the points O_{x}, O_{y} and O_{t}.
The curves C_{x} and C_{y} are irreducible. Moreover, we have

$$
\frac{25}{12}=\operatorname{lct}\left(X, \frac{2}{5} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{13} C_{y}\right)=\frac{65}{21} .
$$

Suppose that $\operatorname{lct}(X)<\frac{25}{12}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{25}{12} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains neither C_{x} nor C_{y}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(110)\right)$ contains the monomials $x^{9} y^{5}, x^{22}$ and t^{5}, it follows from Lemma 1.3.9 that the point P is either a singular point of X or a smooth point on C_{x}. However, this is impossible since $22 D \cdot C_{x}=\frac{6}{13}<\frac{12}{25}$ and $5 D \cdot C_{y}=\frac{3}{11}<\frac{12}{25}$.
Lemma 3.2.6. Let X be a quasismooth hypersurface of degree 70 in $\mathbb{P}(5,13,19,35)$. Then $\operatorname{lct}(X)=\frac{25}{12}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{5}-x^{14}+\epsilon x^{5} y^{2} z=0
$$

where $\epsilon \in \mathbb{C}$. The surface X is singular at the points O_{y} and O_{z}. It is also singular at two points $P_{1}=[1: 0: 0: 1]$ and $P_{2}=[1: 0: 0:-1]$.

The curves C_{x} is irreducible. On the other hand, the curve C_{y} consists of two smooth curves $C_{1}=\left\{y=x^{7}-t=0\right\}$ and $C_{2}=\left\{y=x^{7}+t=0\right\}$. Moreover, we have

$$
\frac{25}{12}=\operatorname{lct}\left(X, \frac{2}{5} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{13} C_{y}\right)=\frac{26}{7} .
$$

Suppose that $\operatorname{lct}(X)<\frac{25}{12}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{25}{12} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D dose not contains C_{x}. Also, we may assume that the support of D does not contain either C_{1} or C_{2}.

Since $19 D \cdot C_{x}=\frac{4}{13}<\frac{12}{25}$, the point P cannot belong to C_{x}.
We put $m_{1} C_{1}+m_{2} C_{2}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains neither C_{1} nor C_{2}. Since the pair $\left(X, \frac{25}{12} D\right)$ is \log canonical at the point O_{z}, we see that $m_{i} \leqslant \frac{12}{25}$. Since

$$
5\left(D-m_{i} C_{i}\right) \cdot C_{i}=\frac{2-m_{i}}{19}<\frac{12}{25}
$$

for each i, Lemma 1.3 .8 implies that the point P can be neither P_{1} nor P_{2}. Therefore, the point P is a smooth point of X in the outside of C_{x}. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(95)\right)$ contains the
monomials $x^{6} y^{5}, x^{19}$ and z^{5}, it follows from Lemma 1.3 .9 that the point P is either a singular point of X or a smooth point on C_{x}. This is a contradiction.

Lemma 3.2.7. Let X be a quasismooth hypersurface of degree 36 in $\mathbb{P}(6,9,10,13)$. Then $\operatorname{lct}(X)=\frac{25}{12}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z t^{2}+y^{4}+x z^{3}+x^{6}+\epsilon x^{3} y^{2}=0
$$

where ϵ is a constant different from ± 2. The surface X is singular at the points O_{z} and O_{t}. It is also singular at two points P_{1} and P_{2} on $L_{z t}$. The surface X is also singular at one point Q on $L_{y t}$.

The curves C_{x} and C_{y} are irreducible and reduced. However, the curve C_{z} consists of two irreducible and reduced curves C_{1} and C_{2}. The curve C_{1} contains the point P_{1} but not P_{2}. On the other hand, C_{2} contains the point P_{2} but not P_{1}. We also see

$$
C_{1}^{2}=C_{2}^{2}=-\frac{8}{39}, \quad C_{1} \cdot C_{2}=\frac{6}{13} .
$$

It is easy to check

$$
\frac{25}{12}=\operatorname{lct}\left(X, \frac{2}{10} C_{z}\right)<\frac{9}{4}=\operatorname{lct}\left(X, \frac{2}{6} C_{x}\right)<\frac{9}{2}=\operatorname{lct}\left(X, \frac{2}{9} C_{y}\right) .
$$

Suppose that $\operatorname{lct}(X)<\frac{25}{12}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{25}{12} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains neither C_{x} nor C_{y}. In addition, we may assume that it cannot contain either C_{1} or C_{2}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(30)\right)$ contains the monomials $x^{2} y^{2}, x^{5}$ and z^{3}, it follows from Lemma 1.3 .9 that $P \in \operatorname{Sing}(X) \cup C_{x} \cup C_{z}$. However, $2 D \cdot C_{y}=\frac{12}{65}<\frac{12}{25}$ and hence the point P cannot be the point Q. Note that the curve C_{x} passes through the point O_{z} with multiplicity 2 . Then the inequality $5 D \cdot C_{x}=\frac{4}{13}<\frac{12}{25}$ shows that the point P cannot be a point on $C_{x} \backslash\left\{O_{t}\right\}$.

Put $D=m C_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $C_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{2}{39}=D \cdot C_{2}=\left(m C_{1}+\Omega\right) \cdot C_{2} \geqslant m C_{1} \cdot C_{2}=\frac{6 m}{13}
$$

and hence $m \leqslant \frac{1}{9}$. Then

$$
3\left(D-m C_{1}\right) \cdot C_{1}=\frac{2+8 m}{13} \leqslant \frac{12}{25} .
$$

Therefore, it follows from Lemma 1.3 .8 that the point P cannot be a point on $C_{1} \backslash\left\{O_{t}\right\}$. By the same method, we can show that the point P cannot be a point on $C_{2} \backslash\left\{O_{t}\right\}$. Therefore, the point P must be the point O_{t}.

Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up at the point O_{t} with weights (2,3). Let E be the exceptional curve of π and let \bar{D}, \bar{C}_{x} and \bar{C}_{y} be the proper transforms of D, C_{x} and C_{y}, respectively. Then

$$
K_{\bar{X}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)-\frac{8}{13} E, \bar{C}_{x} \sim_{\mathbb{Q}} \pi^{*}\left(C_{x}\right)-\frac{2}{13} E, \bar{C}_{y} \sim_{\mathbb{Q}} \pi^{*}\left(C_{y}\right)-\frac{3}{13} E, \bar{D} \sim_{\mathbb{Q}} \pi^{*}(D)-\frac{a}{13} E,
$$

where a is a non-negative rational number. The curve E contains one singular point Q_{3} of type $\frac{1}{3}(1,1)$ and one singular point of Q_{2} of type $\frac{1}{2}(1,1)$ on the surface \bar{X}. The point Q_{2} is contained in \bar{C}_{y} but not in \bar{C}_{x}. On the other hand, the point Q_{3} is contained in \bar{C}_{x} but not in \bar{C}_{y}.

The log pull back of the \log pair $\left(X, \frac{25}{12} D\right)$ is the log pair

$$
\left(\bar{X}, \frac{25}{12} \bar{D}+\frac{25 a+96}{12 \cdot 13} E\right) .
$$

This is not \log canonical at some point $Q \in E$. We see that

$$
0 \leqslant \bar{C}_{y} \cdot \bar{D}=C_{y} \cdot D+\frac{3 a}{169} E^{2}=\frac{6}{5 \cdot 13}-\frac{a}{2 \cdot 13},
$$

and hence $a \leqslant \frac{12}{5}$. In particular,

$$
\frac{25 a+96}{12 \cdot 13} \leqslant 1 .
$$

This implies that the \log pull back of the \log pair $\left(X, \frac{25}{12} D\right)$ is \log canonical in a punctured neighborhood of the point Q. Then

$$
\operatorname{mult}_{Q}(\bar{D})>\frac{12}{25}\left(1-\frac{25 a+96}{12 \cdot 13}\right)=\frac{12}{5 \cdot 13}-\frac{a}{13} .
$$

Since $\bar{D} \cdot E=\frac{a}{6} \leqslant \frac{12}{25}$, Lemma 1.3 .8 implies that the point Q cannot be a smooth point. Therefore, the point Q is either Q_{2} or Q_{3}. However, two inequalities

$$
\begin{aligned}
& \frac{12}{5 \cdot 13}-\frac{a}{13}=3 \bar{D} \cdot \bar{C}_{x} \geqslant \operatorname{mult}_{Q_{3}}(\bar{D})>\frac{12}{5 \cdot 13}-\frac{a}{13} \\
& \frac{12}{5 \cdot 13}-\frac{a}{13}=2 \bar{D} \cdot \bar{C}_{y} \geqslant \operatorname{mult}_{Q_{2}}(\bar{D})>\frac{12}{5 \cdot 13}-\frac{a}{13}
\end{aligned}
$$

give us a contradiction.
Lemma 3.2.8. Let X be a quasismooth hypersurface of degree 57 in $\mathbb{P}(7,8,19,25)$. Then $\operatorname{lct}(X)=\frac{49}{24}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y^{4} t+x t^{2}+x^{7} y+\epsilon x^{2} y^{3} z=0
$$

where $\epsilon \in \mathbb{C}$. The surface X is singular at the points O_{x}, O_{y} and O_{t}. The curves C_{x}, C_{y} and C_{z} are irreducible. We have

$$
\frac{49}{24}=\operatorname{lct}\left(X, \frac{2}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{8} C_{y}\right)=\frac{10}{3}<\operatorname{lct}\left(X, \frac{2}{19} C_{z}\right)=\frac{19}{2} .
$$

Thus, $\operatorname{lct}(X) \leqslant \frac{49}{24}$.
Suppose that $\operatorname{lct}(X)<\frac{49}{24}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{49}{24} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains none of the curves C_{x}, C_{y} and C_{z}. The curve C_{x} is singular at the point O_{t}. Since $\frac{25}{2} D \cdot C_{x}=\frac{3}{8}<\frac{24}{49}, 7 D \cdot C_{y}=\frac{6}{25}<\frac{24}{49}$ and $D \cdot C_{z}=\frac{57}{700}<\frac{24}{49}$, the point P cannot belong to the set $C_{x} \cup C_{y} \cup C_{z}$.

Consider the pencil \mathcal{L} on X defined by the equations $\lambda y^{2} z+\mu x^{5}=0,[\mu, \lambda] \in \mathbb{P}^{1}$. Then there is a unique curve Z in the pencil \mathcal{L} passing through the point P. Then the curve Z is defined by an equation of the form $y^{2} z-\alpha x^{5}=0$, where α is a non-zero constant.

We see that $C_{y} \not \subset \operatorname{Supp}(Z)$. But the open subset $Z \backslash C_{y}$ of the curve Z is a \mathbb{Z}_{8}-quotient of the affine curve

$$
z-\alpha x^{5}=z^{3}+t+x t^{2}+x^{7}+\epsilon x^{2} z=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[x, z, t])
$$

that is isomorphic to the plane affine curve defined by the equation

$$
\alpha^{3} x^{15}+t+x t^{2}+x^{7}+\epsilon \alpha x^{7}=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[x, t]) .
$$

This curve is irreducible and hence the curve Z is also irreducible. Thus mult ${ }_{P}(Z) \leqslant 14$. We may assume that $\operatorname{Supp}(D)$ does not contain the curve Z by Lemma 1.3.6. Then we obtain an absurd inequality

$$
\frac{3}{20}=D \cdot Z \geqslant \operatorname{mult}_{P}(D)>\frac{24}{49}
$$

Lemma 3.2.9. Let X be a quasismooth hypersurface of degree 64 in $\mathbb{P}(7,8,19,32)$. Then $\operatorname{lct}(X)=\frac{35}{16}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}-y^{8}+x z^{3}+x^{8} y+\epsilon x^{3} y^{3} z
$$

where $\epsilon \in \mathbb{C}$. Note that X is singular at the points O_{x} and O_{z}. The surface X also has two singular points $P_{1}=[0: 1: 0: 1]$ and $P_{2}=[0: 1: 0:-1]$ of type $\frac{1}{8}(7,3)$.

The curve C_{x} is reducible. We have $C_{x}=C_{1}+C_{2}$, where C_{1} and C_{2} are irreducible and reduced curves. The curve C_{1} contains the point P_{1} but not the point P_{2}. On the other hand, the curve C_{2} contains the point P_{2} but not the point P_{1}. However, these two curves meet each other only at the point O_{z}. We also have

$$
C_{1}^{2}=C_{2}^{2}=-\frac{25}{8 \cdot 19}, \quad C_{1} \cdot C_{2}=\frac{4}{19} .
$$

The curve C_{y} is irreducible. It is easy to check

$$
\text { lct }\left(X, \frac{2}{7} C_{x}\right)=\frac{35}{16}<\operatorname{lct}\left(X, \frac{2}{8} C_{y}\right)=\frac{10}{3} .
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{35}{16}$.
Suppose that $\operatorname{lct}(X)<\frac{35}{16}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{35}{16} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of D does not contain the curve C_{y}. Moreover, we may assume that the support of D does not contain either the curve C_{1} or the curve C_{2}.

Since $C_{i} \not \subset \operatorname{Supp}(D)$ for either $i=1$ or 2 , we have

$$
\operatorname{mult}_{O_{z}}(D) \leqslant 19 D \cdot C_{i}=\frac{1}{4}<\frac{16}{35},
$$

and hence $P \neq O_{z}$. Meanwhile, the inequality $7 D \cdot C_{y}=\frac{4}{19}<\frac{16}{25}$ implies that the point P cannot belong to C_{y}.

Suppose that $P \in C_{1}$. Then we write $D=m C_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $C_{1} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{1}{4 \cdot 19}=D \cdot C_{2}=\left(m C_{1}+\Omega\right) \cdot C_{2} \geqslant m C_{1} \cdot C_{2}=\frac{4 m}{19},
$$

and hence $m \leqslant \frac{1}{16}$. Then it follows from Lemma 1.3.8 that

$$
\frac{2+25 m}{8 \cdot 19}=\left(D-m C_{1}\right) \cdot C_{1}=\Omega \cdot C_{1}>\left\{\begin{array}{l}
\frac{16}{35} \text { if } P \neq P_{1} \\
\frac{16}{35} \cdot \frac{1}{8} \text { if } P=P_{1}
\end{array}\right.
$$

This is impossible since $m \leqslant \frac{1}{16}$. Thus, $P \notin C_{1}$. Similarly, we can show that $P \notin C_{2}$.
Consequently, the point P is located in the outside of $C_{x} \cup C_{y}$. In particular, it is a smooth point of X. But $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(64)\right)$ contains monomials $y^{8}, x^{8} y, y^{4} t$ and t^{2}. This is impossible by Lemma 1.3.9. The obtained contradiction completes the proof.

Lemma 3.2.10. Let X be a quasismooth hypersurface of degree 48 in $\mathbb{P}(9,12,13,16)$. Then $\operatorname{lct}(X)=\frac{63}{24}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{3}-y^{4}+x z^{3}+x^{4} y=0
$$

The surface X is singular at the points $O_{x}, O_{z}, Q_{4}=[0: 1: 0: 1]$ and $Q_{3}=[1: 1: 0: 0]$.
The curves C_{x}, C_{y}, C_{z} and C_{t} are irreducible and reduced. We have

$$
\frac{63}{24}=\operatorname{lct}\left(X, \frac{2}{9} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{12} C_{y}\right)=4<\operatorname{lct}\left(X, \frac{2}{13} C_{z}\right)=\frac{13}{2}<\operatorname{lct}\left(X, \frac{2}{16} C_{t}\right)=\frac{16}{2} .
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{63}{24}$.
Suppose that $\operatorname{lct}(X)<\frac{63}{24}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{63}{24} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains none of the curves C_{x}, C_{y}, C_{z} and C_{t}.

Note that the curve C_{x} is singular at O_{z} with multiplicity 3 and the curve C_{y} is singular at O_{x} with multiplicity 3 . Then the inequalities

$$
\frac{13}{3} D \cdot C_{x}=\frac{1}{6}<\frac{24}{63}, \quad \frac{9}{3} D \cdot C_{y}=\frac{2}{13}<\frac{24}{63}, \quad 3 D \cdot C_{z}=\frac{1}{6}<\frac{24}{63}, \quad D \cdot C_{t}=\frac{8}{9 \cdot 13}<\frac{24}{63}
$$

show that the point P must be located in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$.
Consider the pencil \mathcal{L} on X defined by the equations $\lambda x t+\mu y z=0,[\mu, \lambda] \in \mathbb{P}^{1}$. Then there is a unique curve Z in the pencil \mathcal{L} passing through the point P. Then the curve Z is defined by an equation of the form $x t-\alpha y z=0$, where α is a non-zero constant. We see that $C_{x} \not \subset \operatorname{Supp}(Z)$. But the open subset $Z \backslash C_{x}$ of the curve Z is a \mathbb{Z}_{9}-quotient of the affine curve

$$
t-\alpha y z=t^{3}+y^{4}+z^{3}+y=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t])
$$

which is isomorphic to the plane affine curve given by the equation

$$
\alpha^{3} y^{3} z^{3}+y^{4}+z^{3}+y=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

Then, it is easy to see that the curve Z is irreducible and $\operatorname{mult}_{P}(Z) \leqslant 4$. Thus, we may assume that $\operatorname{Supp}(D)$ does not contain the curve Z by Lemma 1.3.6. However,

$$
\frac{25}{18 \cdot 13}=D \cdot Z \geqslant \operatorname{mult}_{P}(D)>\frac{24}{63}
$$

Consequently, $\operatorname{lct}(X)=\frac{63}{24}$.
Lemma 3.2.11. Let X be a quasismooth hypersurface of degree 57 in $\mathbb{P}(9,12,19,19)$. Then $\operatorname{lct}(X)=3$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
z t(z-t)-x y^{4}+x^{5} y=0 .
$$

The surface X is singular at three distinct points $O_{x}, O_{y}, Q_{3}=[1: 1: 0: 0]$. Also, it is singular at three distinct points $O_{z}, O_{t}, Q_{19}=[0: 0: 1: 1]$.

The curve C_{x} consists of three distinct curves $L_{x z}, L_{x t}$ and $R_{x}=\{x=z-t=0\}$ that intersect altogether at the point O_{y}. Similarly, the curve C_{y} consists of three curves $L_{y z}, L_{y t}$ and $R_{y}=\{y=z-t=0\}$ that intersect altogether at the point O_{x}. The curve C_{z} consists of three distinct curves $L_{x z}, L_{y z}$ and $R_{z}=\left\{z=x^{4}-y^{3}=0\right\}$ that intersect altogether at the point O_{t}. The curve C_{t} consists of three distinct curves $L_{x t}, L_{y t}$ and $R_{t}=\left\{t=x^{4}-y^{3}=0\right\}$ that intersect altogether at the point O_{z}. Let C_{z-t} be the curve cut out on X by the equation $z=t$. Then C_{z-t} consists of three distinct curves R_{x}, R_{y} and $R_{z-t}=\left\{z-t=x^{4}-y^{3}=0\right\}$ that intersect altogether at the point Q_{19}.

We have the following intersection numbers:

$$
\begin{gathered}
L_{x z}^{2}=L_{x t}^{2}=R_{x}^{2}=-\frac{29}{19 \cdot 12}, \quad L_{y z}^{2}=L_{y t}^{2}=R_{y}^{2}=-\frac{26}{19 \cdot 9}, \quad R_{z}^{2}=R_{t}^{2}=R_{z-t}^{2}=-\frac{2}{19 \cdot 3} \\
-K_{X} \cdot L_{x z}=-K_{X} \cdot L_{x t}=-K_{X} \cdot R_{x}=\frac{1}{19 \cdot 6}, \quad-K_{X} \cdot L_{y z}=-K_{X} \cdot L_{y t}=-K_{X} \cdot R_{y}=\frac{2}{19 \cdot 9}, \\
-K_{X} \cdot R_{z}=-K_{X} \cdot R_{t}=-K_{X} \cdot R_{z-t}=\frac{2}{19 \cdot 3} .
\end{gathered}
$$

Since $\operatorname{lct}\left(X, \frac{2}{9} C_{x}\right)=3$, we have $\operatorname{lct}(X) \leqslant 3$. Suppose that $\operatorname{lct}(X)<3$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $(X, 3 D)$ is not \log canonical at some point $P \in X$.

The pairs $\left(X, \frac{6}{9} C_{x}\right)$ and $\left(X, \frac{6}{12} C_{y}\right)$ are log canonical. By Lemma 1.3.6, we may assume that the support of D does not contain at least one component of C_{x}. Then one of the inequalities

$$
\begin{aligned}
\operatorname{mult}_{O_{y}}(D) & \leqslant 12 D \cdot L_{x z}
\end{aligned}=\frac{6}{57}<\frac{1}{3}, ~ 子 L_{x t}=\frac{6}{57}<\frac{1}{3}, ~ \begin{aligned}
\operatorname{mult}_{O_{y}}(D) & \leqslant 12 D \cdot L^{2} \\
\operatorname{mult}_{O_{y}}(D) & \leqslant 12 D \cdot R_{x}=\frac{6}{57}<\frac{1}{3}
\end{aligned}
$$

must hold, and hence the point P cannot be the point O_{y}. Also, we may assume that the support of D does not contain at least one component of C_{y}. By the same reason, the point P cannot be the point O_{x}.

We have

$$
\operatorname{lct}\left(X, \frac{2}{19} C_{z}\right)=\operatorname{lct}\left(X, \frac{2}{19} C_{t}\right)=\operatorname{lct}\left(X, \frac{2}{19} C_{1}\right)=\frac{7}{2}
$$

By Lemma 1.3.6, we may assume that the support of D does not contain at least one component of each curve C_{z}, C_{t} and C_{z-t}. Since the curve R_{z} is singular at the point O_{t} with multiplicity 3 , Then one of the inequalities

$$
\begin{aligned}
& \operatorname{mult}_{O_{t}}(D) \leqslant 19 D \cdot L_{x z}=\frac{1}{6}<\frac{1}{3}, \\
& \operatorname{mult}_{O_{t}}(D) \leqslant 19 D \cdot L_{y z}=\frac{2}{9}<\frac{1}{3}, \\
& \operatorname{mult}_{O_{t}}(D) \leqslant \frac{19}{3} D \cdot R_{z}=\frac{2}{9}<\frac{1}{3}
\end{aligned}
$$

must hold, and hence the point P cannot be the point O_{t}. By applying the same method to C_{t} and C_{z-t}, we see that the point P can neither O_{z} not Q_{19}.

The three curves R_{z}, R_{t}, and R_{z-t} intersects only at the point Q_{3}. The \log pair

$$
\left(X, \frac{3}{18}\left(R_{z}+R_{t}+R_{z-t}\right)\right)
$$

is \log canonical at Q_{3}, and $R_{z}+R_{t}+R_{z-t} \sim-18 K_{X}$. By Lemma 1.3.6, we may assume that the support of D does not contain at least one curve among R_{z}, R_{t} and R_{z-t}. Without loss of generality, we may assume that the support of D does not contain the curve R_{z}. Then

$$
\operatorname{mult}_{Q_{3}}(D) \leqslant 3 D \cdot R_{z}=\frac{2}{19}<\frac{1}{3},
$$

and hence the point P cannot be Q_{3}.
Write $D=m_{1} L_{x z}+m_{2} L_{y z}+m_{3} R_{z}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support contains none of the curves $L_{x z}, L_{y z}, R_{z}$. Since the pair $(X, 3 D)$ is \log canonical at the point O_{t}, we have $m_{i} \leqslant \frac{1}{3}$ for each $i=1,2,3$. By Lemma 1.3.8, the inequalities

$$
\begin{aligned}
\left(D-m_{1} L_{x z}\right) \cdot L_{x z} & =\frac{2+29 m_{1}}{12 \cdot 19}<\frac{1}{3} \\
\left(D-m_{2} L_{y z}\right) \cdot L_{y z} & =\frac{2+26 m_{2}}{9 \cdot 19}<\frac{1}{3} \\
\left(D-m_{3} R_{z}\right) \cdot R_{z} & =\frac{2+2 m_{3}}{3 \cdot 19}<\frac{1}{3}
\end{aligned}
$$

show that the point P cannot belong to C_{z}. By the same way, we can show that the point P is not contained in $C_{t} \cup C_{z-t}$. Therefore, the point P is a smooth point of X in the outside of the set $C_{z} \cup C_{t} \cup C_{z-t}$. Then there is a unique quasismooth irreducible curve $E \subset X$ passing through the point P and defined by the equation $z=\lambda t$, where λ is a non-zero constant different from 1 . By Lemma 1.3.6, we may assume that the support of D does not contain the curve E. Then

$$
\frac{1}{3}<\operatorname{mult}_{P}(D) \leqslant D \cdot E=\frac{1}{18}
$$

This is a contradiction.
Lemma 3.2.12. Let X be a quasismooth hypersurface of degree 81 in $\mathbb{P}(9,19,24,31)$. Then $\operatorname{lct}(X)=3$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
y t^{2}+y^{3} z+x z^{3}-x^{9}=0 .
$$

It is singular at the point O_{y}, O_{z} and O_{t}. The surface X is also singular at the point $Q_{3}=[1$: $0: 1: 0]$.

The curve C_{x} (resp. C_{y}) consists of two irreducible curves $L_{x y}$ and $R_{x}=\left\{x=t^{2}+y^{2} z=0\right\}$ (resp. $R_{y}=\left\{y=z^{3}-x^{8}=0\right\}$). The curve $L_{x y}$ intersects R_{x} (resp. R_{y}) only at the point O_{z} (resp. O_{t}). We have the following intersection numbers:

$$
\begin{gathered}
-K_{X} \cdot L_{x y}=\frac{1}{12 \cdot 31}, \quad-K_{X} \cdot R_{x}=\frac{1}{6 \cdot 19}, \quad-K_{X} \cdot R_{y}=\frac{2}{3 \cdot 31}, \quad L_{x y} \cdot R_{x}=\frac{1}{12}, \\
L_{x y} \cdot R_{y}=\frac{3}{31}, \quad L_{x y}^{2}=-\frac{53}{24 \cdot 31}, \quad R_{x}^{2}=-\frac{5}{6 \cdot 19}, \quad R_{y}^{2}=\frac{10}{3 \cdot 31} .
\end{gathered}
$$

Meanwhile, the curve C_{z} is irreducible. We see that $\operatorname{lct}(X) \leqslant 3$ since

$$
3=\operatorname{lct}\left(X, \frac{2}{9} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{19} C_{y}\right)=\frac{209}{54}<\operatorname{lct}\left(X, \frac{2}{24} C_{z}\right)=\frac{22}{3} .
$$

Suppose that $\operatorname{lct}(X)<3$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $(X, 3 D)$ is not \log canonical at some point P. We may assume that the support of D does not contain at least one component of each of C_{x} and C_{y} by Lemma 1.3.6. One of the inequalities

$$
\operatorname{mult}_{O_{z}} D \leqslant 24 D \cdot L_{x y}=\frac{2}{31}<\frac{1}{3}, \operatorname{mult}_{O_{z}} D \leqslant 24 D \cdot R_{x}=\frac{4}{19}<\frac{1}{3}
$$

must hold, and hence the point P cannot be the point O_{z}. Since the curve R_{y} is singular at the point O_{t} with multiplicity 3 , one of the inequalities

$$
\operatorname{mult}_{O_{t}} D \leqslant 31 D \cdot L_{x y}=\frac{1}{12}<\frac{1}{3}, \quad \operatorname{mult}_{O_{t}} D \leqslant \frac{31}{3} D \cdot R_{y}=\frac{2}{9}<\frac{1}{3}
$$

must hold, and hence the point P cannot be the point O_{t}.
By Lemma 1.3.6, we may also assume that the curve C_{z} is not contained in the support of D. The curve C_{z} is singular at the point O_{y}. Then the inequality

$$
\frac{19}{2} D \cdot C_{z}=\frac{9}{31}<\frac{1}{3}
$$

shows that the point P cannot be the point O_{y}.
Write $D=m_{0} L_{x y}+m_{1} R_{x}+m_{2} R_{y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains none of $L_{x y}, R_{x}, R_{y}$. If $m_{0} \neq 0$, then we obtain

$$
\frac{1}{6 \cdot 19}=D \cdot R_{x} \geqslant m_{0} L_{x y} \cdot R_{x}=\frac{m_{0}}{12}
$$

and hence $m_{0} \leqslant \frac{2}{19}$. Similarly, we see that $m_{1} \leqslant \frac{1}{31}$ and $m_{2} \leqslant \frac{1}{36}$. Since we have

$$
\left(D-m_{0} L_{x y}\right) \cdot L_{x y}=\frac{2+53 m_{0}}{24 \cdot 31}<\frac{1}{3},
$$

$$
\begin{aligned}
\left(D-m_{1} R_{x}\right) \cdot R_{x} & =\frac{1+5 m_{1}}{6 \cdot 19}<\frac{1}{3} \\
3\left(D-m_{2} R_{y}\right) \cdot R_{y} & =\frac{2-10 m_{2}}{31}<\frac{1}{3}
\end{aligned}
$$

it follows from Lemma 1.3 .8 that the point P is located in the outside of C_{x} and C_{y}. Therefore, the point P is a smooth point in the outside of C_{x} and C_{y}. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(171)\right)$ contains the monomials $y^{9}, x^{19}, x^{3} z^{6}$ and $x^{11} z^{3}$, it follows from Lemma 1.3 .9 that the point P must be either a singular point of X or a point in $C_{x} \cup C_{y}$. This is a contradiction.
Lemma 3.2.13. Let X be a quasismooth hypersurface of degree 105 in $\mathbb{P}(10,19,35,43)$. Then $\operatorname{lct}(X)=\frac{57}{14}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y t^{2}+x y^{5}-x^{7} z=0
$$

The surface X is singular at the points O_{x}, O_{y}, O_{t} and $Q_{5}=[1: 0: 1: 0]$.
The curve C_{x} is irreducible. However, the curve C_{y} consists of two irreducible curves $L_{y z}$ and $R_{y}=\left\{y=z^{2}-x^{7}=0\right\}$. The curve $L_{y z}$ intersects R_{y} at the point O_{t}. We have

$$
L_{y z}^{2}=-\frac{51}{10 \cdot 43}, \quad R_{y}^{2}=-\frac{16}{5 \cdot 43}, L_{y z} \cdot R_{y}=\frac{7}{43}
$$

We also have $\operatorname{lct}(X) \leqslant \frac{57}{14}$ since

$$
\frac{57}{14}=\operatorname{lct}\left(X, \frac{2}{19} C_{y}\right)<\operatorname{lct}\left(X, \frac{2}{10} C_{x}\right)=\frac{25}{6}
$$

Suppose that $\operatorname{lct}(X)<\frac{57}{14}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{57}{14} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D does not contain the curve C_{x}. Similarly, we may assume that the support of the divisor D does not contain either $L_{y z}$ or R_{y}.

Since the support of the divisor D does not contain either $L_{y z}$ or R_{y} and the curve R_{y} is singular at the point O_{t}, one of the inequalities

$$
\operatorname{mult}_{O_{t}}(D) \leqslant 43 D \cdot L_{y z}=\frac{1}{5}<\frac{14}{57}, \operatorname{mult}_{O_{t}}(D) \leqslant \frac{43}{2} D \cdot R_{y}=\frac{1}{5}<\frac{14}{57}
$$

must hold, and hence the point P cannot be O_{t}.
We write $D=m_{0} L_{y z}+m_{1} R_{y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains neither $L_{y z}$ nor R_{y}. If $m_{0} \neq 0$, then $m_{1}=0$ and hence

$$
\frac{2}{5 \cdot 43}=D \cdot R_{y} \geqslant m_{0} L_{y z} \cdot R_{y}=\frac{7 m_{0}}{43} .
$$

Therefore, $m_{0} \leqslant \frac{2}{35}$. Similarly, we have $m_{1} \leqslant \frac{1}{35}$. Since

$$
\begin{gathered}
10\left(D-m_{0} L_{y z}\right) \cdot L_{y z}=\frac{2+51 m_{0}}{43}<\frac{14}{57} \\
5\left(D-m_{1} R_{y}\right) \cdot R_{y}=\frac{2+16 m_{1}}{43}<\frac{14}{57}
\end{gathered}
$$

it follows from Lemma 1.3 .8 that the point P is located in the outside of C_{y}.

Since the divisor D does not contain the curve C_{x}, mult $_{O_{y}}(D) \leqslant 19 D \cdot C_{x}=\frac{6}{43}<\frac{14}{57}$, and hence the point P cannot belong to the curve C_{x}. Therefore, the point P is a smooth point in the outside of $C_{x} \cup C_{y}$. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(190)\right)$ contains $x^{19}, y^{10}, x^{5} z^{4}$ and $x^{12} z^{2}$, it follows from Lemma 1.3 .9 that the point P must be either a singular point of X or a point in $C_{x} \cup C_{y}$. This is a contradiction.
Lemma 3.2.14. Let X be a quasismooth hypersurface of degree 105 in $\mathbb{P}(11,21,28,47)$. Then $\operatorname{lct}(X)=\frac{77}{30}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
y z^{3}-y^{5}+x t^{2}+x^{7} z=0 .
$$

The surface X is singular at the point O_{x}, O_{z}, O_{t} and $Q_{7}=[0: 1: 1: 0]$.
The curve C_{x} (resp. C_{y}) consists of two irreducible curves $L_{x y}$ and $R_{x}=\left\{x=z^{3}-y^{4}=0\right\}$ (resp. $R_{y}=\left\{y=t^{2}+x^{6} z=0\right\}$. The curve $L_{x y}$ intersects R_{x} (resp. R_{y}) only at the point O_{t} (resp. O_{z}). We have the following intersection numbers:

$$
\begin{gathered}
-K_{X} \cdot L_{x y}=\frac{1}{14 \cdot 47}, \quad-K_{X} \cdot R_{x}=\frac{2}{7 \cdot 47}, \quad-K_{X} \cdot R_{y}=\frac{1}{7 \cdot 11}, \quad L_{x y} \cdot R_{x}=\frac{3}{47}, \\
L_{x y} \cdot R_{y}=\frac{1}{14}, \quad L_{x y}^{2}=-\frac{73}{28 \cdot 47}, \quad R_{x}^{2}=-\frac{10}{7 \cdot 47}, \quad R_{y}^{2}=\frac{5}{7 \cdot 11} .
\end{gathered}
$$

We see that $\operatorname{lct}(X) \leqslant \frac{77}{30}$ since

$$
\frac{77}{30}=\operatorname{lct}\left(X, \frac{2}{11} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{21} C_{y}\right)=6 .
$$

Suppose that $\operatorname{lct}(X)<\frac{77}{30}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{77}{30} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of D does not contain at least one component of each of C_{x} and C_{y}. Note that the curve R_{x} is singular at the point O_{t} with multiplicity 3 and the curve R_{y} is singular at the point O_{z}. Then one of two inequalities

$$
\operatorname{mult}_{O_{t}}(D) \leqslant 47 D \cdot L_{x y}=\frac{1}{14}<\frac{30}{77}, \operatorname{mult}_{O_{t}}(D) \leqslant \frac{47}{3} D \cdot R_{x}=\frac{2}{21}<\frac{30}{77}
$$

must hold, and hence the point P cannot be O_{t}. Applying the same method to C_{y}, we show that the point P cannot be the point O_{z}.

Write $D=m_{0} L_{x y}+m_{1} R_{x}+m_{2} R_{y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains none of $L_{x y}, R_{x}, R_{y}$. If $m_{0} \neq 0$, then we obtain

$$
\frac{2}{7 \cdot 47}=D \cdot R_{x} \geqslant m_{0} L_{x y} \cdot R_{x}=\frac{3 m_{0}}{47}
$$

and hence $m_{0} \leqslant \frac{2}{21}$. Similarly, we see that $m_{1} \leqslant \frac{1}{42}$ and $m_{2} \leqslant \frac{1}{47}$. Since we have

$$
\begin{aligned}
& \left(D-m_{0} L_{x y}\right) \cdot L_{x y}=\frac{2+73 m_{0}}{28 \cdot 47}<\frac{30}{77}, \\
& 7\left(D-m_{1} R_{x}\right) \cdot R_{x}=\frac{2+10 m_{1}}{47}<\frac{30}{77}, \\
& 11\left(D-m_{2} R_{y}\right) \cdot R_{y}=\frac{1-5 m_{2}}{7}<\frac{30}{77},
\end{aligned}
$$

it follows from Lemma 1.3 .8 that the point P is located in the outside of C_{x} and C_{y}. Therefore, the point P is a smooth point in the outside of C_{x}. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(517)\right)$ contains $x^{5} y^{22}, x^{26} y^{11}, x^{47}, x^{19} z^{11}, x^{47}, t^{11}$, it follows from Lemma 1.3 .9 that the point P must be either a singular point of X or a point in C_{x}. This is a contradiction.

Lemma 3.2.15. Let X be a quasismooth hypersurface of degree 107 in $\mathbb{P}(11,25,32,41)$. Then $\operatorname{lct}(X)=\frac{11}{3}$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
y t^{2}+y^{3} z+x z^{3}+x^{6} t=0 .
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x y}$ (resp. $L_{x y}, L_{z t}, L_{z t}$) and $R_{x}=\left\{x=t^{2}+y^{2} z=0\right\}$ (resp. $R_{y}=\left\{y=z^{3}+x^{5} t=0\right\}$, $\left.R_{z}=\left\{z=x^{6}+y t=0\right\}, R_{t}=\left\{t=y^{3}+x z^{2}=0\right\}\right)$. Also, we see that

$$
L_{x y} \cap R_{x}=\left\{O_{z}\right\}, L_{x y} \cap R_{y}=\left\{O_{t}\right\}, L_{z t} \cap R_{z}=\left\{O_{y}\right\}, L_{z t} \cap R_{t}=\left\{O_{x}\right\} .
$$

We have the following intersection numbers:

$$
\begin{gathered}
-K_{X} \cdot L_{x y}=\frac{1}{16 \cdot 41}, \quad-K_{X} \cdot L_{z t}=\frac{2}{11 \cdot 25}, \quad-K_{X} \cdot R_{x}=\frac{1}{8 \cdot 25}, \quad-K_{X} \cdot R_{y}=\frac{6}{11 \cdot 41} \\
-K_{X} \cdot R_{z}=\frac{12}{25 \cdot 41}, \quad-K_{X} \cdot R_{t}=\frac{3}{11 \cdot 16}, \quad L_{x y} \cdot R_{x}=\frac{1}{16}, L_{x y} \cdot R_{y}=\frac{3}{41}, \quad L_{z t} \cdot R_{z}=\frac{6}{25} \\
L_{x y}^{2}=-\frac{71}{32 \cdot 41}, \quad L_{z t}^{2}=-\frac{34}{11 \cdot 25}, \quad R_{x}^{2}=-\frac{7}{8 \cdot 25}, \quad R_{y}^{2}=\frac{42}{11 \cdot 41}
\end{gathered}
$$

We see $\operatorname{lct}(X) \leqslant \frac{11}{3}$ since

$$
\frac{11}{3}=\operatorname{lct}\left(X, \frac{2}{11} C_{x}\right)<\frac{50}{9}=\operatorname{lct}\left(X, \frac{2}{25} C_{y}\right)<\frac{28}{3}=\operatorname{lct}\left(X, \frac{2}{32} C_{z}\right)<\frac{205}{18}=\operatorname{lct}\left(X, \frac{2}{41} C_{t}\right) .
$$

Suppose that $\operatorname{lct}(X)<\frac{11}{3}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{11}{3} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that either $\operatorname{Supp}(D)$ does not contain at least one irreducible component of each of C_{x}, C_{y}, C_{z} and C_{t}. Since the curve R_{y} is singular at the point O_{t} with multiplicity 3 , one of the inequalities

$$
\operatorname{mult}_{O_{t}}(D) \leqslant 41 D \cdot L_{x y}=\frac{1}{16}<\frac{3}{11}, \operatorname{mult}_{O_{t}}(D) \leqslant \frac{41}{3} D \cdot R_{y}=\frac{2}{11}<\frac{3}{11}
$$

must hold, and hence the point P cannot be the point O_{t}. Applying the same method to each of C_{x} and C_{t}, we can show that the point P can be neither O_{z} nor O_{x}.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(352)\right)$ contains the monomials $x^{7} y^{11}, x^{32}$ and z^{11}, it follows from Lemma 1.3.9 that the point P is either the point O_{t} or a smooth point on C_{x}.

Write $D=m_{0} L_{x y}+m_{1} R_{x}+m_{2} L_{z t}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains none of $L_{x y}, R_{x}, R_{z}$. If $m_{0} \neq 0$, then $m_{1}=0$ and hence we obtain

$$
\frac{1}{8 \cdot 25}=D \cdot R_{x} \geqslant m_{0} L_{x y} \cdot R_{x}=\frac{m_{0}}{16} .
$$

Therefore, $m_{0} \leqslant \frac{2}{25}$. Similarly, we get $m_{1} \leqslant \frac{1}{41}$. Since we have

$$
\begin{gathered}
\left(D-m_{0} L_{x y}\right) \cdot L_{x y}=\frac{2+71 m_{0}}{32 \cdot 41}<\frac{3}{11}, \\
\left(D-m_{1} R_{x}\right) \cdot R_{x}=\frac{1+7 m_{1}}{8 \cdot 25}<\frac{3}{11}
\end{gathered}
$$

it follows from Lemma 1.3 .8 that the point P must be the point O_{y}.
Suppose that $m_{2}=0$. Then the inequality

$$
\operatorname{mult}_{O_{y}}(D) \leqslant 25 D \cdot L_{z t}=\frac{2}{11}<\frac{3}{11}
$$

gives us a contradiction. Therefore, $m_{2} \neq 0$ and hence the curve R_{z} is not contained in the support of D. Then

$$
\frac{12}{25 \cdot 41}=D \cdot R_{z} \geqslant m_{2} L_{z t} \cdot R_{z}+\frac{\operatorname{mult}_{O_{y}}(D)-m_{2}}{25}>\frac{5 m_{2}}{25}+\frac{3}{11 \cdot 25},
$$

and hence $m_{2}<\frac{9}{5 \cdot 11 \cdot 41}$. Since

$$
25\left(D-m_{2} L_{z t}\right) \cdot L_{z t}=\frac{2+34 m_{2}}{11}<\frac{3}{11}
$$

the pair $\left(X, \frac{11}{3} D\right)$ is \log canonical at the point O_{y} by Lemma 1.3.8. This is a contradiction.
Lemma 3.2.16. Let X be a quasismooth hypersurface of degree 111 in $\mathbb{P}(11,25,34,43)$. Then $\operatorname{lct}(X)=\frac{33}{8}$.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+t z^{2}+x y^{4}+x^{7} z=0
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x t}$ (resp. $L_{y z}, L_{y z}, L_{x t}$) and $R_{x}=\left\{x=y t+z^{2}=0\right\}$ (resp. $R_{y}=\left\{y=z t+x^{7}=0\right\}$, $R_{z}=\left\{z=x y^{3}+t^{2}=0\right\}, R_{t}=\left\{t=y^{4}+x^{6} z=0\right\}$). Also, we see that

$$
L_{x t} \cap R_{x}=\left\{O_{y}\right\}, L_{y z} \cap R_{y}=\left\{O_{t}\right\}, L_{y z} \cap R_{z}=\left\{O_{x}\right\}, L_{x t} \cap R_{t}=\left\{O_{z}\right\} .
$$

The intersection numbers among the divisors $D, L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{gathered}
-K_{X} \cdot L_{x t}=\frac{1}{17 \cdot 25}, \quad-K_{X} \cdot R_{x}=\frac{4}{25 \cdot 43}, \quad-K_{X} \cdot R_{y}=\frac{7}{17 \cdot 43} \\
-K_{X} \cdot L_{y z}=\frac{2}{11 \cdot 43}, \quad-K_{X} \cdot R_{z}=\frac{4}{11 \cdot 25}, \quad-K_{X} \cdot R_{t}=\frac{4}{11 \cdot 17}, \\
L_{x t} \cdot R_{x}=\frac{2}{25}, \quad L_{y z} \cdot R_{y}=\frac{7}{43}, \quad L_{y z} \cdot R_{z}=\frac{2}{11}, \quad L_{x t} \cdot R_{t}=\frac{2}{17} \\
L_{x t}^{2}=-\frac{57}{34 \cdot 25}, \quad R_{x}^{2}=-\frac{64}{25 \cdot 43}, \quad R_{y}^{2}=-\frac{63}{34 \cdot 43} \\
L_{y z}^{2}=-\frac{52}{11 \cdot 43}, \quad R_{z}^{2}=\frac{18}{11 \cdot 25}, \quad R_{t}^{2}=\frac{64}{11 \cdot 17} .
\end{gathered}
$$

We can easily see that $\operatorname{lct}\left(X, \frac{2}{11} C_{x}\right)=\frac{33}{8}$ is less than each of the numbers $\operatorname{lct}\left(X, \frac{2}{25} C_{y}\right)$, $\operatorname{lct}\left(X, \frac{2}{34} C_{z}\right)$ and $\operatorname{lct}\left(X, \frac{2}{43} C_{t}\right)$. Therefore, $\operatorname{lct}(X) \leqslant \frac{33}{8}$.

Suppose that $\operatorname{lct}(X)<\frac{33}{8}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair $\left(X, \frac{33}{8} D\right)$ is not \log canonical at some point $P \in X$.

By Lemma 1.3.6 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. The inequalities

$$
25 D \cdot L_{x t}=\frac{1}{17}<\frac{8}{33}, \quad 25 D \cdot R_{x}=\frac{4}{43}<\frac{8}{33}
$$

imply that $P \neq O_{y}$. The inequalities

$$
11 D \cdot L_{y z}=\frac{2}{43}<\frac{8}{33}, \quad 11 D \cdot R_{z}=\frac{4}{25}<\frac{8}{33}
$$

imply that $P \neq O_{x}$. Since the curve R_{t} is singular at the point O_{z}, the inequalities

$$
34 D \cdot L_{x t}=\frac{34}{17 \cdot 25}<\frac{8}{33}, \quad \frac{34}{4} D \cdot R_{t}=\frac{2}{11}<\frac{8}{33}
$$

imply that $P \neq O_{z}$.
We write $D=a_{1} L_{x t}+a_{2} L_{y z}+a_{3} R_{x}+a_{4} R_{y}+a_{5} R_{z}+a_{6} R_{t}+\Omega$, where Ω is an effective divisor whose support contains none of the curves $L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{33}{8} D\right)$ is \log canonical at the points O_{x}, O_{y}, O_{z}, the numbers a_{i} are at most $\frac{8}{33}$. Then by Lemma 1.3 .8 the following inequalities enable us to conclude that either the point P is in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$ or $P=O_{t}$:

$$
\begin{gathered}
\frac{33}{8} D \cdot L_{x t}-L_{x t}^{2}=\frac{261}{8 \cdot 17 \cdot 25}<1, \quad \frac{33}{8} D \cdot L_{y z}-L_{x t}^{2}=\frac{241}{4 \cdot 11 \cdot 43}<1, \\
\frac{33}{8} D \cdot R_{x}-R_{x}^{2}=\frac{161}{2 \cdot 25 \cdot 43}<1, \quad \frac{33}{8} D \cdot R_{y}-R_{y}^{2}=\frac{483}{4 \cdot 34 \cdot 43}<1, \\
\frac{33}{8} D \cdot R_{z}-R_{z}^{2} \leqslant \frac{33}{8} D \cdot R_{z}=\frac{3}{2 \cdot 25}<1, \quad \frac{33}{8} D \cdot R_{t}-R_{t}^{2} \leqslant \frac{33}{8} D \cdot R_{t}=\frac{3}{34}<1 .
\end{gathered}
$$

Suppose that $P \neq O_{t}$. Then we consider the pencil \mathcal{L} defined by $\lambda y t+\mu z^{2}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil consists of the curve $L_{y z}$ and the point O_{y}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $z^{2}=\alpha y t$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $y t=z^{2}$ and $t^{2} y+x y^{4}+x^{7} z=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by $z\left(z^{3}+x z^{7}+x^{7}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{y z}$ and C. We have

$$
D \cdot C=D \cdot E-D \cdot L_{y z}=\frac{394}{11 \cdot 25 \cdot 43} .
$$

Also, we see

$$
C^{2}=E \cdot C-C \cdot L_{y z} \geqslant E \cdot C-\left(L_{y z}+R_{y}\right) \cdot C=\frac{43}{2} D \cdot C>0 .
$$

By Lemma 1.3 .8 the inequality $D \cdot C<\frac{8}{33}$ gives us a contradiction.

Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{y z}$, R_{x}, and M. Note that the curve M is different from the curves R_{y} and $L_{x t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{y z}-D \cdot R_{x}=\frac{14}{11 \cdot 43}, \\
M^{2}=E \cdot M-L_{y z} \cdot M-R_{x} \cdot M \geqslant E \cdot M-C_{y} \cdot M-C_{x} \cdot M>0 .
\end{gathered}
$$

By Lemma 1.3 .8 the inequality $D \cdot M<\frac{8}{33}$ gives us a contradiction. Therefore, $P=O_{t}$.
Put $D=b R_{x}+\Delta$, where Δ is an effective divisor whose support does not contain R_{x}. By Lemma 1.3.6, we may assume that $R_{x} \nsubseteq \operatorname{Supp}(\Delta)$ if $b>0$. Thus, if $b>0$, then

$$
\frac{2}{25 \cdot 34}=D \cdot L_{x t} \geqslant b R_{x} \cdot L_{x t}=\frac{2 b}{25},
$$

and hence $b \leqslant \frac{1}{34}$. On the other hand, it follows from Lemma 1.3.8 that

$$
\frac{4+64 b}{25 \cdot 43}=\Delta \cdot R_{x}>\frac{8}{33 \cdot 43} .
$$

Therefore, $b>\frac{17}{528}$. Since $\frac{17}{528}>\frac{1}{34}$, this is a contradiction.
Lemma 3.2.17. Let X be a quasismooth hypersurface of degree 226 in $\mathbb{P}(11,43,61,113)$. Then $\operatorname{lct}(X)=\frac{55}{12}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{5}+x^{15} z=0 .
$$

The surface X is singular at the points O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{55}{12}=\operatorname{lct}\left(X, \frac{2}{11} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{43} C_{y}\right)=\frac{17 \cdot 43}{60} .
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{55}{12}$.
Suppose that $\operatorname{lct}(X)<\frac{55}{12}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{55}{12} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains neither C_{x} nor C_{y}. Then the inequalities

$$
61 D \cdot C_{x}=\frac{4}{43}<\frac{12}{55}, \quad 11 D \cdot C_{y}=\frac{4}{61}<\frac{12}{55}
$$

show that the point P must be a smooth point of X in the outside of C_{x}. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(671)\right)$ contains the monomials $x^{18} y^{11}, x^{61}$ and z^{11}, it follows from Lemma 1.3.9 that the point P is either a singular point of X or a point on C_{x}. This is a contradiction.

Lemma 3.2.18. Let X be a quasismooth hypersurface of degree 135 in $\mathbb{P}(13,18,45,61)$. Then $\operatorname{lct}(X)=\frac{91}{30}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}-y^{5} z+x t^{2}+x^{9} y=0
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{t}, Q_{9}=[0: 1: 1: 0]$.

The curve C_{x} consists of two irreducible and reduced curves $L_{x z}$ and $R_{x}=\left\{x=z^{2}-y^{5}=0\right\}$. The curve $L_{x z}$ intersects R_{x} at the point O_{t}. It is easy to check

$$
L_{x z}^{2}=-\frac{77}{18 \cdot 61}, R_{x}^{2}=-\frac{32}{9 \cdot 61}, L_{x z} \cdot R_{x}=\frac{5}{61} .
$$

Meanwhile, the curve C_{y} is irreducible. We have

$$
\frac{91}{30}=\operatorname{lct}\left(X, \frac{2}{13} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{18} C_{y}\right)=\frac{15}{2} .
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{91}{30}$.
Suppose that $\operatorname{lct}(X)<\frac{91}{30}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{91}{30} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D does not contain the curve C_{y}. Similarly, we may assume that either $L_{x z} \not \subset \operatorname{Supp}(D)$ or $R_{x} \not \subset \operatorname{Supp}(D)$.

Since the support of D cannot contain either $L_{x z}$ or R_{x} one of the inequalities

$$
\operatorname{mult}_{O_{t}}(D) \leqslant 61 D \cdot L_{x z}=\frac{1}{9}<\frac{30}{91}, \quad \operatorname{mult}_{O_{t}}(D) \leqslant 61 D \cdot R_{x}=\frac{2}{9}<\frac{30}{91}
$$

must hold, and hence the point P cannot be O_{t}. Also, the inequality

$$
13 D \cdot C_{y}=\frac{6}{61}<\frac{30}{91}
$$

implies that the point P cannot be O_{x}.
We write $D=m_{0} L_{x z}+m_{1} R_{x}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains neither $L_{x z}$ nor R_{x}. If $m_{0} \neq 0$, then we obtain

$$
\frac{2}{9 \cdot 61}=D \cdot R_{x} \geqslant m_{0} L_{x z} \cdot R_{x}=\frac{5 m_{0}}{61}
$$

and hence $m_{0} \leqslant \frac{2}{45}$. By the same way, we get $m_{1} \leqslant \frac{1}{45}$. Since

$$
18\left(D-m_{0} L_{x z}\right) \cdot L_{x z}=\frac{2+77 m_{0}}{61}<\frac{30}{91}, 9\left(D-m_{1} R_{x}\right) \cdot R_{x}=\frac{2+32 m_{0}}{61}<\frac{30}{91}
$$

it follows from Lemma 1.3 .8 that the point P is a smooth point in the outside of C_{x}. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(585)\right)$ contains $x^{45}, x^{27} y^{13}, z^{13}$, this is impossible by Lemma 1.3.9,
Lemma 3.2.19. Let X be a quasismooth hypersurface of degree 107 in $\mathbb{P}(13,20,29,47)$. Then $\operatorname{lct}(X)=\frac{65}{18}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
y z^{3}+y^{3} t+x t^{2}+x^{6} z=0 .
$$

The surface X is singular at the points O_{x}, O_{y}, O_{z} and O_{t}. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x y}$ (resp. $L_{x y}, L_{z t}, L_{z t}$) and $R_{x}=\left\{x=z^{3}+y^{2} t=0\right\}$ (resp. $R_{y}=\left\{y=t^{2}+x^{5} z=0\right\}$, $R_{z}=\left\{z=y^{3}+x t=0\right\}, R_{t}=\left\{t=x^{6}+y z^{2}=0\right\}$). The curve $L_{x y}$ intersects R_{x} (resp. R_{y}) only at the point O_{t} (resp. O_{z}). Also, the curve $L_{z t}$ intersects R_{z} (resp. R_{t}) only at the point $O_{x}\left(\right.$ resp. $\left.O_{y}\right)$. It is easy to check

$$
\begin{aligned}
-K_{X} \cdot L_{x y} & =\frac{2}{29 \cdot 47}, \quad-K_{X} \cdot L_{z t}=\frac{1}{13 \cdot 10}, \quad-K_{X} \cdot R_{x}=\frac{3}{10 \cdot 47} \\
-K_{X} \cdot R_{y} & =\frac{4}{13 \cdot 29}, \quad-K_{X} \cdot R_{z}=\frac{6}{13 \cdot 47}, \quad-K_{X} \cdot R_{t}=\frac{3}{5 \cdot 29} \\
L_{x y}^{2} & =-\frac{74}{29 \cdot 47}, \quad R_{x}^{2}=-\frac{21}{20 \cdot 47}, \quad L_{x y} \cdot R_{x}=\frac{3}{47}
\end{aligned}
$$

We see $\operatorname{lct}(X) \leqslant \frac{65}{18}$ since

$$
\frac{65}{18}=\operatorname{lct}\left(X, \frac{2}{13} C_{x}\right)<\frac{70}{12}=\operatorname{lct}\left(X, \frac{2}{20} C_{y}\right)<\frac{29}{3}=\operatorname{lct}\left(X, \frac{2}{29} C_{z}\right)<\frac{94}{9}=\operatorname{lct}\left(X, \frac{2}{47} C_{t}\right) .
$$

Suppose that $\operatorname{lct}(X)<\frac{65}{18}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{65}{18} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of D does not contain at least one irreducible component of each of the curves C_{x}, C_{y}, C_{z} and C_{t}. The curve R_{x} (resp. R_{y}, R_{t}) is singular at the point $O_{t}\left(\right.$ resp. $\left.O_{z}, O_{y}\right)$. Then in each of the following pairs of inequalities, at least one of two must hold:

$$
\begin{aligned}
& \operatorname{mult}_{O_{t}}(D) \leqslant 47 D \cdot L_{x y}=\frac{2}{29}<\frac{18}{65}, \quad \operatorname{mult}_{O_{t}}(D) \leqslant \frac{47}{2} D \cdot R_{x}=\frac{3}{20}<\frac{18}{65} ; \\
& \operatorname{mult}_{O_{z}}(D) \leqslant 29 D \cdot L_{x y}=\frac{2}{47}<\frac{18}{65}, \quad \operatorname{mult}_{O_{z}}(D) \leqslant \frac{29}{2} D \cdot R_{y}=\frac{2}{13}<\frac{18}{65} ; \\
& \operatorname{mult}_{O_{x}}(D) \leqslant 13 D \cdot L_{z t}=\frac{1}{10}<\frac{18}{65}, \quad \operatorname{mult}_{O_{x}}(D) \leqslant 13 D \cdot R_{z}=\frac{6}{47}<\frac{18}{65} ; \\
& \operatorname{mult}_{O_{y}}(D) \leqslant 20 D \cdot L_{z t}=\frac{2}{13}<\frac{18}{65}, \\
& \operatorname{mult}_{O_{y}}(D) \leqslant \frac{20}{2} D \cdot R_{t}=\frac{6}{29}<\frac{18}{65} .
\end{aligned}
$$

Therefore, the point P must be a smooth point of X.
We write $D=m_{0} L_{x y}+m_{1} R_{x}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains none of $L_{x y}, R_{x}$. If $m_{0} \neq 0$, then $m_{1}=0$ and hence we obtain

$$
\frac{3}{10 \cdot 47}=D \cdot R_{x} \geqslant m_{0} L_{x y} \cdot R_{x}=\frac{3 m_{0}}{47}
$$

Therefore, $m_{0} \leqslant \frac{1}{10}$. Similarly, we get $m_{1} \leqslant \frac{2}{87}$. Since

$$
\begin{gathered}
\left(D-m_{0} L_{x y}\right) \cdot L_{x y}=\frac{2+74 m_{0}}{29 \cdot 47}<\frac{18}{65} \\
\left(D-m_{1} R_{x}\right) \cdot R_{x}=\frac{6+21 m_{1}}{20 \cdot 47}<\frac{18}{65}
\end{gathered}
$$

it follows from Lemma 1.3 .8 that the point P is a smooth point in the outside of C_{x}. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(377)\right)$ contains the monomials $x^{9} y^{13}, x^{29}$ and z^{13}, this is impossible by Lemma 1.3.9,

Lemma 3.2.20. Let X be a quasismooth hypersurface of degree 111 in $\mathbb{P}(13,20,31,49)$. Then $\operatorname{lct}(X)=\frac{65}{16}$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{2} t+y^{4} z+x t^{2}+x^{7} y=0
$$

It is singular at the point O_{x}, O_{y}, O_{z} and O_{t}. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x z}$ (resp. $L_{y t}, L_{x z}, L_{y t}$) and $R_{x}=\left\{x=y^{4}+z t=0\right\}$ (resp. $R_{y}=\left\{y=z^{2}+x t=0\right\}$, $R_{z}=\left\{z=t^{2}+x^{6} y=0\right\}, R_{t}=\left\{t=x^{7}+y^{3} z=0\right\}$). The curve $L_{x z}$ intersects R_{x} (resp. R_{z}) only at the point O_{t} (resp. O_{y}). Also, the curve $L_{y t}$ intersects R_{y} (resp. R_{t}) only at the point $O_{x}\left(\right.$ resp. $\left.O_{z}\right)$. It is easy to check

$$
\begin{aligned}
-K_{X} \cdot L_{x z} & =\frac{1}{10 \cdot 49},-K_{X} \cdot L_{y t}=\frac{2}{13 \cdot 31},-K_{X} \cdot R_{x}=\frac{8}{31 \cdot 49} \\
-K_{X} \cdot R_{y} & =\frac{4}{13 \cdot 49},-K_{X} \cdot R_{z}=\frac{1}{5 \cdot 13},-K_{X} \cdot R_{t}=\frac{7}{10 \cdot 31}, \\
L_{x z}^{2} & =-\frac{67}{20 \cdot 49}, \quad R_{x}^{2}=-\frac{72}{31 \cdot 49}, \quad L_{x z} \cdot R_{x}=\frac{4}{49} .
\end{aligned}
$$

We have $\operatorname{lct}(X) \leqslant \frac{65}{16}$ since

$$
\frac{65}{16}=\operatorname{lct}\left(X, \frac{2}{13} C_{x}\right)<\frac{30}{4}=\operatorname{lct}\left(X, \frac{2}{20} C_{y}\right)<\frac{245}{28}=\operatorname{lct}\left(X, \frac{2}{49} C_{t}\right)<\frac{62}{7}=\operatorname{lct}\left(X, \frac{2}{31} C_{z}\right) .
$$

Suppose that $\operatorname{lct}(X)<\frac{65}{16}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{65}{16} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of D does not contain at least one irreducible component of each of the curves C_{x}, C_{y}, C_{z} and C_{t}. The curve R_{z} is singular at the point O_{y}. The curve R_{t} is singular at O_{z} with multiplicity 3. Then in each of the following pairs of inequalities, at least one of two must hold:

$$
\begin{aligned}
& \operatorname{mult}_{O_{x}}(D) \leqslant 13 D \cdot L_{y t}=\frac{2}{31}<\frac{16}{65}, \text { mult }_{O_{x}}(D) \leqslant 13 D \cdot R_{y}=\frac{4}{49}<\frac{16}{65} ; \\
& \operatorname{mult}_{O_{y}}(D) \leqslant 20 D \cdot L_{x z}=\frac{2}{49}<\frac{16}{65}, \text { mult }_{O_{y}}(D) \leqslant \frac{20}{2} D \cdot R_{z}=\frac{2}{13}<\frac{16}{65} \\
& \operatorname{mult}_{O_{z}}(D) \leqslant 31 D \cdot L_{y t}=\frac{2}{13}<\frac{16}{65}, \quad \text { mult }_{O_{z}}(D) \leqslant \frac{31}{3} D \cdot R_{t}=\frac{7}{30}<\frac{16}{65} .
\end{aligned}
$$

Therefore, the point P can be none of O_{x}, O_{y}, O_{z}.
Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(403)\right)$ contains the monomials $x^{11} y^{13}, x^{31}$ and z^{13}, it follows from Lemma 1.3.9 that the point P is either the point O_{t} or a smooth point of X in C_{x}.

Write $D=m_{0} L_{x z}+m_{1} R_{x}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains none of $L_{x z}, R_{x}$. If $m_{0} \neq 0$, then $m_{1}=0$ and hence we obtain

$$
\frac{8}{31 \cdot 49}=D \cdot R_{x} \geqslant m_{0} L_{x z} \cdot R_{x}=\frac{4 m_{0}}{49} .
$$

Therefore, $m_{0} \leqslant \frac{2}{31}$. Similarly, we get $m_{1} \leqslant \frac{1}{40}$. Since we have

$$
\begin{gathered}
\left(D-m_{0} L_{x z}\right) \cdot L_{x z}=\frac{2+67 m_{0}}{20 \cdot 49}<\frac{16}{65} \\
\left(D-m_{1} R_{x}\right) \cdot R_{x}=\frac{8+72 m_{1}}{31 \cdot 49}<\frac{16}{65}
\end{gathered}
$$

it follows from Lemma 1.3 .8 that the point P must be the point O_{t}.
Suppose that $m_{0}=0$. Then the inequality

$$
\operatorname{mult}_{O_{t}}(D) \leqslant 49 D \cdot L_{x z}=\frac{1}{10}<\frac{16}{65}
$$

gives us a contradiction. Therefore, $m_{0} \neq 0$ and hence the curve R_{x} is not contained in the support of D. Then

$$
\frac{8}{31 \cdot 49}=D \cdot R_{x} \geqslant m_{0} L_{x z} \cdot R_{x}+\frac{\text { mult }_{O_{t}}(D)-m_{0}}{49}>\frac{3 m_{0}}{49}+\frac{16}{65 \cdot 49},
$$

and hence $m_{0}<\frac{8}{31 \cdot 65}$. Since

$$
49\left(D-m_{0} L_{x z}\right) \cdot L_{x z}=\frac{2+67 m_{0}}{20}<\frac{16}{65}
$$

the pair $\left(X, \frac{65}{16} D\right)$ is \log canonical at the point O_{t} by Lemma 1.3.8. This is a contradiction.
Lemma 3.2.21. Let X be a quasismooth hypersurface of degree 226 in $\mathbb{P}(13,31,71,113)$. Then $\operatorname{lct}(X)=\frac{91}{20}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{5} z+x z^{3}+x^{15} y=0
$$

It is singular at the points O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{91}{20}=\operatorname{lct}\left(X, \frac{2}{13} C_{x}\right)<\operatorname{lct}\left(X, \frac{2}{31} C_{y}\right)=\frac{155}{12} .
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{91}{20}$.
Suppose that $\operatorname{lct}(X)<\frac{91}{20}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{91}{20} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains neither C_{x} nor C_{y}. Then the inequalities

$$
71 D \cdot C_{x}=\frac{4}{31}<\frac{20}{91}, \quad 13 D \cdot C_{y}=\frac{4}{71}<\frac{20}{91}
$$

show that the point P is a smooth point in the outside of C_{x}. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(923)\right)$ contains $x^{71}, y^{26} x^{9}, y^{13} x^{40}$ and z^{13}, it follows from Lemma 1.3 .9 that the point P is either a singular point of X or a point on C_{x}. This is a contradiction.

Lemma 3.2.22. Let X be a quasismooth hypersurface of degree 99 in $\mathbb{P}(14,17,29,41)$. Then $\operatorname{lct}(X)=\frac{51}{10}$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+t z^{2}+x y^{5}+x^{5} z=0 .
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x t}$ (resp. $L_{y z}, L_{y z}, L_{x t}$) and $R_{x}=\left\{x=y t+z^{2}=0\right\}$ (resp. $R_{y}=\left\{y=z t+x^{5}=0\right\}$, $\left.R_{z}=\left\{z=x y^{4}+t^{2}=0\right\}, R_{t}=\left\{t=y^{5}+x^{4} z=0\right\}\right)$. Also, we see that

$$
L_{x t} \cap R_{x}=\left\{O_{y}\right\}, L_{y z} \cap R_{y}=\left\{O_{t}\right\}, L_{y z} \cap R_{z}=\left\{O_{x}\right\}, L_{x t} \cap R_{t}=\left\{O_{z}\right\} .
$$

We can easily check that $\operatorname{lct}\left(X, \frac{2}{17} C_{y}\right)=\frac{51}{10}$ is less than each of the numbers $\operatorname{lct}\left(X, \frac{2}{14} C_{y}\right)$, $\operatorname{lct}\left(X, \frac{2}{29} C_{z}\right)$ and $\operatorname{lct}\left(X, \frac{2}{41} C_{t}\right)$. Therefore, $\operatorname{lct}(X) \leqslant \frac{51}{10}$. Suppose $\operatorname{lct}(X)<\frac{51}{10}$. Then, there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $\left(X, \frac{51}{10} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{gathered}
D \cdot L_{x t}=\frac{2}{17 \cdot 29}, \quad D \cdot R_{x}=\frac{4}{17 \cdot 41}, \quad D \cdot R_{y}=\frac{10}{29 \cdot 41}, \\
D \cdot L_{y z}=\frac{1}{7 \cdot 41}, \quad D \cdot R_{z}=\frac{2}{7 \cdot 17}, \quad D \cdot R_{t}=\frac{5}{7 \cdot 29}, \\
L_{x t} \cdot R_{x}=\frac{2}{17}, \quad L_{y z} \cdot R_{y}=\frac{5}{41}, \quad L_{y z} \cdot R_{z}=\frac{1}{7}, \quad L_{x t} \cdot R_{t}=\frac{5}{29}, \\
L_{x t}^{2}=-\frac{44}{17 \cdot 29}, \quad R_{x}^{2}=-\frac{54}{17 \cdot 41}, \quad R_{y}^{2}=-\frac{60}{29 \cdot 41}, \\
L_{y z}^{2}=-\frac{53}{14 \cdot 41}, \quad R_{z}^{2}=\frac{12}{7 \cdot 17}, \quad R_{t}^{2}=\frac{135}{14 \cdot 29} .
\end{gathered}
$$

By Lemma 1.3 .6 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. The inequalities

$$
17 D \cdot L_{x t}=\frac{2}{29}<\frac{10}{51}, \quad 17 D \cdot R_{x}=\frac{4}{41}<\frac{10}{51}
$$

imply that $P \neq O_{y}$. The inequalities

$$
14 D \cdot L_{y z}=\frac{2}{41}<\frac{10}{51}, \quad 7 D \cdot R_{z}=\frac{2}{17}<\frac{10}{51}
$$

imply that $P \neq O_{x}$. The curve R_{z} is singular at the point O_{x}. The inequalities

$$
29 D \cdot L_{x t}=\frac{2}{17}<\frac{10}{51}, \quad \frac{29}{4} D \cdot R_{t}=\frac{5}{28}<\frac{10}{51}
$$

imply that $P \neq O_{z}$. The curve R_{t} is singular at the point O_{z}.
We write $D=m_{0} L_{x t}+m_{1} L_{y z}+m_{2} R_{x}+m_{3} R_{y}+m_{4} R_{z}+m_{5} R_{t}+\Omega$, where Ω is an effective divisor whose support contains none of the curves $L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{51}{10} D\right)$ is \log canonical at the points O_{x}, O_{y}, O_{z}, the numbers m_{i} are at most $\frac{10}{51}$. Then by Lemma 1.3 .8 the following inequalities enable us to conclude that either the point P is in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$ or $P=O_{t}$:

$$
\begin{aligned}
& \left(D-m_{0} L_{x t}\right) \cdot L_{x z}=\frac{2+44 m_{0}}{17 \cdot 29} \leqslant \frac{10}{51}, \quad\left(D-m_{1} L_{y z}\right) \cdot L_{y t}=\frac{2+53 m_{1}}{14 \cdot 41} \leqslant \frac{10}{51} \\
& \left(D-m_{2} R_{x}\right) \cdot R_{x}=\frac{4+54 m_{2}}{17 \cdot 41} \leqslant \frac{10}{51}, \quad\left(D-m_{3} R_{y}\right) \cdot R_{y}=\frac{10+60 m_{3}}{29 \cdot 41} \leqslant \frac{10}{51} \\
& \left(D-m_{4} R_{z}\right) \cdot R_{z}=\frac{2-12 m_{4}}{7 \cdot 17} \leqslant \frac{10}{51}, \quad\left(D-m_{5} R_{t}\right) \cdot R_{t}=\frac{10-135 m_{5}}{14 \cdot 29} \leqslant \frac{10}{51}
\end{aligned}
$$

Suppose that $P \neq O_{t}$. Then we consider the pencil \mathcal{L} on X defined by $\lambda y t+\mu z^{2}=0$, $[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil \mathcal{L} consists of the curve $L_{y z}$ and the point O_{y}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $z^{2}=\alpha y t$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $y t=z^{2}$ and $t^{2} y+x y^{5}+x^{5} z=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by $z\left(z+x z^{9}+x^{5}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{y z}$ and C. We have the intersection number

$$
D \cdot C=D \cdot E-D \cdot L_{y z}=\frac{181}{7 \cdot 17 \cdot 41} .
$$

Also, we see

$$
C^{2}=E \cdot C-C \cdot L_{y z} \geqslant E \cdot C-C_{y} \cdot C>0
$$

since C is different from R_{y}. By Lemma 1.3 .8 the inequality $D \cdot C<\frac{10}{51}$ gives us a contradiction.
Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{y z}$, R_{x}, and M. Note that the curve M is different from the curves R_{y} and $L_{x t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{y z}-D \cdot R_{x}=\frac{153}{7 \cdot 17 \cdot 41}, \\
M^{2}=E \cdot M-L_{y z} \cdot M-R_{x} \cdot M \geqslant E \cdot M-C_{y} \cdot M-C_{x} \cdot M>0
\end{gathered}
$$

By Lemma 1.3 .8 the inequality $D \cdot M<\frac{10}{51}$ gives us a contradiction. Therefore, the log pair $\left(X, \frac{51}{10} D\right)$ is not \log canonical at the point O_{t}.

Put $D=a L_{y z}+b R_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support contains neither $L_{y z}$ nor R_{x}. Then $a>0$ since otherwise we would have a contradictory inequality

$$
\frac{1}{7}=41 D \cdot L_{y z} \geqslant \operatorname{mult}_{O_{t}}(D)>\frac{10}{51}
$$

Therefore, we may assume that $R_{y} \not \subset \operatorname{Supp}(\Delta)$ by Lemma 1.3.6. Similarly, we may assume that $L_{x t} \not \subset \operatorname{Supp}(\Delta)$ if $b>0$.

If $b>0$, then

$$
\frac{2}{17 \cdot 29}=D \cdot L_{x t} \geqslant b R_{x} \cdot L_{x t}=\frac{2 b}{17},
$$

and hence $b \leqslant \frac{1}{29}$. Similarly, we have

$$
\frac{10}{29 \cdot 41}=D \cdot R_{y} \geqslant \frac{5 a}{41}+\frac{b}{41}+\frac{\text { mult }_{O_{t}}(D)-a-b}{41}>\frac{4 a}{41}+\frac{4}{21 \cdot 41} .
$$

Therefore, $a<\frac{47}{2 \cdot 21 \cdot 29}$.
Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up at the point O_{t} with weights $(9,4)$ and let F be the exceptional curve of the morphism π. Then F contains two singular points Q_{9} and Q_{4} of \bar{X} such that Q_{9} is a singular point of type $\frac{1}{9}(1,1)$, and Q_{4} is a singular point of type $\frac{1}{4}(3,1)$. Then $K_{\bar{X}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)-\frac{28}{41} F, \quad \bar{L}_{y z} \sim_{\mathbb{Q}} \pi^{*}\left(L_{y z}\right)-\frac{4}{41} F, \quad \bar{R}_{x} \sim_{\mathbb{Q}} \pi^{*}\left(R_{x}\right)-\frac{9}{41} F, \quad \bar{\Delta} \sim_{\mathbb{Q}} \pi^{*}(\Delta)-\frac{c}{41} F$, where $\bar{L}_{y z}, \bar{R}_{x}$ and $\bar{\Delta}$ are the proper transforms of $L_{y z}, R_{x}$ and Δ by π, respectively, and c is a non-negative rational number. Note that $F \cap \bar{R}_{x}=\left\{Q_{4}\right\}$ and $F \cap \bar{L}_{y z}=\left\{Q_{9}\right\}$.

The \log pull-back of the \log pair $\left(X, \frac{51}{10} D\right)$ by π is the \log pair

$$
\left(\bar{X}, \frac{51 a}{10} \bar{L}_{y z}+\frac{51 b}{10} \bar{R}_{x}+\frac{51}{10} \bar{\Delta}+\theta_{1} F\right),
$$

where

$$
\theta_{1}=\frac{280+51(4 a+9 b+c)}{10 \cdot 41}
$$

This is not \log canonical at some point $Q \in F$.
We have

$$
0 \leqslant \bar{\Delta} \cdot \bar{R}_{x}=\frac{4+54 b}{17 \cdot 41}-\frac{a}{41}-\frac{c}{4 \cdot 41} .
$$

This inequality shows $4 a+c \leqslant \frac{4}{17}(4+54 b)$. Since $b \leqslant \frac{1}{29}$, we obtain

$$
\theta_{1}=\frac{280+51(4 a+9 b+c)}{10 \cdot 41} \leqslant \frac{4760+51(16+369 b)}{10 \cdot 17 \cdot 41}<1 .
$$

Suppose that $Q \notin \bar{R}_{x} \cup \bar{L}_{y z}$. Then the \log pair $\left(F,\left.\frac{51}{10} \bar{\Delta}\right|_{F}\right)$ is not \log canonical at the point Q, and hence

$$
\frac{17 c}{120}=\frac{51}{10} \bar{\Delta} \cdot F>1
$$

by Lemma 1.3.8. Thus, we see that $c>\frac{120}{17}$. However, since $b \leqslant \frac{1}{29}$, we obtain

$$
c \leqslant 4 a+c \leqslant \frac{4}{17}(4+54 b)<\frac{120}{17} .
$$

Therefore, the point Q must be either Q_{4} or Q_{9}.
Suppose that $Q=Q_{4}$. The pair $\left(\bar{R}_{x},\left.\left(\frac{51}{10} \bar{\Delta}+\theta_{1} F\right)\right|_{\bar{R}_{x}}\right)$ is not \log canonical at Q. It then follows from Lemma 1.3 .8 that

$$
1<4\left(\frac{51}{10} \bar{\Delta}+\theta_{1} F\right) \cdot \bar{R}_{x}=\frac{4 \cdot 51}{10}\left(\frac{4+54 b}{17 \cdot 41}-\frac{a}{41}-\frac{c}{4 \cdot 41}\right)+\theta_{1} .
$$

However,

$$
\frac{4 \cdot 51}{10}\left(\frac{4+54 b}{17 \cdot 41}-\frac{a}{41}-\frac{c}{4 \cdot 41}\right)+\theta_{1}=\frac{4760+51(16+369 b)}{10 \cdot 17 \cdot 41}<1 .
$$

This is a contradiction. Consequently, the point Q must be Q_{9}.
Let $\psi: \tilde{X} \rightarrow \bar{X}$ be the blow up at the point Q_{9} and let E be the exceptional curve of the morphism ψ. The surface \tilde{X} is smooth along the exceptional divisor E. Then

$$
K_{\tilde{X}} \sim_{\mathbb{Q}} \psi^{*}\left(K_{\bar{X}}\right)-\frac{7}{9} E, \quad \tilde{L}_{y z} \sim_{\mathbb{Q}} \psi^{*}\left(\bar{L}_{y z}\right)-\frac{1}{9} E, \quad \tilde{F} \sim_{\mathbb{Q}} \psi^{*}(F)-\frac{1}{9} E, \quad \tilde{\Delta} \sim_{\mathbb{Q}} \psi^{*}(\bar{\Delta})-\frac{d}{9} E,
$$

where $\tilde{L}_{y z}, \tilde{F}$ and $\tilde{\Delta}$ are the proper transforms of $\bar{L}_{y z}, F$ and $\bar{\Delta}$ by ψ, respectively, and d is a non-negative rational number.

The log pull-back of the \log pair $\left(X, \frac{51}{10} D\right)$ by $\pi \circ \psi$ is the \log pair

$$
\left(\tilde{X}, \frac{51 a}{10} \tilde{L}_{y z}+\frac{51 b}{10} \tilde{R}_{x}+\frac{51}{10} \tilde{\Delta}+\theta_{1} \tilde{F}+\theta_{2} E\right),
$$

where \tilde{R}_{x} is the proper transform of \bar{R}_{x} by ψ and

$$
\theta_{2}=\frac{70+51(a+d)+10 \theta_{1}}{90}=\frac{3150+51(45 a+9 b+c+41 d)}{90 \cdot 41} .
$$

This is not \log canonical at some point $O \in E$.
We have

$$
0 \leqslant \tilde{\Delta} \cdot \tilde{L}_{y x}=\bar{\Delta} \cdot \bar{L}_{y z}-\frac{d}{9}=\frac{2+53 a}{14 \cdot 41}-\frac{b}{41}-\frac{c}{9 \cdot 41}-\frac{d}{9}
$$

and hence $9 b+c+41 d \leqslant \frac{9}{14}(2+53 a)$. Therefore, this inequality together with $a<\frac{47}{2 \cdot 21 \cdot 29}$ gives us

$$
\begin{aligned}
\theta_{2} & =\frac{3150+51(45 a+9 b+c+41 d)}{90 \cdot 41}= \\
& =\frac{3150+2295 a}{90 \cdot 41}+\frac{51(9 b+c+41 d)}{90 \cdot 41} \leqslant \\
& \leqslant \frac{5002+6273 a}{10 \cdot 14 \cdot 41}<1 .
\end{aligned}
$$

Suppose that the point O is in the outside of $\tilde{L}_{y z}$ and \tilde{F}. Then the \log pair $\left(E,\left.\frac{51}{10} \tilde{\Delta}\right|_{E}\right)$ is not \log canonical at the point O and hence

$$
1<\frac{51}{10} \tilde{\Delta} \cdot E=\frac{51 d}{10} .
$$

However,

$$
41 d \leqslant 9 b+c+41 d \leqslant \frac{9}{14}(2+53 a)<\frac{10 \cdot 41}{51}
$$

since $a<\frac{47}{2 \cdot 21 \cdot 29}$. This is a contradiction.
Suppose that the point O belongs to $\tilde{L}_{y z}$ Then the \log pair $\left(E,\left.\left(\frac{510}{10} \tilde{L}_{y z}+\frac{51}{10} \tilde{\Delta}\right)\right|_{E}\right)$ is not \log canonical at the point O and hence

$$
1<\left(\frac{51 a}{10} \tilde{L}_{y z}+\frac{51}{10} \tilde{\Delta}\right) \cdot E=\frac{51}{10}(a+d)
$$

However,

$$
\frac{51}{10}(a+d) \leqslant \frac{51}{10}\left(a+\frac{9}{14 \cdot 41}(2+53 a)\right)<1
$$

since $a<\frac{47}{2.21 \cdot 29}$. This is a contradiction. Therefore, the point O is the intersection point of \tilde{F} and E.

Let $\xi: \hat{X} \rightarrow \tilde{X}$ be the blow up at the point O and let H be the exceptional divisor of ξ. We also let $\hat{L}_{y z}, \hat{R}_{x}, \hat{\Delta}, \hat{E}$, and \hat{F} be the proper transforms of $\tilde{L}_{y z}, \tilde{R}_{x}, \tilde{\Delta}, E$ and \tilde{F} by ξ, respectively. We have

$$
K_{\hat{X}} \sim_{\mathbb{Q}} \xi^{*}\left(K_{\tilde{X}}\right)+H, \hat{E} \sim_{\mathbb{Q}} \xi^{*}(E)-H, \hat{F} \sim_{\mathbb{Q}} \xi^{*}(\tilde{F})-H, \hat{\Delta} \sim_{\mathbb{Q}} \xi^{*}(\tilde{\Delta})-e H,
$$

where e is a non-negative rational number. The log pull-back of the $\log \operatorname{pair}\left(X, \frac{51}{10} D\right)$ via $\pi \circ \phi \circ \xi$ is

$$
\left(\hat{X}, \frac{51 a}{10} \hat{L}_{y z}+\frac{51 b}{10} \hat{R}_{x}+\frac{51}{10} \hat{\Delta}+\theta_{1} \hat{F}+\theta_{2} \hat{E}+\theta_{3} H\right),
$$

where

$$
\theta_{3}=\theta_{1}+\theta_{2}+\frac{51 e}{10}-1=\frac{1980+51(81 a+90 b+10 c+41 d+369 e)}{90 \cdot 41} .
$$

This \log pair is not \log canonical at some point $A \in H$. We have

$$
\frac{c}{9 \cdot 4}-\frac{d}{9}-e=\hat{\Delta} \cdot \hat{F} \geqslant 0 .
$$

Therefore, $4 d+36 e \leqslant c$. Then

$$
\begin{aligned}
\theta_{3} & =\frac{1980+51(81 a+90 b+10 c)}{90 \cdot 41}+\frac{51(d+9 e)}{90} \leqslant \\
& \leqslant \frac{7920+51(324 a+360 b+81 c)}{4 \cdot 90 \cdot 41}= \\
& =\frac{22+51 b}{41}+\frac{51 \cdot 81(4 a+c)}{4 \cdot 90 \cdot 41} \leqslant \\
& \leqslant \frac{22+51 b}{41}+\frac{9 \cdot 51(2+27 b)}{5 \cdot 17 \cdot 41}<1
\end{aligned}
$$

since $b \leqslant \frac{1}{29}$ and $4 a+c \leqslant \frac{4}{17}(4+54 b)$.
Suppose that $A \notin \hat{F} \cup \hat{E}$. Then the log pair $\left(\hat{X}, \frac{51}{10} \hat{\Delta}+\theta_{3} H\right)$ is not log canonical at the point A. Applying Lemma 1.3.4, we get

$$
1<\frac{51}{10} \hat{\Delta} \cdot H=\frac{51 e}{10} .
$$

However,

$$
e \leqslant \frac{1}{36}(4 d+36 e) \leqslant \frac{c}{36} \leqslant \frac{1}{36}(4 a+c) \leqslant \frac{4+54 b}{17 \cdot 9}<\frac{10}{51} .
$$

Therefore, the point A must be either in \hat{F} or in \hat{E}.
Suppose that $A \in \hat{F}$. Then the \log pair $\left(\hat{X}, \frac{51}{10} \hat{\Delta}+\theta_{1} \hat{F}+\theta_{3} H\right)$ is not \log canonical at the point A. Applying Lemma 1.3.4, we get

$$
1<\left(\frac{51}{10} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{F}=\frac{51}{10}\left(\frac{c}{9 \cdot 4}-\frac{d}{9}-e\right)+\theta_{3}=\frac{7920+51(324 a+360 b+81 c)}{4 \cdot 90 \cdot 41} .
$$

However,

$$
\frac{7920+51(324 a+360 b+81 c)}{4 \cdot 90 \cdot 41}<1
$$

as seen in the previous. Therefore, the point A is the intersection point of H and \hat{E}. Then the \log pair $\left(\hat{X}, \frac{51}{10} \hat{\Delta}+\theta_{2} \hat{E}+\theta_{3} H\right)$ is not \log canonical at the point A. From Lemma 1.3.4, we obtain

$$
1<\left(\frac{51}{10} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{E}=\frac{51}{10}(d-e)+\theta_{3}=\frac{1980+51(81 a+90 b+10 c+410 d)}{90 \cdot 41} .
$$

However,

$$
\begin{aligned}
\frac{1980+51(81 a+90 b+10 c+410 d)}{90 \cdot 41} & =\frac{220+459 a}{10 \cdot 41}+\frac{51(9 b+c+41 d)}{9 \cdot 41} \leqslant \\
& \leqslant \frac{220+459 a}{10 \cdot 41}+\frac{51(2+53 a)}{14 \cdot 41}<1
\end{aligned}
$$

since $9 b+c+41 d \leqslant \frac{9}{14}(2+53 a)$ and $a<\frac{47}{2 \cdot 21 \cdot 29}$. The obtained contradiction completes the proof.

3.3. Sporadic cases with $I=3$

Lemma 3.3.1. Let X be a quasismooth hypersurface of degree 33 in $\mathbb{P}(5,7,11,13)$. Then $\operatorname{lct}(X)=\frac{49}{36}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y t^{2}+x y^{4}+x^{4} t+\epsilon x^{3} y z=0
$$

where $\epsilon \in \mathbb{C}$. Note that the surface X is singular at O_{x}, O_{y} and O_{t}.
The curves C_{x}, C_{y} are irreducible. Moreover, we have

$$
\frac{25}{18}=\operatorname{lct}\left(X, \frac{3}{5} C_{x}\right)>\operatorname{lct}\left(X, \frac{3}{7} C_{y}\right)=\frac{49}{36}
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{49}{36}$.
Suppose that $\operatorname{lct}(X)<\frac{49}{36}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{49}{36} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of D contains neither C_{x} nor C_{y}. Since the curve C_{y} is singular at the point O_{t}, the three inequalities

$$
5 D \cdot C_{y}=\frac{9}{13}<\frac{36}{49}, \quad 7 D \cdot C_{x}=\frac{63}{91}<\frac{36}{49}
$$

show that the point P is located in the outside of the set $C_{x} \cup C_{y}$.
Let \mathcal{L} be the pencil on X that is cut out by the equations

$$
\lambda x^{7}+\mu y^{5}=0
$$

where $[\lambda: \mu] \in \mathbb{P}^{1}$. Then the base locus of the pencil \mathcal{L} consists of the point O_{t}. Let C be the unique curve in \mathcal{L} that passes through the point P. Since the point P is in the outside of the set $C_{x} \cup C_{y}$, the curve C is defined by an equation of the form $y^{5}-\alpha x^{7}=0$, where α is a non-zero constant. Suppose that C is irreducible and reduced. Then mult $P_{P}(C) \leqslant 3$ since the curve C is a triple cover of the curve

$$
y^{5}-\alpha x^{7}=0 \subset \mathbb{P}(5,7,13) \cong \operatorname{Proj}(\mathbb{C}[x, y, t])
$$

In particular, $\operatorname{lct}\left(X, \frac{3}{35} C\right)>\frac{49}{36}$. Thus, we may assume that the support of D does not contain the curve C and hence we obtain

$$
\frac{36}{49}<\operatorname{mult}_{P}(D) \leqslant D \cdot C=\frac{9}{13}<\frac{36}{49}
$$

This is a contradiction. Thus, to conclude the proof it suffices to prove that the curve C is irreducible and reduced.

Let $S \subset \mathbb{C}^{4}$ be the affine variety defined by the equations

$$
y^{5}-\alpha x^{7}=z^{3}+y t^{2}+x y^{4}+x^{4} t+\epsilon x^{3} y z=0 \subset \mathbb{C}^{4} \cong \operatorname{Spec}(\mathbb{C}[x, y, z, t])
$$

To conclude the proof, it is enough to prove that the variety S is irreducible.
Consider the projectivised surface \bar{S} of S defined by the homogeneous equations

$$
y^{5} w^{2}-\alpha x^{7}=z^{3} w^{2}+y t^{2} w^{2}+x y^{4}+x^{4} t+\epsilon x^{3} y z=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t, w])
$$

Then we consider the affine piece S^{\prime} of \bar{S} defined by $y \neq 0$. The affine surface S^{\prime} is defined by the equations

$$
w^{2}-\alpha x^{7}=z^{3} w^{2}+t^{2} w^{2}+x+x^{4} t+\epsilon x^{3} z=0 \subset \mathbb{C}^{4} \cong \operatorname{Spec}(\mathbb{C}[x, z, t, w])
$$

This is isomorphic to the affine hypersurface defined by

$$
x\left(\alpha x^{6} z^{3}+\alpha x^{6} t^{2}+1+x^{3} t+\epsilon x^{2} z\right)=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[x, z, t])
$$

This affine hypersurface has two irreducible components. However, the component defined by $x=0$ originates from the hyperplane section of \bar{S} by $w=0$. Therefore, the original affine surface S must be irreducible and reduce.

Lemma 3.3.2. Let X be a quasismooth hypersurface of degree 40 in $\mathbb{P}(5,7,11,20)$. Then $\operatorname{lct}(X)=\frac{25}{18}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t\left(t-x^{4}\right)+y z^{3}+x y^{5}+\epsilon x^{3} y^{2} z
$$

where $\epsilon \in \mathbb{C}$. Note that X is singular at the points O_{x}, O_{y}, O_{z} and $Q_{5}=[1: 0: 0: 1]$.
The curve C_{x} is irreducible. We have

$$
\operatorname{lct}\left(X, \frac{3}{5} C_{x}\right)=\frac{25}{18}
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{25}{18}$. Meanwhile, the curve C_{y} is reducible. It consists of two irreducible components $L_{y t}$ and $R_{y}=\left\{y=t-x^{4}=0\right\}$. The curve $L_{y t}$ intersects R_{y} only at the point O_{z}. It is easy to see

$$
L_{y t}^{2}=R_{y}^{2}=-\frac{13}{55}, L_{y t} \cdot R_{y}=\frac{4}{11} .
$$

Suppose that $\operatorname{lct}(X)<\frac{25}{18}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{25}{18} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of D does not contain the curve C_{x}. Moreover, we may assume that the support of D does not contain either $L_{y t}$ or R_{y} since

$$
\operatorname{lct}\left(X, \frac{3}{7} C_{y}\right)=\frac{35}{24}>\frac{25}{18}
$$

Then one of the inequalities

$$
\operatorname{mult}_{O_{z}}(D) \leqslant 11 D \cdot L_{y t}=\frac{3}{5}<\frac{18}{25}, \operatorname{mult}_{O_{z}}(D) \leqslant 11 D \cdot R_{y}=\frac{3}{5}<\frac{18}{25}
$$

must hold, and hence the point P cannot be the point O_{z}. Also, since 7D $\cdot C_{x}=\frac{6}{11}<\frac{18}{25}$, the point P cannot belong to the curve C_{x}.

We write $D=a L_{y t}+b R_{y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains neither $L_{y t}$ nor R_{y}. If $a \neq 0$, then we have

$$
\frac{3}{55}=D \cdot R_{y} \geqslant a L_{y t} \cdot R_{y}=\frac{4 a}{11} .
$$

Therefore, $a \leqslant \frac{3}{20}$. By the same way, we also obtain $b \leqslant \frac{3}{20}$.
Since we have

$$
5\left(D-a L_{y t}\right) \cdot L_{y t}=\frac{3+13 a}{11}<\frac{18}{25}, \quad 5\left(D-b R_{y}\right) \cdot R_{y}=\frac{3+13 a}{11}<\frac{18}{25}
$$

Lemma 1.3 .8 implies that the point P is in the outside of C_{y}. Consequently, the point P is located in the outside of $C_{x} \cup C_{y}$. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(40)\right)$ contains monomials $x^{8}, x y^{5}, x^{4} t$ and the natural projection $X \rightarrow \mathbb{P}(5,7,20)$ is a finite morphism outside of the curve C_{y}, Lemma 1.3.9 shows that the point P must belong to the set $C_{x} \cup C_{y}$. This is a contradiction.
Lemma 3.3.3. Let X be a quasismooth hypersurface of degree 95 in $\mathbb{P}(11,21,29,37)$. Then $\operatorname{lct}(X)=\frac{11}{4}$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+t z^{2}+x y^{4}+x^{6} z=0
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x t}$ (resp. $L_{y z}, L_{y z}, L_{x t}$) and $R_{x}=\left\{x=y t+z^{2}=0\right\}$ (resp. $R_{y}=\left\{y=z t+x^{6}=0\right\}$, $\left.R_{z}=\left\{z=x y^{3}+t^{2}=0\right\}, R_{t}=\left\{t=y^{4}+x^{5} z=0\right\}\right)$. Also, we see that

$$
L_{x t} \cap R_{x}=\left\{O_{y}\right\}, L_{y z} \cap R_{y}=\left\{O_{t}\right\}, L_{y z} \cap R_{z}=\left\{O_{x}\right\}, L_{x t} \cap R_{t}=\left\{O_{z}\right\} .
$$

It is easy to check that $\operatorname{lct}\left(X, \frac{3}{11} C_{x}\right)=\frac{11}{4}$ is less than each of the numbers $\operatorname{lct}\left(X, \frac{3}{21} C_{y}\right)$, $\operatorname{lct}\left(X, \frac{3}{29} C_{z}\right)$ and $\operatorname{lct}\left(X, \frac{3}{37} C_{t}\right)$. Therefore, $\operatorname{lct}(X) \leqslant \frac{11}{4}$.

Suppose that $\operatorname{lct}(X)<\frac{11}{4}$. Then, there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the log pair $\left(X, \frac{11}{4} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{gathered}
D \cdot L_{x t}=\frac{1}{7 \cdot 29}, \quad D \cdot R_{x}=\frac{2}{7 \cdot 37}, \quad D \cdot R_{y}=\frac{18}{29 \cdot 37}, \\
D \cdot L_{y z}=\frac{3}{11 \cdot 37}, \quad D \cdot R_{z}=\frac{2}{7 \cdot 11}, \quad D \cdot R_{t}=\frac{12}{11 \cdot 29}, \\
L_{x t} \cdot R_{x}=\frac{2}{21}, \quad L_{y z} \cdot R_{y}=\frac{6}{37}, \quad L_{y z} \cdot R_{z}=\frac{2}{11}, \quad L_{x t} \cdot R_{t}=\frac{4}{29}, \\
L_{x t}^{2}=-\frac{47}{21 \cdot 29}, \quad R_{x}^{2}=-\frac{52}{21 \cdot 37}, \quad R_{y}^{2}=-\frac{48}{29 \cdot 37}, \\
L_{y z}^{2}=-\frac{45}{11 \cdot 37}, \quad R_{z}^{2}=\frac{16}{11 \cdot 21}, \quad R_{t}^{2}=\frac{104}{11 \cdot 29} .
\end{gathered}
$$

By Lemma 1.3.6 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. The inequalities

$$
21 D \cdot L_{x t}=\frac{3}{29}<\frac{4}{11}, \quad 21 D \cdot R_{x}=\frac{6}{37}<\frac{4}{11}
$$

imply that $P \neq O_{y}$. The inequalities

$$
11 D \cdot L_{y z}=\frac{3}{37}<\frac{4}{11}, \quad 11 D \cdot R_{z}=\frac{2}{7}<\frac{4}{11}
$$

imply that $P \neq O_{x}$. The inequalities

$$
29 D \cdot L_{x t}=\frac{1}{7}<\frac{4}{11}, \quad \frac{29}{4} D \cdot R_{t}=\frac{3}{11}<\frac{4}{11}
$$

imply that $P \neq O_{z}$. The curve R_{t} is singular at the point O_{z} with multiplicity 4.
We write $D=m_{0} L_{x t}+m_{1} L_{y z}+m_{2} R_{x}+m_{3} R_{y}+m_{4} R_{z}+m_{5} R_{t}+\Omega$, where Ω is an effective divisor whose support contains none of the curves $L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{11}{4} D\right)$ is \log canonical at the points O_{x}, O_{y}, O_{z}, the numbers m_{i} are at most $\frac{4}{11}$. Then by Lemma 1.3 .8 the following inequalities enable us to conclude that either the point P is in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$ or $P=O_{t}$:

$$
\begin{aligned}
& \left(D-m_{0} L_{x t}\right) \cdot L_{x t}=\frac{3+47 m_{0}}{21 \cdot 29} \leqslant \frac{4}{11}, \quad\left(D-m_{1} L_{y z}\right) \cdot L_{y z}=\frac{3+45 m_{1}}{11 \cdot 37} \leqslant \frac{4}{11} \\
& \left(D-m_{2} R_{x}\right) \cdot R_{x}=\frac{6+52 m_{2}}{21 \cdot 37} \leqslant \frac{4}{11}, \quad\left(D-m_{3} R_{y}\right) \cdot R_{y}=\frac{18+48 m_{3}}{29 \cdot 37} \leqslant \frac{4}{11} \\
& \left(D-m_{4} R_{z}\right) \cdot R_{z}=\frac{6-16 m_{4}}{11 \cdot 21} \leqslant \frac{4}{11}, \quad\left(D-m_{5} R_{t}\right) \cdot R_{t}=\frac{12-104 m_{5}}{11 \cdot 29} \leqslant \frac{4}{11}
\end{aligned}
$$

Suppose that $P \neq O_{t}$. Then we consider the pencil \mathcal{L} defined by $\lambda y t+\mu z^{2}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil \mathcal{L} consists of the curve $L_{y z}$ and the point O_{y}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $z^{2}=\alpha y t$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $y t=z^{2}$ and $t^{2} y+x y^{4}+x^{6} z=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by $z\left(z+x z^{7}+x^{6}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{y z}$ and C. We have the intersection number

$$
D \cdot C=D \cdot E-D \cdot L_{y z}=\frac{169}{7 \cdot 11 \cdot 37} .
$$

Also, we see

$$
C^{2}=E \cdot C-C \cdot L_{y z} \geqslant E \cdot C-C_{y} \cdot C>0
$$

since C is different from R_{y}. The multiplicity of D along the curve C is at most $\frac{4}{11}$ since the intersection number $C \cdot C_{t}$ is positive and the pair $\left(X, \frac{11}{4} D\right)$ is \log canonical along the curve C_{t}. Then by Lemma 1.3 .8 the inequality $D \cdot C<\frac{4}{11}$ gives us a contradiction.

Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{y z}$, R_{x}, and M. Note that the curve M is different from the curves R_{y} and $L_{x t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{y z}-D \cdot R_{x}=\frac{147}{7 \cdot 11 \cdot 37}, \\
M^{2}=E \cdot M-L_{y z} \cdot M-R_{x} \cdot M \geqslant E \cdot M-C_{y} \cdot M-C_{x} \cdot M>0 .
\end{gathered}
$$

The multiplicity of D along the curve M is at most $\frac{4}{11}$ since the intersection number $M \cdot C_{t}$ is positive and the pair $\left(X, \frac{11}{4} D\right)$ is \log canonical along the curve C_{t}. By Lemma 1.3.8 the inequality $D \cdot M<\frac{4}{11}$ gives us a contradiction. Therefore, $P=O_{t}$.

Put $D=a L_{y z}+b R_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support contains neither $L_{y z}$ nor R_{x}. Then $a>0$ since otherwise we would obtain an absurd inequality

$$
\frac{3}{11}=37 D \cdot L_{y z} \geqslant \operatorname{mult}_{O_{t}}(D)>\frac{4}{11} .
$$

Therefore, we may assume that $R_{y} \not \subset \operatorname{Supp}(\Delta)$ by Lemma 1.3.6,
If $b>0$, the curve $L_{x t}$ is not contained in the support of D, and hence

$$
\frac{3}{21 \cdot 29}=D \cdot L_{x t} \geqslant b R_{x} \cdot L_{x t}=\frac{2 b}{21} .
$$

Therefore, $b \leqslant \frac{3}{58}$. Similarly, we have

$$
\frac{18}{29 \cdot 37}=D \cdot R_{y} \geqslant \frac{6 a}{37}+\frac{b}{37}+\frac{\text { mult }_{O_{t}}(D)-a-b}{37}>\frac{5 a}{37}+\frac{4}{11 \cdot 37},
$$

and hence $a<\frac{82}{5 \cdot 11 \cdot 29}$.
Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up of the point O_{t} with weights $(13,4)$ and let F be the exceptional curve of the morphism π. Then F contains two singular points Q_{13} and Q_{4} of \bar{X} such that Q_{13} is a singular point of type $\frac{1}{13}(1,2)$ and Q_{4} is a singular point of type $\frac{1}{4}(3,1)$. Then

$$
K_{\bar{X}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)-\frac{20}{37} F, \bar{L}_{y z} \sim_{\mathbb{Q}} \pi^{*}\left(L_{y z}\right)-\frac{4}{37} F, \bar{R}_{x} \sim_{\mathbb{Q}} \pi^{*}\left(R_{x}\right)-\frac{13}{37} F, \bar{\Delta} \sim_{\mathbb{Q}} \pi^{*}(\Delta)-\frac{c}{37} F,
$$

where $\bar{L}_{y z}, \bar{R}_{x}$ and $\bar{\Delta}$ are the proper transforms of $L_{y z}, R_{x}$ and Δ by π, respectively, and c is a non-negative rational number.

The \log pull-back of the \log pair $\left(X, \frac{11}{4} D\right)$ by π is the \log pair

$$
\left(\bar{X}, \frac{11 a}{4} \bar{L}_{y z}+\frac{11 b}{4} \bar{R}_{x}+\frac{11}{4} \bar{\Delta}+\theta_{1} F\right),
$$

where

$$
\theta_{1}=\frac{11(4 a+13 b+c)+80}{4 \cdot 37}
$$

This pair is not \log canonical at some point $Q \in F$. We have

$$
0 \leqslant \bar{\Delta} \cdot \bar{R}_{x}=\frac{6+52 b}{21 \cdot 37}-\frac{a}{37}-\frac{c}{4 \cdot 37} .
$$

This inequality shows $4 a+c \leqslant \frac{4}{21}(6+52 b)$. Then

$$
\theta_{1}=\frac{11(4 a+c)}{4 \cdot 37}+\frac{143 b}{4 \cdot 37}+\frac{20}{37} \leqslant \frac{11}{21 \cdot 37}(6+52 b)+\frac{143 b}{4 \cdot 37}+\frac{20}{37}=\frac{1944+5291 b}{4 \cdot 21 \cdot 37}<1
$$

since $b \leqslant \frac{3}{58}$. Note that $F \cap \bar{R}_{x}=\left\{Q_{4}\right\}$ and $F \cap \bar{L}_{y z}=\left\{Q_{13}\right\}$.
Suppose that the point Q is neither Q_{4} nor Q_{13}. Then the pair $\left(\bar{X}, \frac{11}{4} \bar{\Delta}+F\right)$ is not \log canonical at the point Q. Then

$$
\frac{11 c}{16 \cdot 13}=\frac{11}{4} \bar{\Delta} \cdot F>1
$$

by Lemma 1.3.4. However, $c \leqslant 4 a+c \leqslant \frac{4}{21}(6+52 b)$. This is a contradiction since $b \leqslant \frac{3}{58}$. Therefore, the point Q is either Q_{4} or Q_{13}.

Suppose that the point Q is the point Q_{4}. Then the \log pair $\left(\bar{X}, \frac{11 b}{4} \bar{R}_{x}+\frac{11}{4} \bar{\Delta}+\theta_{1} F\right)$ is not \log canonical at the point Q. It then follows from Lemma 1.3.4 that

$$
1<4\left(\frac{11}{4} \bar{\Delta}+\theta_{1} F\right) \cdot \bar{R}_{x}=11\left(\frac{6+52 b}{21 \cdot 37}-\frac{a}{37}-\frac{c}{4 \cdot 37}\right)+\theta_{1} .
$$

However,

$$
11\left(\frac{6+52 b}{21 \cdot 37}-\frac{a}{37}-\frac{c}{4 \cdot 37}\right)+\theta_{1}=\frac{1944+5291 b}{4 \cdot 21 \cdot 37}<1 .
$$

Therefore, the point Q must be the point Q_{13}.
Let $\phi: \tilde{X} \rightarrow \bar{X}$ be the weighted blow up at the point Q_{13} with weights $(1,2)$. Let G be the exceptional divisor of the morphism ϕ. Then G contains one singular point Q_{2} of the surface \tilde{X} that is a singular point of type $\frac{1}{2}(1,1)$. Let $\tilde{L}_{y z}, \tilde{R}_{x}, \tilde{\Delta}$ and \tilde{F} be the proper transforms of $L_{y z}$, R_{x}, Δ and F by ϕ, respectively. We have

$$
K_{\tilde{X}} \sim_{\mathbb{Q}} \phi^{*}\left(K_{\bar{X}}\right)-\frac{10}{13} G, \tilde{L}_{y z} \sim_{\mathbb{Q}} \phi^{*}\left(\bar{L}_{y z}\right)-\frac{2}{13} G, \tilde{F} \sim_{\mathbb{Q}} \phi^{*}(F)-\frac{1}{13} G, \tilde{\Delta} \sim_{\mathbb{Q}} \phi^{*}(\bar{\Delta})-\frac{d}{13} G,
$$

where d is a non-negative rational number. The \log pull-back of the \log pair $\left(X, \frac{11}{4} D\right)$ via $\pi \circ \phi$ is

$$
\left(\tilde{X}, \frac{11 a}{4} \tilde{L}_{y z}+\frac{11 b}{4} \tilde{R}_{x}+\frac{11}{4} \tilde{\Delta}+\theta_{1} \tilde{F}+\theta_{2} G\right),
$$

where

$$
\theta_{2}=\frac{11}{4 \cdot 13}(2 a+d)+\frac{\theta_{1}}{13}+\frac{10}{13}=\frac{1560+11(78 a+13 b+c+37 d)}{4 \cdot 13 \cdot 37} .
$$

This \log pair is not \log canonical at some point $O \in G$. We have

$$
0 \leqslant \tilde{\Delta} \cdot \tilde{L}_{y z}=\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}-\frac{d}{13} .
$$

We then obtain $13 b+c+37 d \leqslant \frac{13}{11}(3+45 a)$. Since $a<\frac{82}{5 \cdot 11 \cdot 29}$, we see

$$
\theta_{2}=\frac{1560+11(78 a+13 b+c+37 d)}{4 \cdot 13 \cdot 37} \leqslant \frac{1560+858 a}{4 \cdot 13 \cdot 37}+\frac{3+45 a}{4 \cdot 37}<1 .
$$

Note that $\tilde{F} \cap G=Q_{2}$ and $Q_{2} \notin \tilde{L}_{y z}$. Suppose that $O \notin \tilde{F} \cup \tilde{L}_{y z}$. The \log pair $\left(\tilde{X}, \frac{11}{4} \tilde{\Delta}+G\right)$ is not \log canonical at the point O. Applying Lemma 1.3.4, we get

$$
1<\frac{11}{4} \tilde{\Delta} \cdot G=\frac{11 d}{4 \cdot 2},
$$

and hence $d>\frac{8}{11}$. However, $d \leqslant \frac{1}{37}(13 b+c+37 d) \leqslant \frac{13}{11 \cdot 37}(3+45 a)$. This is a contradiction since $a<\frac{82}{5 \cdot 11 \cdot 29}$. Therefore, the point O is either the point Q_{2} or the intersection point of G and $\tilde{L}_{y z}$. In the latter case, the pair $\left(\tilde{X}, \frac{11 a}{4} \tilde{L}_{y z}+\frac{11}{4} \tilde{\Delta}+\theta_{2} G\right)$ is not \log canonical at the point O. Then, applying Lemma 1.3.4, we get

$$
1<\left(\frac{11}{4} \tilde{\Delta}+\theta_{2} G\right) \cdot \tilde{L}_{y z}=\frac{11}{4}\left(\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}-\frac{d}{13}\right)+\theta_{2} .
$$

However,

$$
\frac{11}{4}\left(\frac{3+45 a}{11 \cdot 37}-\frac{b}{37}-\frac{c}{13 \cdot 37}-\frac{d}{13}\right)+\theta_{2}=\frac{11}{4}\left(\frac{3+45 a}{11 \cdot 37}\right)+\frac{1560+858 a}{4 \cdot 13 \cdot 37}<1
$$

since $a<\frac{82}{5 \cdot 11 \cdot 29}$. Therefore, the point O must be the point Q_{2}.
Let $\xi: \hat{X} \rightarrow \tilde{X}$ be the blow up at the point Q_{2} and let H be the exceptional divisor of ξ. We also let $\hat{L}_{y z}, \hat{R}_{x}, \hat{\Delta}, \hat{G}$, and \hat{F} be the proper transforms of $\tilde{L}_{y z}, \tilde{R}_{x}, \tilde{\Delta}, G$ and \tilde{F} by ξ, respectively. Then \hat{X} is smooth along the exceptional divisor H. We have

$$
K_{\hat{X}} \sim_{\mathbb{Q}} \xi^{*}\left(K_{\tilde{X}}\right), \hat{G} \sim_{\mathbb{Q}} \xi^{*}(G)-\frac{1}{2} H, \hat{F} \sim_{\mathbb{Q}} \xi^{*}(\tilde{F})-\frac{1}{2} H, \hat{\Delta} \sim_{\mathbb{Q}} \xi^{*}(\tilde{\Delta})-\frac{e}{2} H
$$

where e is a non-negative rational number. The log pull-back of the \log pair $\left(X, \frac{11}{4} D\right)$ via $\pi \circ \phi \circ \xi$ is

$$
\left(\hat{X}, \frac{11 a}{4} \hat{L}_{y z}+\frac{11 b}{4} \hat{R}_{x}+\frac{11}{4} \hat{\Delta}+\theta_{1} \hat{F}+\theta_{2} \hat{G}+\theta_{3} H\right)
$$

where

$$
\theta_{3}=\frac{\theta_{1}+\theta_{2}}{2}+\frac{11 e}{8}=\frac{2600+11(130 a+182 b+14 c+37 d+481 e)}{8 \cdot 13 \cdot 37}
$$

This \log pair is not \log canonical at some point $A \in H$. We have

$$
\frac{c}{13 \cdot 4}-\frac{d}{13 \cdot 2}-\frac{e}{2}=\hat{\Delta} \cdot \hat{F} \geqslant 0
$$

Therefore, $2 d+26 e \leqslant c$. Then

$$
\begin{aligned}
\theta_{3} & =\frac{2600+11(130 a+182 b+14 c)}{8 \cdot 13 \cdot 37}+\frac{11(d+13 e)}{8 \cdot 13} \leqslant \\
& \leqslant \frac{5200+11(260 a+364 b+65 c)}{16 \cdot 13 \cdot 37}= \\
& =\frac{5200+4004 b}{16 \cdot 13 \cdot 37}+\frac{11 \cdot 65(4 a+c)}{16 \cdot 13 \cdot 37} \leqslant \\
& \leqslant \frac{100+77 b}{4 \cdot 37}+\frac{5 \cdot 11(6+52 b)}{4 \cdot 21 \cdot 37}=\frac{2430+4477 b}{4 \cdot 21 \cdot 37}<1
\end{aligned}
$$

since $b \leqslant \frac{3}{58}$ and $4 a+c \leqslant \frac{4}{21}(6+52 b)$.

Suppose that $A \notin \hat{F} \cup \hat{G}$. Then the \log pair $\left(\hat{X}, \frac{11}{4} \hat{\Delta}+\theta_{3} H\right)$ is not log canonical at the point A. Applying Lemma 1.3.4, we get

$$
1<\frac{11}{4} \hat{\Delta} \cdot H=\frac{11 e}{4} .
$$

However,

$$
e \leqslant \frac{1}{26}(2 d+26 e) \leqslant \frac{c}{26} \leqslant \frac{1}{26}(4 a+c) \leqslant \frac{4(6+52 b)}{21 \cdot 26} \leqslant \frac{4}{11} .
$$

Therefore, the point A must be either in \hat{F} or in \hat{G}.
Suppose that $A \in \hat{F}$. Then the \log pair $\left(\hat{X}, \frac{11}{4} \hat{\Delta}+\theta_{1} \hat{F}+\theta_{3} H\right)$ is not log canonical at the point A. Applying Lemma 1.3.4, we get

$$
1<\left(\frac{11}{4} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{F}=\frac{11}{4}\left(\frac{c}{4 \cdot 13}-\frac{d}{2 \cdot 13}-\frac{e}{2}\right)+\theta_{3}=\frac{5200+11(260 a+364 b+65 c)}{16 \cdot 13 \cdot 37} .
$$

However,

$$
\frac{5200+11(260 a+364 b+65 c)}{16 \cdot 13 \cdot 37}=\frac{400+11 \cdot 28 b}{16 \cdot 37}+\frac{11 \cdot 5(4 a+c)}{16 \cdot 37} \leqslant \frac{2430+4477 b}{4 \cdot 21 \cdot 37}<1
$$

Therefore, the point A is the intersection point of H and \hat{G}. Then the \log pair $\left(\hat{X}, \frac{11}{4} \hat{\Delta}+\theta_{2} \hat{G}+\theta_{3} H\right)$ is not log canonical at the point A. From Lemma 1.3.4, we obtain

$$
1<\left(\frac{11}{4} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{G}=\frac{11}{4}\left(\frac{d}{2}-\frac{e}{2}\right)+\theta_{3}=\frac{2600+11(130 a+182 b+14 c)}{8 \cdot 13 \cdot 37}+\frac{77 d}{4 \cdot 13} .
$$

However,

$$
\frac{2600+11(130 a+182 b+14 c)}{8 \cdot 13 \cdot 37}+\frac{77 d}{4 \cdot 13}=\frac{100+55 a}{4 \cdot 37}+\frac{77(13 b+c+37 d)}{4 \cdot 13 \cdot 37} \leqslant \frac{121+370 a}{4 \cdot 37}<1
$$

since $a<\frac{82}{5 \cdot 11 \cdot 29}$ and $13 b+c+37 d \leqslant \frac{13}{11}(3+45 a)$. The obtained contradiction completes the proof.
Lemma 3.3.4. Let X be a quasismooth hypersurface of degree 196 in $\mathbb{P}(11,37,53,98)$. Then $\operatorname{lct}(X)=\frac{55}{18}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{5}+x^{13} z=0
$$

It is singular at the points O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{55}{18}=\operatorname{lct}\left(X, \frac{3}{11} C_{x}\right)<\operatorname{lct}\left(X, \frac{3}{37} C_{y}\right)=\frac{37 \cdot 5}{26}
$$

and hence $\operatorname{lct}(X) \leqslant \frac{55}{18}$.
Suppose that $\operatorname{lct}(X)<\frac{55}{18}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{55}{18} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains neither C_{x} nor C_{y}. Then the inequalities

$$
53 D \cdot C_{x}=\frac{6}{37}<\frac{18}{55}, \quad 11 D \cdot C_{y}=\frac{6}{53}<\frac{18}{55}
$$

show that the point P is a smooth point in the outside of C_{x}. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(583)\right)$ contains the monomials $x^{53}, y^{11} x^{16}$ and z^{11}, it follows from Lemma 1.3 .9 that the point P is either a singular point of X or a point on C_{x}. This is a contradiction.

Lemma 3.3.5. Let X be a quasismooth hypersurface of degree 95 in $\mathbb{P}(13,17,27,41)$. Then $\operatorname{lct}(X)=\frac{65}{24}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{2} t+y^{4} z+x t^{2}+x^{6} y=0
$$

The surface X is singular at the point O_{x}, O_{y}, O_{z} and O_{t}. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x z}$ (resp. $L_{y t}, L_{x z}, L_{y t}$) and $R_{x}=\left\{x=y^{4}+z t=0\right\}$ (resp. $R_{y}=\left\{y=z^{2}+x t=0\right\}$, $R_{z}=\left\{z=t^{2}+x^{5} y=0\right\}, R_{t}=\left\{t=x^{6}+y^{3} z=0\right\}$). The curve $L_{x z}$ intersects R_{x} (resp. R_{z}) only at the point O_{t} (resp. O_{y}). Also, the curve $L_{y t}$ intersects R_{y} (resp. R_{t}) only at the point $O_{x}\left(\right.$ resp. $\left.O_{z}\right)$.

It is easy to check

$$
\begin{gathered}
-K_{X} \cdot L_{x z}=\frac{3}{17 \cdot 41},-K_{X} \cdot L_{y t}=\frac{1}{9 \cdot 13},-K_{X} \cdot R_{x}=\frac{4}{9 \cdot 41}, \\
\\
-K_{X} \cdot R_{y}=\frac{6}{13 \cdot 41},-K_{X} \cdot R_{z}=\frac{6}{13 \cdot 17},-K_{X} \cdot R_{t}=\frac{2}{3 \cdot 17}, \\
L_{x z}^{2}=- \\
-\frac{55}{17 \cdot 41}, L_{y t}^{2}=-\frac{37}{13 \cdot 27}, R_{x}^{2}=-\frac{56}{27 \cdot 41}, R_{y}^{2}=-\frac{48}{13 \cdot 41}, R_{z}^{2}=\frac{28}{13 \cdot 17} \\
R_{t}^{2}= \\
\frac{16}{3 \cdot 17}, L_{x z} \cdot R_{x}=\frac{4}{41}, L_{y t} \cdot R_{y}=\frac{2}{13}, L_{x z} \cdot R_{z}=\frac{2}{17}, L_{y t} \cdot R_{t}=\frac{2}{9} .
\end{gathered}
$$

We have $\operatorname{lct}(X) \leqslant \frac{65}{24}$ since

$$
\frac{65}{24}=\operatorname{lct}\left(X, \frac{3}{13} C_{x}\right)<\frac{51}{12}=\operatorname{lct}\left(X, \frac{3}{17} C_{y}\right)<\frac{41}{8}=\operatorname{lct}\left(X, \frac{3}{41} C_{t}\right)<\frac{21}{4}=\operatorname{lct}\left(X, \frac{3}{27} C_{z}\right) .
$$

Suppose that $\operatorname{lct}(X)<\frac{65}{24}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{65}{24} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of D does not contain at least one irreducible component of each of the curves C_{x}, C_{y}, C_{z} and C_{t}. The curve R_{z} is singular at the point O_{y}. The curve C_{t} is singular at O_{z} with multiplicity 3. Then in each of the following pairs of inequalities, at least one of two must hold:

$$
\begin{aligned}
& \operatorname{mult}_{O_{x}}(D) \leqslant 13 D \cdot L_{y t}=\frac{1}{9}<\frac{24}{65}, \quad \operatorname{mult}_{O_{x}}(D) \leqslant 13 D \cdot R_{y}=\frac{6}{41}<\frac{24}{65} \\
& \operatorname{mult}_{O_{y}}(D) \leqslant 17 D \cdot L_{x z}=\frac{3}{41}<\frac{24}{65}, \quad \operatorname{mult}_{O_{y}}(D) \leqslant \frac{17}{2} D \cdot R_{z}=\frac{3}{13}<\frac{24}{65} \\
& \operatorname{mult}_{O_{z}}(D) \leqslant 27 D \cdot L_{y t}=\frac{3}{13}<\frac{24}{65}, \quad \operatorname{mult}_{O_{z}}(D) \leqslant \frac{27}{3} D \cdot R_{t}=\frac{6}{17}<\frac{24}{65}
\end{aligned}
$$

Therefore, the point P can be none of O_{x}, O_{y}, O_{t}.

Put $D=m_{0} L_{x z}+m_{1} L_{y t}+m_{2} R_{x}+m_{3} R_{y}+m_{4} R_{z}+m_{5} R_{t}+\Omega$, where Ω is an effective \mathbb{Q} divisor whose support contains none of $L_{x z}, L_{y t}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair ($X, \frac{65}{24} D$) is \log canonical at the points O_{x}, O_{y}, O_{z}, we have $m_{i} \leqslant \frac{24}{65}$ for each i. Since

$$
\begin{aligned}
& \left(D-m_{0} L_{x z}\right) \cdot L_{x z}=\frac{3+55 m_{0}}{17 \cdot 41} \leqslant \frac{24}{65}, \quad\left(D-m_{1} L_{y t}\right) \cdot L_{y t}=\frac{3+37 m_{1}}{13 \cdot 27} \leqslant \frac{24}{65}, \\
& \left(D-m_{2} R_{x}\right) \cdot R_{x}=\frac{12+56 m_{2}}{27 \cdot 41} \leqslant \frac{24}{65}, \quad\left(D-m_{3} R_{y}\right) \cdot R_{y}=\frac{6+48 m_{3}}{13 \cdot 41} \leqslant \frac{24}{65} \\
& \left(D-m_{4} R_{z}\right) \cdot R_{z}=\frac{6-28 m_{4}}{13 \cdot 17} \leqslant \frac{24}{65}, \quad\left(D-m_{5} R_{t}\right) \cdot R_{t}=\frac{2-16 m_{5}}{3 \cdot 17} \leqslant \frac{24}{65}
\end{aligned}
$$

Lemma 1.3 .8 implies that the point P cannot be a smooth point of X on $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$. Therefore, the point P is either a point in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$ or the point O_{t}.

Suppose that the point P is not the point O_{t}. We consider the pencil \mathcal{L} on X defined by the equations $\lambda x t+\mu z^{2}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. Then there is a unique curve Z_{α} in the pencil \mathcal{L} passing through the point P. Since the point P is located in the outside of $C_{x} \cup C_{z} \cup C_{t}$, the curve Z_{α} is defined by an equation of the form

$$
x t+\alpha z^{2}=0,
$$

where α is a non-zero constant. Note that any component of C_{t} is not contained in Z_{α}. The open subset $Z_{\alpha} \backslash C_{t}$ is a \mathbb{Z}_{41}-quotient of the affine curve

$$
x+\alpha z^{2}=z^{2}+y^{4} z+x+x^{6} y=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[x, y, z])
$$

that is isomorphic to the plane affine curve defined by the equation

$$
z\left(y^{4}+(1-\alpha) z+\alpha^{6} z^{11} y\right)=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

Therefore, if $\alpha \neq 1$, then the curve Z_{α} consists of two irreducible components $L_{x z}$ and C_{α}. On the other hand, if $\alpha=1$, then the curve Z_{α} consists of three irreducible components $L_{x z}, R_{y}$, and C_{1}. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the point P must be contained in C_{α} (including $\alpha=1$). Also, the curve C_{α} is smooth at the point P. By Lemma 1.3.6, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of the curve Z_{α}.

Write $D=m C_{\alpha}+\Gamma$, where Γ is an effective \mathbb{Q}-divisor whose support contains C_{α}. Suppose that $m \neq 0$. If $\alpha \neq 1$, then we obtain

$$
\frac{3}{17 \cdot 41}=D \cdot L_{x z} \geqslant m C_{\alpha} \cdot L_{x z}=\frac{109 m}{17 \cdot 41}
$$

and hence $m \leqslant \frac{3}{109}$. If $\alpha=1$, then one of the inequalities

$$
\frac{3}{17 \cdot 41}=D \cdot L_{x z} \geqslant m C_{1} \cdot L_{x z}=\frac{92 m}{17 \cdot 41}, \quad \frac{6}{13 \cdot 41}=D \cdot R_{y} \geqslant m C_{1} \cdot R_{y}=\frac{11 m}{41}
$$

must hold, and hence $m \leqslant \frac{6}{11 \cdot 13}$. We also see that

$$
D \cdot C_{\alpha}=\left\{\begin{array}{l}
D \cdot\left(Z_{\alpha}-L_{x z}\right)=\frac{531}{13 \cdot 17 \cdot 41} \text { if } \alpha \neq 1, \\
D \cdot\left(Z_{\alpha}-L_{x z}-R_{y}\right)=\frac{33}{17 \cdot 41} \text { if } \alpha=1 .
\end{array}\right.
$$

Also, if $\alpha \neq 1$, then

$$
C_{\alpha}^{2}=Z_{\alpha} \cdot C_{\alpha}-L_{x z} \cdot C_{\alpha} \geqslant Z_{\alpha} \cdot C_{\alpha}-\left(L_{x z}+R_{x}\right) \cdot C_{\alpha}=\frac{41}{3} D \cdot C_{\alpha} .
$$

If $\alpha=1$,

$$
C_{1}^{2}=Z_{\alpha} \cdot C_{1}-\left(L_{x z}+R_{y}\right) \cdot C_{1} \geqslant Z_{\alpha} \cdot C_{1}-\left(L_{x z}+R_{x}+L_{y t}+R_{y}\right) \cdot C_{1}=8 D \cdot C_{1} .
$$

In both cases, we have $C_{\alpha}^{2}>0$. Since

$$
\left(D-m C_{\alpha}\right) \cdot C_{\alpha} \leqslant D \cdot C_{\alpha}<\frac{24}{65}
$$

Lemma 1.3 .8 gives us a contradiction. Therefore, the point P must be the point O_{t}.
If $L_{x z}$ is not contained in the support of D, then the inequality

$$
\operatorname{mult}_{O_{t}}(D) \leqslant 41 D \cdot L_{x z}=\frac{3}{17}<\frac{24}{65}
$$

is a contradiction. Therefore, the irreducible component $L_{x z}$ must be contained in the support of D, and hence the curve R_{x} is not contained in the support of D. Put $D=a L_{x z}+b R_{y}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support contains neither $L_{x z}$ nor R_{y}. Then

$$
\frac{4}{9 \cdot 41}=D \cdot R_{x} \geqslant a L_{x z} \cdot R_{x}+\frac{\operatorname{mult}_{O_{t}}(D)-a}{41}>\frac{3 a}{41}+\frac{24}{41 \cdot 65}
$$

and hence $a \leqslant \frac{44}{585}$. If $b \neq 0$, then $L_{y t}$ is not contained in the support of D. Therefore,

$$
\frac{1}{9 \cdot 13}=D \cdot L_{y t} \geqslant b R_{y} \cdot L_{y t}=\frac{2 b}{13},
$$

and hence $b \leqslant \frac{1}{18}$.
Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up at the point O_{t} with weights $(1,4)$ and let F be the exceptional curve of the morphism π. Then F contains one singular point Q_{4} of \bar{X} such that Q_{4} is a singular point of type $\frac{1}{4}(3,1)$. Then
$K_{\bar{X}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)-\frac{36}{41} F, \quad \bar{L}_{x z} \sim_{\mathbb{Q}} \pi^{*}\left(L_{x z}\right)-\frac{4}{41} F, \quad \bar{R}_{y} \sim_{\mathbb{Q}} \pi^{*}\left(R_{y}\right)-\frac{1}{41} F, \quad \bar{\Delta} \sim_{\mathbb{Q}} \pi^{*}(\Delta)-\frac{c}{41} F$, where $\bar{L}_{x z}, \bar{R}_{y}$ and $\bar{\Delta}$ are the proper transforms of $L_{x z}, R_{y}$ and Δ by π, respectively, and c is a non-negative rational number. Note that $F \cap \bar{R}_{y}=\left\{Q_{4}\right\}$.

The log pull-back of the \log pair $\left(X, \frac{65}{24} D\right)$ by π is the \log pair

$$
\left(\bar{X}, \frac{65 a}{24} \bar{L}_{x z}+\frac{65 b}{24} \bar{R}_{y}+\frac{65}{24} \bar{\Delta}+\theta_{1} F\right),
$$

where

$$
\theta_{1}=\frac{864+65(4 a+b+c)}{24 \cdot 41} .
$$

This is not \log canonical at some point $Q \in F$. We have

$$
0 \leqslant \bar{\Delta} \cdot \bar{L}_{x z}=\frac{3+55 a}{17 \cdot 41}-\frac{b}{41}-\frac{c}{41} .
$$

This inequality shows $b+c \leqslant \frac{1}{17}(3+55 a)$. Since $a \leqslant \frac{44}{585}$, we obtain

$$
\theta_{1}=\frac{864+260 a}{24 \cdot 41}+\frac{65(b+c)}{24 \cdot 41} \leqslant \frac{864+260 a}{24 \cdot 41}+\frac{65(3+55 a)}{17 \cdot 24 \cdot 41}=\frac{121+65 a}{8 \cdot 17}<1 .
$$

Suppose that the point Q is neither Q_{4} nor the intersection point of F and $\bar{L}_{x z}$. Then, the point Q is not in $\bar{L}_{x z} \cup \bar{R}_{y}$. Therefore, the pair $\left(\bar{X}, \frac{65}{24} \bar{\Delta}+F\right)$ is not log canonical at the point Q, and hence

$$
1<\frac{65}{24} \bar{\Delta} \cdot F=\frac{65 c}{4 \cdot 24} .
$$

But $c \leqslant b+c \leqslant \frac{1}{17}(3+55 a)<\frac{4 \cdot 24}{65}$ since $a \leqslant \frac{44}{585}$. Therefore, the point Q is either Q_{4} or the intersection point of F and $\bar{L}_{x z}$.

Suppose that the point Q is the intersection point of F and $\bar{L}_{x z}$. Then the point Q is in $\bar{L}_{x z}$ but not in \bar{R}_{y}. Therefore, the pair $\left(\bar{X}, \bar{L}_{x z}+\frac{65}{24} \bar{\Delta}+\theta_{1} F\right)$ is not \log canonical at the point Q. Then

$$
1<\left(\frac{65}{24} \bar{\Delta}+\theta_{1} F\right) \cdot \bar{L}_{x z}=\frac{65}{24}\left(\frac{3+55 a}{17 \cdot 41}-\frac{b+c}{41}\right)+\theta_{1}=\frac{121+65 a}{8 \cdot 17} .
$$

However, this is impossible since $a \leqslant \frac{44}{585}$. Therefore, the point Q must be the point Q_{4}.
Let $\psi: \tilde{X} \rightarrow \bar{X}$ be the weighted blow up at the point Q_{4} with weights $(3,1)$ and let E be the exceptional curve of the morphism ψ. The exceptional curve E contains one singular point O_{3} of \tilde{X}. This singular point is of type $\frac{1}{3}(1,2)$. Then

$$
K_{\tilde{X}} \sim_{\mathbb{Q}} \psi^{*}\left(K_{\bar{X}}\right), \quad \tilde{R}_{y} \sim \mathbb{Q} \psi^{*}\left(\bar{R}_{y}\right)-\frac{3}{4} E, \quad \tilde{F} \sim_{\mathbb{Q}} \psi^{*}(F)-\frac{1}{4} E, \quad \tilde{\Delta} \sim_{\mathbb{Q}} \psi^{*}(\bar{\Delta})-\frac{d}{4} E,
$$

where \tilde{R}_{y}, \tilde{F} and $\tilde{\Delta}$ are the proper transforms of \bar{R}_{y}, F and $\bar{\Delta}$ by ψ, respectively, and d is a non-negative rational number.

The \log pull-back of the \log pair $\left(X, \frac{65}{24} D\right)$ by $\pi \circ \psi$ is the \log pair

$$
\left(\tilde{X}, \frac{65 a}{24} \tilde{L}_{x z}+\frac{65 b}{24} \tilde{R}_{y}+\frac{65}{24} \tilde{\Delta}+\theta_{1} \tilde{F}+\theta_{2} E\right)
$$

where

$$
\theta_{2}=\frac{65(3 b+d)}{4 \cdot 24}+\frac{1}{4} \theta_{1} .
$$

This is not \log canonical at some point $O \in E$.
We have

$$
0 \leqslant \tilde{\Delta} \cdot \tilde{R}_{y}=\bar{\Delta} \cdot \bar{R}_{y}-\frac{d}{4}=\frac{6+48 b}{13 \cdot 41}-\frac{4 a+c}{4 \cdot 41}-\frac{d}{4}
$$

and hence $4 a+c+41 d \leqslant \frac{4}{13}(6+48 b)$. Therefore, this inequality together with $b \leqslant \frac{1}{18}$ gives us

$$
\begin{aligned}
\theta_{2} & =\frac{65(3 b+d)}{4 \cdot 24}+\frac{864+65(4 a+b+c)}{4 \cdot 24 \cdot 41}= \\
& =\frac{864+8060 b+65(4 a+c+41 d)}{4 \cdot 24 \cdot 41} \leqslant \\
& \leqslant \frac{6+55 b}{24}<1
\end{aligned}
$$

Suppose that the point O is in the outside of \tilde{R}_{y} and \tilde{F}. Then the \log pair $\left(E,\left.\frac{65}{24} \tilde{\Delta}\right|_{E}\right)$ is not \log canonical at the point O, and hence

$$
1<\frac{65}{24} \tilde{\Delta} \cdot E=\frac{65 d}{72} .
$$

However,

$$
41 d \leqslant 4 a+c+41 d \leqslant \frac{4}{13}(6+48 b)<\frac{41 \cdot 72}{65}
$$

since $b \leqslant \frac{1}{18}$. This is a contradiction.
Suppose that the point O belongs to \tilde{R}_{y} Then the \log pair $\left(E,\left.\left(\frac{65 b}{24} \tilde{R}_{y}+\frac{65}{24} \tilde{\Delta}\right)\right|_{E}\right)$ is not \log canonical at the point O, and hence

$$
1<\left(\frac{65 b}{24} \tilde{R}_{y}+\frac{65}{24} \tilde{\Delta}\right) \cdot E=\frac{65}{24}\left(b+\frac{d}{3}\right)
$$

However,

$$
\frac{65}{24}\left(b+\frac{d}{3}\right) \leqslant \frac{65}{24}\left(b+\frac{4}{3 \cdot 13 \cdot 41}(6+48 b)\right)<1
$$

since $b \leqslant \frac{1}{18}$. This is a contradiction. Therefore, the point O is the point O_{3} which is the intersection point of E and \tilde{F}.

Let $\xi: \hat{X} \rightarrow \tilde{X}$ be the weighted blow up at the point O with weights $(1,2)$ and let H be the exceptional divisor of ξ. The exceptional divisor H contains a singular point of \hat{X}. This singular point is of type $\frac{1}{2}(1,1)$. We have

$$
K_{\hat{X}} \sim_{\mathbb{Q}} \xi^{*}\left(K_{\tilde{X}}\right), \hat{E} \sim_{\mathbb{Q}} \xi^{*}(E)-\frac{1}{3} H, \hat{F} \sim_{\mathbb{Q}} \xi^{*}(\tilde{F})-\frac{2}{3} H, \hat{\Delta} \sim_{\mathbb{Q}} \xi^{*}(\tilde{\Delta})-\frac{e}{3} H
$$

where $\hat{E}, \hat{F}, \hat{\Delta}$, be the proper transforms of $E, \tilde{F}, \tilde{\Delta}$ by ξ, respectively, and e is a non-negative rational number. The log pull-back of the \log pair $\left(X, \frac{65}{24} D\right)$ via $\pi \circ \psi \circ \xi$ is

$$
\left(\hat{X}, \frac{65 a}{24} \hat{L}_{x z}+\frac{65 b}{24} \hat{R}_{y}+\frac{65}{24} \hat{\Delta}+\theta_{1} \hat{F}+\theta_{2} \hat{E}+\theta_{3} H\right)
$$

where $\hat{L}_{x z}$ and \hat{R}_{y} are the proper transforms of $\tilde{L}_{x z}$ and \tilde{R}_{y} by ξ, respectively, and

$$
\theta_{3}=\frac{1}{3}\left(2 \theta_{1}+\theta_{2}\right)+\frac{65 e}{3 \cdot 24}
$$

This \log pair is not \log canonical at some point $A \in H$. We have

$$
0 \leqslant \hat{\Delta} \cdot \hat{F}=\bar{\Delta} \cdot F-\frac{d}{12}-\frac{e}{3}=\frac{c}{4}-\frac{d}{12}-\frac{e}{3}
$$

and hence $d+4 e \leqslant 3 c$. Then

$$
\begin{aligned}
\theta_{3}=\frac{1}{3}\left(2 \theta_{1}+\theta_{2}\right)+\frac{65 e}{3 \cdot 24}= & =\frac{3}{4} \theta_{1}+\frac{65(3 b+d)}{3 \cdot 4 \cdot 24}+\frac{65 e}{3 \cdot 24} \leqslant \\
& =\frac{2592+65(12 a+44 b+3 c)}{3 \cdot 32 \cdot 41}+\frac{65(d+4 e)}{3 \cdot 4 \cdot 24} \leqslant \\
& \leqslant \frac{2592+65(12 a+44 b+3 c)}{3 \cdot 32 \cdot 41}+\frac{65 c}{4 \cdot 24}= \\
& =\frac{2592+65(12 a+44 b+44 c)}{3 \cdot 32 \cdot 41} \leqslant \\
& \leqslant \frac{216+65 a}{8 \cdot 41}+\frac{65 \cdot 11(3+55 a)}{3 \cdot 8 \cdot 17 \cdot 41}=\frac{321+1040 a}{3 \cdot 8 \cdot 17}<1
\end{aligned}
$$

since $b+c \leqslant \frac{1}{17}(3+55 a)$ and $a \leqslant \frac{44}{585}$.
Suppose that $A \notin \hat{F} \cup \hat{E}$. Then the \log pair $\left(\hat{X}, \frac{65}{24} \hat{\Delta}+\theta_{3} H\right)$ is not log canonical at the point A. Applying Lemma 1.3.4, we get

$$
1<\frac{65}{24} \hat{\Delta} \cdot H=\frac{65 e}{48} .
$$

However,

$$
e \leqslant \frac{1}{4}(d+4 e) \leqslant \frac{3 c}{4} \leqslant \frac{3}{4}(b+c) \leqslant \frac{3(3+55 a)}{4 \cdot 17}<\frac{48}{65} .
$$

Therefore, the point A must be either in \hat{F} or in \hat{E}.
Suppose that $A \in \hat{F}$. Then the \log pair $\left(\hat{X}, \frac{65}{24} \hat{\Delta}+\theta_{1} \hat{F}+\theta_{3} H\right)$ is not \log canonical at the point A. Applying Lemma 1.3.4, we get

$$
1<\left(\frac{65}{24} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{F}=\frac{65}{24}\left(\frac{c}{4}-\frac{d}{12}-\frac{e}{3}\right)+\theta_{3}=\frac{2592+65(12 a+44 b+44 c)}{3 \cdot 32 \cdot 41} .
$$

However,

$$
\frac{2592+65(12 a+44 b+44 c)}{3 \cdot 32 \cdot 41} \leqslant \frac{321+1040 a}{3 \cdot 8 \cdot 17}<1
$$

Therefore, the point A is the intersection point of H and \hat{E}. Then the \log pair $\left(\hat{X}, \frac{65}{24} \hat{\Delta}+\theta_{2} \hat{E}+\theta_{3} H\right)$ is not log canonical at the point A. From Lemma 1.3.4 we obtain

$$
1<2\left(\frac{65}{24} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{E}=\frac{65}{24}\left(\frac{2 d}{3}-\frac{e}{3}\right)+\theta_{3}=\frac{2592+65(12 a+44 b+3 c)}{3 \cdot 32 \cdot 41}+\frac{65 d}{32}
$$

However,

$$
\frac{2592+65(12 a+44 b+3 c)}{3 \cdot 32 \cdot 41}+\frac{65 d}{32}=\frac{648+715 b}{3 \cdot 8 \cdot 41}+\frac{65(4 a+c+41 d)}{32 \cdot 41} \leqslant \frac{12186+21515 b}{17 \cdot 24 \cdot 41}<1
$$

since $b \leqslant \frac{1}{18}$ and $4 a+c+41 d \leqslant \frac{4}{13}(6+48 b)$. The obtained contradiction completes the proof.
Lemma 3.3.6. Let X be a quasismooth hypersurface of degree 196 in $\mathbb{P}(13,27,61,98)$. Then $\operatorname{lct}(X)=\frac{91}{30}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{5} z+x z^{3}+x^{13} y=0
$$

The surface X is singular at the points O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{91}{30}=\operatorname{lct}\left(X, \frac{3}{13} C_{x}\right)<\operatorname{lct}\left(X, \frac{3}{27} C_{y}\right)=\frac{15}{2} .
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{91}{30}$.
Suppose that $\operatorname{lct}(X)<\frac{91}{30}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{91}{30} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains neither the curve C_{x} nor the curve C_{y}. Then the inequalities

$$
61 D \cdot C_{x}=\frac{2}{9}<\frac{30}{91}, \quad 13 D \cdot C_{y}=\frac{6}{61}<\frac{30}{91}
$$

show that the point P is a smooth point in the outside of C_{x}. However, $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(793)\right)$ contains $x^{61}, y^{26} x^{7}, y^{13} x^{34}$ and z^{13}, it follows from Lemma 1.3 .9 that the point P must be a singular point of X or a point on C_{x}. This is a contradiction.

Lemma 3.3.7. Let X be a quasismooth hypersurface of degree 148 in $\mathbb{P}(15,19,43,74)$. Then $\operatorname{lct}(X)=\frac{57}{14}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{7}+x^{7} z=0
$$

The surface X is singular at the points O_{x}, O_{y} and O_{z}. The curves C_{x}, C_{y} and C_{z} are irreducible. We can see that

$$
\operatorname{lct}\left(X, \frac{3}{19} C_{y}\right)=\frac{57}{14}<\operatorname{lct}\left(X, \frac{3}{15} C_{x}\right)=\frac{25}{6}<\operatorname{lct}\left(X, \frac{3}{43} C_{z}\right)=\frac{129}{14} .
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{57}{14}$.
Suppose that $\operatorname{lct}(X)<\frac{57}{14}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{57}{14} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains none of C_{x}, C_{y}, C_{z}. Note that the curve C_{y} is singular at the point O_{z}. The inequalities

$$
19 D \cdot C_{x}=\frac{6}{43}<\frac{14}{57}, \quad \frac{43}{2} D \cdot C_{y}=\frac{1}{5}<\frac{14}{57}, \quad D \cdot C_{z}=\frac{2}{95}<\frac{14}{57}
$$

show that the point P is located in the outside of $C_{x} \cup C_{y} \cup C_{z}$.
Now we consider the pencil \mathcal{L} on X defined by the equations $\lambda z^{3}+\mu x y^{6}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. Then there is a unique member C in \mathcal{L} passing through the point P. Since the point P is located in the outside of $C_{x} \cup C_{y} \cup C_{z}$, the curve C is cut out by the equation of the form $x y^{6}+\alpha z^{3}=0$, where α is a non-zero constant. Since the curve C is a double cover of the curve defined by the equation $x y^{6}+\alpha z^{3}=0$ in $\mathbb{P}(15,19,43)$, we have mult ${ }_{P}(C) \leqslant 2$. Therefore, we may assume that the support of D does not contain at least one irreducible component. If $\alpha \neq 1$, then the curve C is irreducible, and hence the inequality

$$
\operatorname{mult}_{P}(D) \leqslant D \cdot C=\frac{6}{5 \cdot 19}<\frac{14}{57}
$$

is a contradiction. If $\alpha=1$, then the curve C consists of two distinct irreducible and reduced curve C_{1} and C_{2}. We have

$$
D \cdot C_{1}=D \cdot C_{2}=\frac{3}{5 \cdot 19}, \quad C_{1}^{2}=C_{2}^{2}=\frac{11}{19} .
$$

Put $D=a_{1} C_{1}+a_{2} C_{2}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support contains neither C_{1} nor C_{2}. Since the pair $\left(X, \frac{57}{14} D\right)$ is \log canonical at O_{x}, both a_{1} and a_{2} are at most $\frac{14}{57}$. Then a contradiction follows from Lemma 1.3 .8 since

$$
\left(D-a_{i} C_{i}\right) \cdot C_{i} \leqslant D \cdot C_{i}=\frac{3}{5 \cdot 19}<\frac{14}{57}
$$

for each i.

3.4. Sporadic cases with $I=4$

Lemma 3.4.1. Let X be a quasismooth hypersurface of degree 24 in $\mathbb{P}(5,6,8,9)$. Then $\operatorname{lct}(X)=$ 1.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}+y t^{2}-y^{4}+\epsilon x^{2} y z+x^{3} t=0
$$

where $\epsilon \in \mathbb{C}$. The surface X is singular at the points $O_{x}, O_{t}, Q_{2}=[0: 1: 1: 0]$ and $Q_{3}=[0: 1: 0: 1]$.

The curves C_{x}, C_{y}, C_{z} and C_{t} are all irreducible. We have

$$
1=\operatorname{lct}\left(X, \frac{4}{6} C_{y}\right)<\operatorname{lct}\left(X, \frac{4}{5} C_{x}\right)=\frac{5}{4}<\operatorname{lct}\left(X, \frac{4}{8} C_{z}\right)=2
$$

and lct $\left(X, \frac{4}{9} C_{t}\right)>1$. Therefore, $\operatorname{lct}(X) \leqslant 1$.
Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair (X, D) is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains none of the curves C_{x}, C_{y}, C_{z} and C_{t}. Also, the curve C_{y} is singular at the point O_{t} with multiplicity 3 and the curve C_{t} is singular at the point O_{x}. Then the following intersection numbers show that the point P is located in the outside of the set $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$:

$$
3 D \cdot C_{x}=\frac{2}{3}<1, \quad \frac{9}{3} D \cdot C_{y}=\frac{4}{5}<1, \quad D \cdot C_{z}=\frac{16}{45}<1, \quad \frac{5}{2} D \cdot C_{t}=1 .
$$

Now we consider the pencil \mathcal{L} on X defined by the equations $\lambda x t+\mu y z=0$, where $[\lambda$: $\mu] \in \mathbb{P}^{1}$. There is a unique member Z in the pencil \mathcal{L} passing through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor Z is defined by an equation of the form

$$
x t=\alpha y z
$$

where α is non-zero constant. Note that the curve C_{x} is not contained in the support of Z. The open subset $Z \backslash C_{x}$ of the curve Z is a \mathbb{Z}_{5}-quotient of the affine curve

$$
t-\alpha y z=z^{3}+y t^{2}+y^{4}+\epsilon y z+t=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t])
$$

that is isomorphic to the plane affine quintic curve Z^{\prime} given by the equation

$$
z^{3}+\alpha^{2} y^{3} z^{2}+y^{4}+(\epsilon+\alpha) y z=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

This affine plane curve Z^{\prime} is irreducible and hence the curve Z is also irreducible. The multiplicity of Z at the point P is at most 3 since the quintic Z^{\prime} is singular at the origin. This implies that the \log pair $\left(X, \frac{4}{14} Z\right)$ is \log canonical at the point P. Thus, we may assume that $\operatorname{Supp}(D)$ does not contain the curve Z by Lemma 1.3.6. Then we obtain a contradictory inequality

$$
\frac{28}{45}=D \cdot Z \geqslant \operatorname{mult}_{P}(D)>1
$$

Lemma 3.4.2. Let X be a quasismooth hypersurface of degree 30 in $\mathbb{P}(5,6,8,15)$. Then $\operatorname{lct}(X)=1$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
t\left(t-x^{3}\right)-y^{5}+y z^{3}+\epsilon x^{2} y^{2} z=0
$$

The surface X is singular at the points $O_{x}, O_{z}, Q_{5}=[1: 0: 0: 1], Q_{3}=[0: 1: 0: 1]$ and $Q_{2}=[0: 1: 1: 0]$.

The curve C_{x} is irreducible. However, the curve C_{y} consists of two irreducible curves $L_{y t}$ and $L=\left\{y=t-x^{3}=0\right\}$. It is easy to check

$$
1=\operatorname{lct}\left(X, \frac{4}{6} C_{y}\right)<\operatorname{lct}\left(X, \frac{4}{5} C_{x}\right)=\frac{5}{4} .
$$

Therefore, $\operatorname{lct}(X) \leqslant 1$.
Suppose that $\operatorname{lct}(X)<1$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair (X, D) is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D does not contain the curve C_{x}. Similarly, we may assume that the support of D does not contain either $L_{y t}$ or L.

We have the following intersection numbers for $L_{y t}$ and L :

$$
L_{y t}^{2}=L^{2}=-\frac{9}{40}, \quad L_{y t} \cdot L=\frac{3}{8} .
$$

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(30)\right)$ contains the monomials $y^{5}, y z^{3}$ and t^{2}, it follows from Lemma 1.3 .9 that the point P is either a singular point of X or a point on C_{y}. However, since $3 D \cdot C_{x}=\frac{1}{2}<1$, the point P must belong to the curve C_{y}.

Since the support of D does not contain either $L_{y t}$ or L, one of the inequalities

$$
\operatorname{mult}_{O_{z}}(D) \leqslant 8 D \cdot L_{y t}=\frac{4}{5}<1, \operatorname{mult}_{O_{z}}(D) \leqslant 8 D \cdot L=\frac{4}{5}<1
$$

must hold, and hence the point P cannot be the point O_{z}.
We put $D=k L+m L_{y t}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support contains neither L nor $L_{y t}$. If $k \neq 0$, then $m=0$ and

$$
\frac{1}{10}=D \cdot L_{y t} \geqslant k L \cdot L_{y t}=\frac{3 k}{8} .
$$

Therefor, $k \leqslant \frac{4}{15}$. By the same way, we can also obtain $m \leqslant \frac{4}{15}$. Then, by Lemma 1.3.8, the inequalities

$$
5(D-k L) \cdot L=\frac{4+9 k}{8}<1, \quad 5\left(D-m L_{y t}\right) \cdot L_{y t}=\frac{4+9 m}{8}<1
$$

show that the point P cannot belong to the curve C_{y}. This is a contradiction.
Lemma 3.4.3. Let X be a quasismooth hypersurface of degree 45 in $\mathbb{P}(9,11,12,17)$. Then $\operatorname{lct}(X)=\frac{77}{60}$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+y^{3} z+x z^{3}+x^{5}=0
$$

It is singular at the points O_{y}, O_{z}, O_{t}, and the point $Q_{3}=[1: 0:-1: 0]$. The curve C_{x} consists of two irreducible and reduced curves $L_{x y}$ and $R_{x}=\left\{x=t^{2}+y^{2} z=0\right\}$. The curve C_{y} consists of two irreducible and reduced curves $L_{x y}$ and $R_{y}=\left\{y=z^{3}+x^{4}=0\right\}$. The curves C_{z} and C_{t}
are irreducible and reduced. It is easy to check that $\operatorname{lct}\left(X, \frac{4}{11} C_{y}\right)=\frac{77}{60}$ is less than each of the numbers $\operatorname{lct}\left(X, \frac{4}{9} C_{x}\right), \operatorname{lct}\left(X, \frac{4}{12} C_{z}\right)$ and $\operatorname{lct}\left(X, \frac{4}{17} C_{t}\right)$.

Suppose that $\operatorname{lct}(X)<\frac{77}{60}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{77}{60} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6 we may assume that the support of D contains neither C_{z} nor C_{t}. Similarly, we may assume that the support of D does not contain either $L_{x y}$ or R_{x}. Also, we may assume that the support of D does not contain either $L_{x y}$ or R_{y}. Then in each of the following pairs of inequalities, at least one of two must hold:

$$
\begin{aligned}
\operatorname{mult}_{O_{z}}(D) & \leqslant 12 D \cdot L_{x y}=\frac{4}{17}<\frac{60}{77}, \quad \operatorname{mult}_{O_{z}}(D) \leqslant 12 D \cdot R_{x}=\frac{8}{11}<\frac{60}{77} \\
\operatorname{mult}_{O_{t}}(D) & \leqslant 17 D \cdot L_{x y}=\frac{1}{3}<\frac{60}{77}, \quad \operatorname{mult}_{O_{t}}(D) \leqslant \frac{17}{3} D \cdot R_{y}=\frac{4}{9}<\frac{60}{77} .
\end{aligned}
$$

Therefore, the point P can be neither O_{z} nor O_{t}. The curve C_{z} is singular at the point O_{y}. Then the inequalities

$$
\frac{11}{2} D \cdot C_{z}=\frac{10}{17}<\frac{60}{77}, \quad 3 D \cdot C_{t}=\frac{5}{11}<\frac{60}{77}
$$

imply that the point P cannot belong to $C_{z} \cup C_{t}$.
We can see that

$$
\begin{gathered}
L_{x y} \cdot D=\frac{1}{17 \cdot 3}, \quad R_{x} \cdot D=\frac{2}{33}, \quad R_{y} \cdot D=\frac{4}{3 \cdot 17}, \quad L_{x y} \cdot R_{x}=\frac{1}{6}, \\
L_{x y} \cdot R_{y}=\frac{3}{17}, \quad L_{x y}^{2}=-\frac{25}{12 \cdot 17}, \quad R_{x}^{2}=-\frac{1}{33}, \quad R_{y}^{2}=\frac{2}{3 \cdot 17} .
\end{gathered}
$$

If we write $D=n L_{x y}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support does not contain the curve $L_{x y}$, then we can see that $n \leqslant \frac{4}{11}$ since $D \cdot R_{x} \geqslant n R_{x} \cdot L_{x y}$ for $n \neq 0$. By Lemma 1.3.8 the inequality

$$
\left(L_{x y} \cdot D-n L_{x y}^{2}\right)=\frac{4+25 n}{12 \cdot 17}<\frac{60}{77}
$$

implies that the point P cannot belong to the curve $L_{x y}$. By the same method, we see that the point P must be in the outside of R_{x}.

If we write $D=m R_{y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support does not contain the curve R_{y}, then we can see that $0 \leqslant m \leqslant \frac{1}{9}$ since $D \cdot L_{x y} \geqslant m R_{y} \cdot L_{x y}$ for $m \neq 0$. By Lemma 1.3 .8 the inequality

$$
\left(R_{y} \cdot D-m R_{y}^{2}\right) \leqslant R_{y} \cdot D<\frac{60}{77}
$$

implies that the point P cannot belong to the curve R_{y}.
Now we consider the pencil \mathcal{L} on X cut out by $\lambda t^{2}+\mu y^{2} z=0$. The base locus of the pencil \mathcal{L} consists of three points O_{y}, O_{z}, and Q. Let F be the member in \mathcal{L} defined by $t^{2}+y^{2} z=0$. The divisor F consists of two irreducible and reduced curves R_{x} and $E=\left\{t^{2}+y^{2} z=x^{4}+z^{3}=0\right\}$. The curve E is smooth in the outside of the base points. We have

$$
E \cdot D=\frac{8}{33} .
$$

Since

$$
E^{2}=F \cdot E-R_{x} \cdot E \geqslant F \cdot E-\left(L_{x y}+R_{x}\right) \cdot E=\frac{25}{4} D \cdot E,
$$

the self-intersection E^{2} is positive. We write $D=k E+\Gamma$, where Γ is an effective \mathbb{Q}-divisor whose support does not contain the curve E. Since $\left(X, \frac{77}{60} D\right)$ is \log canonical at the point O_{y}, the non-negative number k is at most $\frac{60}{77}$. By Lemma 1.3.8, the inequality

$$
\left(E \cdot D-k E^{2}\right) \leqslant E \cdot D=\frac{8}{33}<\frac{60}{77}
$$

implies that the point P cannot belong to the curve E.
So far we have seen that the point P must lie in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t} \cup E$. In particular, it is a smooth point. There is a unique member C in \mathcal{L} which passes through the point P. Then the curve C is cut out by $t^{2}=\alpha y^{2} z$ where α is a constant different from 0 and -1 . The curve C is isomorphic to the curve defined by $y^{3} z+x z^{3}+x^{5}=0$ and $t^{2}=y^{2} z$. The curve C is smooth in the outside of the base points and the singular locus of X by the Bertini theorem, since it is isomorphic to a general curve in the pencil \mathcal{L}. We claim that the curve C is irreducible. If so then we may assume that the support of D does not contain the curve C and hence we obtain

$$
\operatorname{mult}_{P}(D) \leqslant C \cdot D=\frac{10}{33}<\frac{60}{77}
$$

This is a contradiction.
For the irreducibility of the curve C, we may consider the curve C as a surface in \mathbb{C}^{4} defined by the equations $y^{3} z+x z^{3}+x^{5}=0$ and $t^{2}=y^{2} z$. Then, we consider the surface in \mathbb{P}^{4} defined by the equations $y^{3} z w+x z^{3} w+x^{5}=0$ and $t^{2} w=y^{2} z$. We take the affine piece defined by $t \neq 0$. This affine piece is isomorphic to the surface defined by the equation $y^{3} z w+x z^{3} w+x^{5}=0$ and $w=y^{2} z$ in \mathbb{C}^{4}. It is isomorphic to the irreducible hypersurface $y^{5} z^{2}+x y^{2} z^{5}+x^{5}=0$ in \mathbb{C}^{3}. Therefore, the curve C is irreducible.

Lemma 3.4.4. Let X be a quasismooth hypersurface of degree 75 in $\mathbb{P}(10,13,25,31)$. Then $\operatorname{lct}(X)=\frac{91}{60}$.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+z^{3}+x y^{5}+x^{5} z=0
$$

It has singular points at O_{x}, O_{y}, O_{t} and $Q=[-1: 0: 1: 0]$. The curve C_{x} and C_{t} are irreducible and reduced. The curve C_{y} (resp. C_{z}) consists of two irreducible reduced curves $L_{y z}$ and $R_{y}=\left\{y=z^{2}+x^{5}=0\right\}$ (resp. $R_{z}=\left\{y=t^{2}+x y^{4}=0\right\}$). It is easy to see that

$$
\operatorname{lct}\left(X, \frac{4}{13} C_{y}\right)=\frac{91}{60}<\operatorname{lct}\left(X, \frac{4}{10} C_{x}\right)<\operatorname{lct}\left(X, \frac{4}{25} C_{z}\right)<\operatorname{lct}\left(X, \frac{4}{31} C_{t}\right) .
$$

Also, we have the following intersection numbers:

$$
\begin{gathered}
-K_{X} \cdot L_{y z}=\frac{2}{5 \cdot 31}, \quad-K_{X} \cdot R_{y}=\frac{4}{5 \cdot 31}, \quad-K_{X} \cdot R_{z}=\frac{4}{5 \cdot 13}, \\
L_{y z} \cdot R_{y}=\frac{5}{31}, \quad L_{y z} \cdot R_{z}=\frac{1}{5}, \quad L_{y z}^{2}=-\frac{37}{10 \cdot 31}, \quad R_{y}^{2}=-\frac{12}{5 \cdot 31}, \quad R_{z}^{2}=\frac{12}{5 \cdot 13} .
\end{gathered}
$$

Suppose that $\operatorname{lct}(X)<\frac{91}{60}$. Then, there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $\left(X, \frac{91}{60} D\right)$ is not \log canonical at some point $P \in X$. Since the curves C_{x} and C_{t} are
irreducible we may assume that the support of D contains none of them. The inequalities

$$
13 D \cdot C_{x}<\frac{60}{91}, \quad 5 D \cdot C_{t}<\frac{60}{91}
$$

show that the point P must lie in the outside of $C_{x} \cup C_{t} \backslash\left\{O_{x}, O_{t}\right\}$.
By Lemma 1.3.6, we may assume that the support of D does not contain either $L_{y z}$ or R_{y}. If the support of D does not contain $L_{y z}$, then the inequality

$$
31 D \cdot L_{y z}=\frac{2}{5}<\frac{60}{91}
$$

shows that the point P cannot be O_{t}. On the other hand, if the support of D does not contain R_{y}, then the inequality

$$
\frac{31}{2} D \cdot R_{y}=\frac{2}{5}<\frac{60}{91}
$$

shows that the point P cannot be O_{t}. Note that the curve R_{y} is singular at the point O_{t}. We use the same method for $C_{z}=R_{z}+L_{y z}$ so that we can see that the point P cannot be O_{x}.

We write $D=m R_{y}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support does not contain the curve R_{y}. Then we see $m \leqslant \frac{2}{25}$ since the support of D does not contain either $L_{y z}$ or R_{y} and $D \cdot L_{y z} \geqslant m R_{y} \cdot L_{y z}$. Since $R_{y} \cdot D-m R_{y}^{2}<\frac{60}{91}$, Lemma 1.3 .8 implies that the point P is located in the outside of R_{y}. Using the same argument for $L_{y z}$, we can also see that the point P is located in the outside of $L_{y z}$. Also, the same method shows that the point P is located in the outside of R_{z}. Consequently, the point P must lie in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$.

Now we consider the pencil \mathcal{L} on X cut out by $\lambda t^{2}+\mu x y^{4}=0$. The base locus of the pencil \mathcal{L} consists of three points O_{x}, O_{y}, and Q. Let F be the member of \mathcal{L} defined by $t^{2}+x y^{4}=0$. The divisor F consists of two irreducible and reduced curves R_{z} and $E=\left\{t^{2}+x y^{4}=z^{2}+x^{5}=0\right\}$. The curve E is smooth in the outside of $\operatorname{Sing}(X)$. We have

$$
E \cdot D=\frac{8}{5 \cdot 13}
$$

Since

$$
E^{2}=F \cdot E-R_{z} \cdot E \geqslant F \cdot E-\left(L_{y z}+R_{z}\right) \cdot E=\frac{37}{4} D \cdot E \text {, }
$$

the self-intersection E^{2} is positive. We write $D=k E+\Gamma$, where Γ is an effective \mathbb{Q}-divisor whose support does not contain the curve E. Since $\left(X, \frac{91}{60} D\right)$ is \log canonical at the point O_{y}, the non-negative number k is at most $\frac{60}{91}$. By Lemma 1.3.8, the inequality

$$
\left(E \cdot D-k E^{2}\right) \leqslant E \cdot D=\frac{8}{5 \cdot 13}<\frac{60}{91}
$$

implies that the point P cannot belong to the curve E.
So far we have seen that the point P must lie in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t} \cup E$. In particular, it is a smooth point. There is a unique member C in \mathcal{L} which passes through the point P. Then the curve C is cut out by $t^{2}=\alpha x y^{4}$ where α is a constant different from 0 and -1 . The curve C is isomorphic to the curve defined by $x y^{5}+z^{3}+x^{5} z=0$ and $t^{2}=x y^{4}$. The curve C is smooth in the outside of the base points and the singular locus of X by Bertini theorem, since it is isomorphic to a general curve in the pencil \mathcal{L}. We claim that the curve C is
irreducible. If so then we may assume that the support of D does not contain the curve C and hence we obtain

$$
\operatorname{mult}_{P}(D) \leqslant C \cdot D=\frac{12}{5 \cdot 13}<\frac{60}{91}
$$

This is a contradiction.
For the irreducibility of the curve C, we may consider the curve C as a surface in \mathbb{C}^{4} defined by the equations $x y^{5}+z^{3}+x^{5} z=0$ and $t^{2}=x y^{4}$. Then, we consider the surface in \mathbb{P}^{4} defined by the equations $x y^{5}+w^{3} z^{3}+x^{5} z=0$ and $t^{2} w^{3}=x y^{4}$. We then take the affine piece defined by $y \neq 0$. This affine piece is isomorphic to the surface defined by the equation $x+w^{3} z^{3}+x^{5} z=0$ and $t^{2} w^{3}=x$ in \mathbb{C}^{4}. It is isomorphic to the hypersurface defined by $t^{2} w^{3}+w^{3} z^{3}+t^{10} w^{15} z=0$ in \mathbb{C}^{3}. It has two irreducible components $w=0$ and $t^{2}+z^{3}+t^{10} w^{12} z=0$. The former component originates from the hyperplane at infinity in \mathbb{P}^{4}. Therefore, the curve C must be irreducible.

Lemma 3.4.5. Let X be a quasismooth hypersurface of degree 71 in $\mathbb{P}(11,17,20,27)$. Then $\operatorname{lct}(X)=\frac{11}{6}$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+y^{3} z+x z^{3}+x^{4} t=0
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x y}$ (resp. $L_{x y}, L_{z t}, L_{z t}$) and $R_{x}=\left\{x=y^{2} z+t^{2}=0\right\}$ (resp. $R_{y}=\left\{y=x^{3} t+z^{3}=0\right\}$, $R_{z}=\left\{z=x^{4}+y t=0\right\}, R_{t}=\left\{t=y^{3}+x z^{2}=0\right\}$). Also, we see that

$$
L_{x y} \cap R_{x}=\left\{O_{z}\right\}, L_{x y} \cap R_{y}=\left\{O_{t}\right\}, L_{z t} \cap R_{z}=\left\{O_{y}\right\}, L_{z t} \cap R_{t}=\left\{O_{x}\right\} .
$$

One can easily check that $\operatorname{lct}\left(X, \frac{11}{4} C_{x}\right)=\frac{11}{6}$ is less than each of the numbers $\operatorname{lct}\left(X, \frac{17}{4} C_{y}\right)$, $\operatorname{lct}\left(X, \frac{20}{4} C_{z}\right)$ and $\operatorname{lct}\left(X, \frac{27}{4} C_{t}\right)$. Therefore, $\operatorname{lct}(X) \leqslant \frac{11}{6}$. Suppose $\operatorname{lct}(X)<\frac{11}{6}$. Then, there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $\left(X, \frac{11}{6} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x y}, L_{z t}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{gathered}
D \cdot L_{x y}=\frac{1}{5 \cdot 27}, \quad D \cdot R_{x}=\frac{2}{5 \cdot 17}, \quad D \cdot R_{y}=\frac{4}{9 \cdot 11}, \\
D \cdot L_{z t}=\frac{4}{11 \cdot 17}, \quad D \cdot R_{z}=\frac{16}{17 \cdot 27}, \quad D \cdot R_{t}=\frac{3}{5 \cdot 11}, \\
L_{x y} \cdot R_{x}=\frac{1}{10}, \quad L_{x y} \cdot R_{y}=\frac{1}{9}, \quad L_{z t} \cdot R_{z}=\frac{4}{17}, \quad L_{z t} \cdot R_{t}=\frac{3}{11}, \\
L_{x y}^{2}=-\frac{43}{20 \cdot 27}, \quad R_{x}^{2}=-\frac{3}{5 \cdot 17}, \quad R_{y}^{2}=\frac{2}{3 \cdot 11}, \\
L_{z t}^{2}=-\frac{24}{11 \cdot 17}, \quad R_{z}^{2}=-\frac{28}{17 \cdot 27}, \quad R_{t}^{2}=\frac{21}{20 \cdot 11} .
\end{gathered}
$$

By Lemma 1.3 .6 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. Since the curve R_{t} is singular at the point O_{x} and the curve R_{y}
is singular at the point O_{t} with multiplicity 3 , in each of the following pairs of inequalities, at least one of two must hold:

$$
\begin{array}{ll}
\operatorname{mult}_{O_{x}}(D) \leqslant 11 D \cdot L_{z t}=\frac{4}{17}<\frac{6}{11}, & \operatorname{mult}_{O_{x}}(D) \leqslant \frac{11}{2} D \cdot R_{t}=\frac{3}{10}<\frac{6}{11} ; \\
\operatorname{mult}_{O_{z}}(D) \leqslant 20 D \cdot L_{x y}=\frac{4}{27}<\frac{6}{11}, & \operatorname{mult}_{O_{z}}(D) \leqslant 20 D \cdot R_{x}=\frac{8}{17}<\frac{6}{11} ; \\
\operatorname{mult}_{O_{t}}(D) \leqslant 27 D \cdot L_{x y}=\frac{1}{5}<\frac{6}{11}, & \operatorname{mult}_{O_{t}}(D) \leqslant \frac{27}{3} D \cdot R_{y}=\frac{4}{11}<\frac{6}{11} .
\end{array}
$$

Therefore, the point P can be none of O_{x}, O_{z}, O_{t}.
Suppose that the point P is the point O_{y}. We then put $D=m L_{z t}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support does not contain the curve $L_{z t}$. If $m=0$, then

$$
\operatorname{mult}_{O_{y}}(D) \leqslant 17 D \cdot L_{z t}=\frac{4}{11}<\frac{6}{11} .
$$

This is a contradiction. Therefore, $m>0$, and hence the support of D does not contain the curve R_{z}. Since

$$
\frac{16}{17 \cdot 27}=D \cdot R_{z} \geqslant \frac{4 m}{17}+\frac{\operatorname{mult}_{O_{y}}(D)-m}{17}>\frac{3 m}{17}+\frac{6}{11 \cdot 17}
$$

we obtain $m<\frac{14}{3 \cdot 11 \cdot 27}$. However, we obtain

$$
17\left(D-m L_{z t}\right) \cdot L_{z t}=\frac{4+24 m}{11}>\frac{6}{11}
$$

from Lemma 1.3.8, This is a contradiction. Therefore, the point P is a smooth point of X.
We write $D=a_{0} L_{x y}+a_{1} L_{z t}+a_{2} R_{x}+a_{3} R_{y}+a_{4} R_{z}+a_{5} R_{t}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains none of the curves $L_{x y}, L_{z t}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{11}{6} D\right)$ is \log canonical at the points O_{x}, O_{z}, O_{t}, the numbers a_{i} are at most $\frac{6}{11}$. Then by Lemma 1.3.8 the following inequalities enable us to conclude that the point P is in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$:

$$
\begin{gathered}
\left(D-a_{0} L_{x y}\right) \cdot L_{x y}=\frac{4+43 a_{0}}{20 \cdot 27} \leqslant \frac{6}{11}, \quad\left(D-a_{1} L_{z t}\right) \cdot L_{z t}=\frac{4+24 a_{1}}{11 \cdot 17} \leqslant \frac{6}{11} \\
\left(D-a_{2} R_{x}\right) \cdot R_{x}=\frac{2+3 a_{2}}{5 \cdot 17} \leqslant \frac{6}{11}, \quad\left(D-a_{3} R_{y}\right) \cdot R_{y}=\frac{4-6 a_{3}}{9 \cdot 11} \leqslant \frac{6}{11} \\
\left(D-a_{4} R_{z}\right) \cdot R_{z}=\frac{16+28 a_{4}}{17 \cdot 27} \leqslant \frac{6}{11}, \quad\left(D-a_{5} R_{t}\right) \cdot R_{t}=\frac{12-21 a_{5}}{20 \cdot 11} \leqslant \frac{6}{11} .
\end{gathered}
$$

We consider the pencil \mathcal{L} defined by $\lambda t y+\mu x^{4}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil \mathcal{L} consists of the curve $L_{x y}$ and the point O_{y}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $t y=\alpha x^{4}$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $t y=x^{4}$ and $x^{4} t+y^{3} z+x z^{3}=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by
$x\left(x^{2}+x^{11} z+z^{3}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{x y}$ and C. We have

$$
\begin{gathered}
D \cdot C=D \cdot E-D \cdot L_{x y}=\frac{267}{5 \cdot 17 \cdot 27} \\
C^{2}=E \cdot C-L_{x y} \cdot C \geqslant E \cdot C-L_{x y} \cdot C-R_{x} \cdot C=\frac{33}{4} D \cdot C>0
\end{gathered}
$$

By Lemma 1.3 .8 the inequality $D \cdot C<\frac{6}{11}$ gives us a contradiction.
Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{x y}$, R_{z}, and M. Note that the curve M is different from the curves R_{x} and $L_{z t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{x y}-D \cdot R_{z}=\frac{11}{5 \cdot 27} \\
M^{2}=E \cdot M-L_{x y} \cdot M-R_{z} \cdot M \geqslant E \cdot M-C_{x} \cdot M-C_{z} \cdot M=\frac{13}{4} D \cdot M>0
\end{gathered}
$$

By Lemma 1.3 .8 the inequality $D \cdot M<\frac{6}{11}$ gives us a contradiction.
Lemma 3.4.6. Let X be a quasismooth hypersurface of degree 79 in $\mathbb{P}(11,17,24,31)$. Then $\operatorname{lct}(X)=\frac{33}{16}$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t^{2} y+t z^{2}+x y^{4}+x^{5} z=0
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x t}$ (resp. $L_{y z}, L_{y z}, L_{x t}$) and $R_{x}=\left\{x=y t+z^{2}=0\right\}$ (resp. $R_{y}=\left\{y=z t+x^{5}=0\right\}$, $\left.R_{z}=\left\{z=x y^{3}+t^{2}=0\right\}, R_{t}=\left\{t=y^{4}+x^{4} z=0\right\}\right)$. Also, we see that

$$
L_{x t} \cap R_{x}=\left\{O_{y}\right\}, L_{y z} \cap R_{y}=\left\{O_{t}\right\}, L_{y z} \cap R_{z}=\left\{O_{x}\right\}, L_{x t} \cap R_{t}=\left\{O_{z}\right\} .
$$

One can easily check that $\operatorname{lct}\left(X, \frac{4}{11} C_{x}\right)=\frac{33}{16}$ is less than each of the numbers $\operatorname{lct}\left(X, \frac{4}{17} C_{y}\right)$, $\operatorname{lct}\left(X, \frac{4}{24} C_{z}\right)$ and $\operatorname{lct}\left(X, \frac{4}{31} C_{t}\right)$. Therefore, $\operatorname{lct}(X) \leqslant \frac{33}{16}$. Suppose $\operatorname{lct}(X)<\frac{33}{16}$. Then, there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $\left(X, \frac{33}{16} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{gathered}
D \cdot L_{x t}=\frac{1}{6 \cdot 17}, \quad D \cdot R_{x}=\frac{8}{17 \cdot 31}, \quad D \cdot R_{y}=\frac{5}{6 \cdot 31}, \\
D \cdot L_{y z}=\frac{4}{11 \cdot 31}, \quad D \cdot R_{z}=\frac{8}{11 \cdot 17}, \quad D \cdot R_{t}=\frac{2}{3 \cdot 11}, \\
L_{x t} \cdot R_{x}=\frac{2}{17}, \quad L_{y z} \cdot R_{y}=\frac{5}{31}, \quad L_{y z} \cdot R_{z}=\frac{2}{11}, \quad L_{x t} \cdot R_{t}=\frac{1}{6}, \\
L_{x t}^{2}=-\frac{37}{17 \cdot 24}, \quad R_{x}^{2}=-\frac{40}{17 \cdot 31}, \quad R_{y}^{2}=-\frac{35}{24 \cdot 31}, \\
L_{y z}^{2}=-\frac{38}{11 \cdot 31}, \quad R_{z}^{2}=\frac{14}{11 \cdot 17}, \quad R_{t}^{2}=\frac{10}{3 \cdot 11} .
\end{gathered}
$$

By Lemma 1.3.6 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. The inequalities

$$
17 D \cdot L_{x t}=\frac{1}{6}<\frac{16}{33}, \quad 17 D \cdot R_{x}=\frac{8}{31}<\frac{16}{33}
$$

imply that $P \neq O_{y}$. The inequalities

$$
11 D \cdot L_{y z}=\frac{4}{31}<\frac{16}{33}, \quad 11 D \cdot R_{z}=\frac{8}{17}<\frac{16}{33}
$$

imply that $P \neq O_{x}$. Since the curve R_{t} is singular at the point O_{z} with multiplicity 4 the inequalities

$$
24 D \cdot L_{x t}=\frac{24}{6 \cdot 17}<\frac{16}{33}, \quad \frac{24}{4} D \cdot R_{t}=\frac{4}{11}<\frac{16}{33}
$$

imply that $P \neq O_{z}$.
We write $D=a_{1} L_{x t}+a_{2} L_{y z}+a_{3} R_{x}+a_{4} R_{y}+a_{5} R_{z}+a_{6} R_{t}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains none of the curves $L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{33}{16} D\right)$ is \log canonical at the points O_{x}, O_{y}, O_{z}, the numbers a_{i} are at most $\frac{16}{33}$. Then by Lemma 1.3 .8 the following inequalities enable us to conclude that either the point P is in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$ or $P=O_{t}$:
$\frac{33}{16} D \cdot L_{x t}-L_{x t}^{2}=\frac{181}{3 \cdot 17 \cdot 32}<1, \quad \frac{33}{16} D \cdot R_{x}-R_{x}^{2}=\frac{113}{2 \cdot 17 \cdot 31}<1, \quad \frac{33}{16} D \cdot R_{y}-R_{y}^{2}=\frac{25}{3 \cdot 31}<1$,
$\frac{33}{16} D \cdot L_{y z}-L_{x t}^{2}=\frac{185}{4 \cdot 11 \cdot 31}<1, \quad \frac{33}{16} D \cdot R_{z}-R_{z}^{2}=\frac{5}{2 \cdot 11 \cdot 17}<1, \quad \frac{33}{16} D \cdot R_{t}-R_{t}^{2}=\frac{-47}{3 \cdot 8 \cdot 11}<1$.
Suppose that $P \neq O_{t}$. Then we consider the pencil \mathcal{L} defined by $\lambda y t+\mu z^{2}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil \mathcal{L} consists of the curve $L_{y z}$ and the point O_{y}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $z^{2}=\alpha y t$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $y t=z^{2}$ and $t^{2} y+x y^{4}+x^{5} z=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by $z\left(z+x z^{7}+x^{5}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{y z}$ and C. We have the intersection numbers

$$
D \cdot C=D \cdot E-D \cdot L_{y z}=\frac{564}{11 \cdot 17 \cdot 31}, \quad C \cdot L_{y z}=E \cdot L_{y z}-L_{y z}^{2}=\frac{2}{11} .
$$

Also, we see

$$
C^{2}=E \cdot C-C \cdot L_{y z}>0
$$

By Lemma 1.3 .8 the inequality $D \cdot C<\frac{16}{33}$ gives us a contradiction.
Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{y z}$, R_{x}, and M. Note that the curve M is different from the curves R_{y} and $L_{x t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{y z}-D \cdot R_{x}=\frac{4 \cdot 119}{11 \cdot 17 \cdot 31}, \\
M^{2}=E \cdot M-L_{y z} \cdot M-R_{x} \cdot M \geqslant E \cdot M-C_{y} \cdot M-C_{x} \cdot M=5 D \cdot M>0
\end{gathered}
$$

By Lemma 1.3 .8 the inequality $D \cdot M<\frac{16}{33}$ gives us a contradiction. Therefore, $P=O_{t}$.
We write $D=a L_{y z}+b R_{x}+\Delta$, where Δ is an effective divisor whose support contains neither $L_{y z}$ nor R_{x}. Note that we already assumed that the support of D cannot contain either $L_{y z}$ or R_{y}. If the support of D contains R_{y}, then it does not contain $L_{y z}$. However, the inequality $31 D \cdot L_{y z}=\frac{4}{11}<\frac{16}{33}$ shows that $P \neq O_{t}$. Therefore, the support of D does not contain the curve R_{y}. The inequality $D \cdot L_{x t} \geqslant b R_{x} \cdot L_{x t}$ implies $b \leqslant \frac{1}{12}$. On the other hand, we have

$$
\frac{5}{6 \cdot 31}=D \cdot R_{y} \geqslant \frac{5 a}{31}+\frac{b}{31}+\frac{\operatorname{mult}_{O_{t}}(D)-a-b}{31}>\frac{4 a}{31}+\frac{16}{31 \cdot 33},
$$

and hence $a<\frac{23}{4.66}$.
Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up of O_{t} with weights $(7,4)$ and let F be the exceptional curve of π. Then

$$
K_{\bar{X}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)-\frac{20}{31} F, \bar{L}_{y z} \sim_{\mathbb{Q}} \pi^{*}\left(L_{y z}\right)-\frac{4}{31} F, \bar{R}_{x} \sim_{\mathbb{Q}} \pi^{*}\left(R_{x}\right)-\frac{7}{31} F, \bar{\Delta} \sim_{\mathbb{Q}} \pi^{*}(\Delta)-\frac{c}{31} F,
$$

where $\bar{\Delta}, \bar{L}_{y z}, \bar{R}_{x}$ are the proper transforms of $\Delta, L_{y z}, R_{x}$, respectively, and c is a non-negative rational number. The curve F contains two singular points Q_{7} and Q_{4} of \bar{X}. The point Q_{7} is a singular point of type $\frac{1}{7}(1,1)$ and the point Q_{4} is of type $\frac{1}{4}(1,3)$. Note that the curve \bar{R}_{x} passes through the point Q_{4} but not the point Q_{7}. The curve $\bar{L}_{y z}$ passes through the point Q_{7} but not the point Q_{4}.

The \log pull-back of the \log pair $\left(X, \frac{33}{16} D\right)$ by π is the \log pair

$$
\left(\bar{X}, \frac{33 a}{16} \bar{L}_{y z}+\frac{33 b}{16} \bar{R}_{x}+\frac{33}{16} \bar{\Delta}+\theta_{1} F\right),
$$

where

$$
\theta_{1}=\frac{33(4 a+7 b+c)+320}{16 \cdot 31}
$$

This pair is not \log canonical at some point $Q \in F$. We have

$$
0 \leqslant \bar{\Delta} \cdot \bar{R}_{x}=\frac{8+40 b}{17 \cdot 31}-\frac{a}{31}-\frac{c}{4 \cdot 31} .
$$

This inequality shows $4 a+c \leqslant \frac{4}{17}(8+40 b)$. Then

$$
\theta_{1}=\frac{33(4 a+c)+231 b+320}{16 \cdot 31} \leqslant \frac{6496+9207 b}{16 \cdot 17 \cdot 31}<1
$$

since $b \leqslant \frac{1}{12}$.
Suppose that the point Q is neither the point Q_{7} nor the point Q_{4}. Then the log pair $\left(\bar{X}, \frac{33}{16} \bar{\Delta}+F\right)$ is not \log canonical at the point Q. Then

$$
\frac{33 c}{16 \cdot 28}=\frac{33}{16} \bar{\Delta} \cdot F>1
$$

by Lemma 1.3.4 However, $c \leqslant 4 a+c \leqslant \frac{4}{17}(8+40 b)$. This is a contradiction since $b \leqslant \frac{1}{12}$. Therefore, the point Q is either the point Q_{7} or the point Q_{4}.

Suppose that the point Q is the point Q_{4}. This point is the intersection point of F and \bar{R}_{x}. Then the log pair $\left(\bar{X}, \frac{33 b}{16} \bar{R}_{x}+\frac{33}{16} \bar{\Delta}+\theta_{1} F\right)$ is not \log canonical at the point Q. It then follows from Lemma 1.3.4 that

$$
1<4\left(\frac{33}{16} \bar{\Delta}+\theta_{1} F\right) \cdot \bar{R}_{x}=\frac{33 \cdot 4}{16}\left(\frac{8+40 b}{17 \cdot 31}-\frac{a}{31}-\frac{c}{4 \cdot 31}\right)+\theta_{1} .
$$

However,

$$
\frac{33 \cdot 4}{16}\left(\frac{8+40 b}{17 \cdot 31}-\frac{a}{31}-\frac{c}{4 \cdot 31}\right)+\theta_{1}=\frac{6496+9207 b}{16 \cdot 17 \cdot 31}<1 .
$$

Therefore, the point Q is the point Q_{7}. This point is the intersection point of F and $\bar{L}_{y z}$.
Let $\phi: \tilde{X} \rightarrow \bar{X}$ be the blow up at the point Q_{7}. Let G be the exceptional divisor of the morphism ϕ. The surface \tilde{X} is smooth along the exceptional divisor G. Let $\tilde{L}_{y z}, \tilde{R}_{x}, \tilde{\Delta}$ and \tilde{F} be the proper transforms of $L_{y z}, R_{x}, \Delta$ and F by ϕ, respectively. We have

$$
K_{\tilde{X}} \sim_{\mathbb{Q}} \phi^{*}\left(K_{\bar{X}}\right)-\frac{5}{7} G, \tilde{L}_{y z} \sim_{\mathbb{Q}} \phi^{*}\left(\bar{L}_{y z}\right)-\frac{1}{7} G, \tilde{F} \sim_{\mathbb{Q}} \phi^{*}(F)-\frac{1}{7} G, \tilde{\Delta} \sim_{\mathbb{Q}} \phi^{*}(\bar{\Delta})-\frac{d}{7} G,
$$

where d is a non-negative rational number. The \log pull-back of the \log pair $\left(X, \frac{33}{16} D\right)$ via $\pi \circ \phi$ is

$$
\left(\tilde{X}, \frac{33 a}{16} \tilde{L}_{y z}+\frac{33 b}{16} \tilde{R}_{x}+\frac{33}{16} \tilde{\Delta}+\theta_{1} \tilde{F}+\theta_{2} G\right),
$$

where

$$
\theta_{2}=\frac{33}{7 \cdot 16}(a+d)+\frac{\theta_{1}}{7}+\frac{5}{7}=\frac{2800+33(35 a+7 b+c+31 d)}{7 \cdot 16 \cdot 31}
$$

This \log pair is not \log canonical at some point $O \in G$. We have

$$
0 \leqslant \tilde{\Delta} \cdot \tilde{L}_{y z}=\frac{4+38 a}{11 \cdot 31}-\frac{b}{31}-\frac{c}{7 \cdot 31}-\frac{d}{7} .
$$

We then obtain $7 b+c+31 d \leqslant \frac{7}{11}(4+38 a)$. Since $a \leqslant \frac{23}{264}$, we see

$$
\theta_{2}=\frac{2800+33(35 a+7 b+c+31 d)}{7 \cdot 16 \cdot 31} \leqslant \frac{4532+3069 a}{11 \cdot 16 \cdot 31}<1 .
$$

Suppose that $O \notin \tilde{F} \cup \tilde{L}_{y z}$. The \log pair $\left(\tilde{X}, \frac{13}{8} \tilde{\Delta}+G\right)$ is not \log canonical at the point O. Applying Lemma 1.3.4, we get

$$
1<\frac{33}{16} \tilde{\Delta} \cdot G=\frac{33 d}{16}
$$

and hence $d>\frac{16}{33}$. However, $d \leqslant \frac{1}{31}(7 b+c+31 d) \leqslant \frac{7}{11 \cdot 31}(4+38 a)$. This is a contradiction since $a \leqslant \frac{23}{264}$. Therefore, the point O is either the intersection point of G and \tilde{F} or the intersection point of G and $\tilde{L}_{y z}$. In the latter case, the pair $\left(\tilde{X}, \frac{33 a}{16} \tilde{L}_{y z}+\frac{33}{16} \tilde{\Delta}+\theta_{2} G\right)$ is not \log canonical at the point O. Then, applying Lemma 1.3.4, we get

$$
1<\left(\frac{33}{16} \tilde{\Delta}+\theta_{2} G\right) \cdot \tilde{L}_{y z}=\frac{33}{16}\left(\frac{4+38 a}{11 \cdot 31}-\frac{b}{31}-\frac{c}{7 \cdot 31}-\frac{d}{7}\right)+\theta_{2} .
$$

However,

$$
\frac{33}{16}\left(\frac{4+38 a}{11 \cdot 31}-\frac{b}{31}-\frac{c}{7 \cdot 31}-\frac{d}{7}\right)+\theta_{2}=\frac{4532+3069 a}{11 \cdot 16 \cdot 31}<1 .
$$

Therefore, the point O must be the intersection point of G and \tilde{F}.
Let $\xi: \hat{X} \rightarrow \tilde{X}$ be the blow up at the point O and let H be the exceptional divisor of ξ. We also let $\hat{L}_{y z}, \hat{R}_{x}, \hat{\Delta}, \hat{G}$, and \hat{F} be the proper transforms of $\tilde{L}_{y z}, \tilde{R}_{x}, \tilde{\Delta}, G$ and \tilde{F} by ξ, respectively. Then \hat{X} is smooth along the exceptional divisor H. We have

$$
K_{\hat{X}} \sim_{\mathbb{Q}} \xi^{*}\left(K_{\tilde{X}}\right)-H, \hat{G} \sim_{\mathbb{Q}} \xi^{*}(G)-H, \hat{F} \sim_{\mathbb{Q}} \xi^{*}(\tilde{F})-H, \hat{\Delta} \sim_{\mathbb{Q}} \xi^{*}(\tilde{\Delta})-e H,
$$

where e is a non-negative rational number. The log pull-back of the \log pair $\left(X, \frac{33}{16} D\right)$ via $\pi \circ \phi \circ \xi$ is

$$
\left(\hat{X}, \frac{33 a}{16} \hat{L}_{y z}+\frac{33 b}{16} \hat{R}_{x}+\frac{33}{16} \hat{\Delta}+\theta_{1} \hat{F}+\theta_{2} \hat{G}+\theta_{3} H\right),
$$

where

$$
\theta_{3}=\theta_{1}+\theta_{2}+\frac{33 e}{16}-1=\frac{1568+33(63 a+56 b+8 c+31 d+217 e)}{7 \cdot 16 \cdot 31} .
$$

This \log pair is not \log canonical at some point $A \in H$. We have

$$
\frac{c}{28}-\frac{d}{7}-e=\hat{\Delta} \cdot \hat{F} \geqslant 0
$$

Therefore, $4 d+28 e \leqslant c$.
Then

$$
\begin{aligned}
\theta_{3} & =\frac{1568+33(63 a+56 b+8 c)}{7 \cdot 16 \cdot 31}+\frac{33 \cdot 31(d+7 e)}{7 \cdot 16 \cdot 31} \leqslant \\
& \leqslant \frac{6272+33(252 a+224 b+63 c)}{4 \cdot 7 \cdot 16 \cdot 31}= \\
& =\frac{6272+7392 b}{4 \cdot 7 \cdot 16 \cdot 31}+\frac{33 \cdot 63(4 a+c)}{4 \cdot 7 \cdot 16 \cdot 31} \leqslant \\
& \leqslant \frac{28+33 b}{2 \cdot 31}+\frac{9 \cdot 33(1+5 b)}{2 \cdot 17 \cdot 31}=\frac{773+2046 b}{2 \cdot 17 \cdot 31}<1
\end{aligned}
$$

since $b \leqslant \frac{1}{12}$ and $4 a+c \leqslant \frac{4}{17}(8+40 b)$. In particular, θ_{3} is a positive number.
Suppose that $A \notin \hat{F} \cup \hat{G}$. Then the \log pair $\left(\hat{X}, \frac{33}{16} \hat{\Delta}+\theta_{3} H\right)$ is not log canonical at the point A. Applying Lemma 1.3.4, we get

$$
1<\frac{33}{16} \hat{\Delta} \cdot H=\frac{33 e}{16} .
$$

However,

$$
e \leqslant \frac{1}{28}(4 d+28 e) \leqslant \frac{c}{28} \leqslant \frac{1}{28}(4 a+c) \leqslant \frac{4(8+40 b)}{17 \cdot 28} \leqslant \frac{4}{11} .
$$

Therefore, the point A must be either in \hat{F} or in \hat{G}.
Suppose that $A \in \hat{F}$. Then the \log pair $\left(\hat{X}, \frac{33}{16} \hat{\Delta}+\theta_{1} \hat{F}+\theta_{3} H\right)$ is not \log canonical at the point A. Applying Lemma 1.3.4, we get

$$
1<\left(\frac{33}{16} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{F}=\frac{33}{16}\left(\frac{c}{28}-\frac{d}{7}-e\right)+\theta_{3}=\frac{6272+33(252 a+224 b+63 c)}{4 \cdot 7 \cdot 16 \cdot 31} .
$$

However,

$$
\frac{6272+33(252 a+224 b+63 c)}{4 \cdot 7 \cdot 16 \cdot 31} \leqslant \frac{773+2046 b}{2 \cdot 17 \cdot 31}<1
$$

Therefore, the point A is the intersection point of H and \hat{G}. Then the \log pair $\left(\hat{X}, \frac{33}{16} \hat{\Delta}+\theta_{2} \hat{G}+\theta_{3} H\right)$ is not \log canonical at the point A. From Lemma 1.3.4, we obtain

$$
1<\left(\frac{33}{16} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{G}=\frac{33}{16}(d-e)+\theta_{3}=\frac{1568+33(63 a+56 b+8 c+248 d)}{7 \cdot 16 \cdot 31}
$$

However,

$$
\frac{1568+33(63 a+56 b+8 c+248 d)}{7 \cdot 16 \cdot 31}=\frac{224+297 a}{16 \cdot 31}+\frac{33(7 b+c+31 d)}{2 \cdot 7 \cdot 31} \leqslant \frac{320+1209 a}{16 \cdot 31}<1
$$

since $a<\frac{23}{4 \cdot 66}$ and $7 b+c+31 d \leqslant \frac{7}{11}(4+38 a)$. The obtained contradiction completes the proof.

Lemma 3.4.7. Let X be a quasismooth hypersurface of degree 166 in $\mathbb{P}(11,31,45,83)$. Then $\operatorname{lct}(X)=\frac{55}{24}$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y z^{3}+x y^{5}+x^{11} z=0
$$

The surface X is singular only at the points O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{55}{24}=\operatorname{lct}\left(X, \frac{4}{11} C_{x}\right)<\operatorname{lct}\left(X, \frac{4}{31} C_{y}\right)=\frac{13 \cdot 31}{88}
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{55}{24}$.
Suppose that $\operatorname{lct}(X)<\frac{55}{24}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{55}{24} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains neither C_{x} nor C_{y}. Then the inequalities

$$
45 D \cdot C_{x}=\frac{8}{31}<\frac{24}{55}, \quad 11 D \cdot C_{y}=\frac{8}{45}<\frac{24}{55}
$$

show that the point P is a smooth point in the outside of C_{x}. However, $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(495)\right)$ contains the monomials $x^{45}, y^{11} x^{14}$ and z^{11}, it follows from Lemma 1.3 .9 that the point P is either a singular point of X or a point on C_{x}. This is a contradiction.

Lemma 3.4.8. Let X be a quasismooth hypersurface of degree 71 in $\mathbb{P}(13,14,19,29)$. Then $\operatorname{lct}(X)=\frac{65}{36}$.

Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
t y^{3}+y z^{3}+x t^{2}+x^{4} z=0
$$

The surface X is singular at the points $O_{x}, O_{y}, O_{z}, O_{t}$. Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists
of $L_{x y}$ (resp. $L_{x y}, L_{z t}, L_{z t}$) and $R_{x}=\left\{x=z^{3}+t y^{2}=0\right\}$ (resp. $R_{y}=\left\{y=x^{3} z+t^{2}=0\right\}$, $\left.R_{z}=\left\{z=y^{3}+x t=0\right\}, R_{t}=\left\{t=x^{4}+y z^{2}=0\right\}\right)$. Also, we see that

$$
L_{x y} \cap R_{x}=\left\{O_{t}\right\}, L_{x y} \cap R_{y}=\left\{O_{z}\right\}, L_{z t} \cap R_{z}=\left\{O_{x}\right\}, L_{z t} \cap R_{t}=\left\{O_{y}\right\} .
$$

One can easily check that $\operatorname{lct}\left(X, \frac{4}{13} C_{x}\right)=\frac{65}{36}$ is less than each of the numbers $\operatorname{lct}\left(X, \frac{4}{14} C_{y}\right)$, $\operatorname{lct}\left(X, \frac{4}{19} C_{z}\right)$ and $\operatorname{lct}\left(X, \frac{4}{29} C_{t}\right)$. Therefore, $\operatorname{lct}(X) \leqslant \frac{65}{36}$. Suppose $\operatorname{lct}(X)<\frac{65}{36}$. Then, there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $\left(X, \frac{65}{36} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x y}, L_{z t}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
\begin{gathered}
D \cdot L_{x y}=\frac{4}{19 \cdot 29}, \quad D \cdot R_{x}=\frac{6}{7 \cdot 29}, \quad D \cdot R_{y}=\frac{8}{13 \cdot 19}, \\
D \cdot L_{z t}=\frac{2}{7 \cdot 13}, \quad D \cdot R_{z}=\frac{12}{13 \cdot 29}, \quad D \cdot R_{t}=\frac{8}{7 \cdot 19}, \\
L_{x y} \cdot R_{x}=\frac{3}{29}, \quad L_{x y} \cdot R_{y}=\frac{2}{19}, \quad L_{z t} \cdot R_{z}=\frac{3}{13}, \quad L_{z t} \cdot R_{t}=\frac{2}{7}, \\
L_{x y}^{2}=-\frac{44}{19 \cdot 29}, \quad R_{x}^{2}=-\frac{3}{14 \cdot 29}, \quad R_{y}^{2}=\frac{2}{13 \cdot 19}, \\
L_{z t}^{2}=-\frac{23}{13 \cdot 14}, \quad R_{z}^{2}=-\frac{30}{13 \cdot 29}, \quad R_{t}^{2}=\frac{20}{7 \cdot 19} .
\end{gathered}
$$

By Lemma 1.3.6 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. Since the curve R_{t} is singular at the point O_{y} and the curve R_{y} is singular at the point O_{z}, in each of the following pairs of inequalities, at least one of two must hold:

$$
\begin{array}{ll}
\operatorname{mult}_{O_{x}}(D) \leqslant 13 D \cdot L_{z t}=\frac{2}{7}<\frac{36}{65}, & \operatorname{mult}_{O_{x}}(D) \leqslant 13 D \cdot R_{z}=\frac{12}{29}<\frac{36}{65} \\
\operatorname{mult}_{O_{y}}(D) \leqslant 14 D \cdot L_{z t}=\frac{4}{13}<\frac{36}{65}, & \operatorname{mult}_{O_{y}}(D) \leqslant \frac{14}{2} D \cdot R_{t}=\frac{8}{19}<\frac{36}{65} \\
\operatorname{mult}_{O_{z}}(D) \leqslant 19 D \cdot L_{x y}=\frac{4}{29}<\frac{36}{65}, & \operatorname{mult}_{O_{z}}(D) \leqslant \frac{19}{2} D \cdot R_{y}=\frac{4}{13}<\frac{36}{65} \\
\operatorname{mult}_{O_{t}}(D) \leqslant 29 D \cdot L_{x y}=\frac{4}{19}<\frac{36}{65}, & \operatorname{mult}_{O_{t}}(D) \leqslant \frac{29}{2} D \cdot R_{x}=\frac{3}{7}<\frac{36}{65}
\end{array}
$$

Therefore, the point P can be none of $O_{x}, O_{y}, O_{z}, O_{t}$.
We write $D=a_{0} L_{x y}+a_{1} L_{z t}+a_{2} R_{x}+a_{3} R_{y}+a_{4} R_{z}+a_{5} R_{t}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains none of the curves $L_{x y}, L_{z t}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{65}{36} D\right)$ is \log canonical at the points $O_{x}, O_{y}, O_{z}, O_{t}$, the numbers a_{i} are at most $\frac{36}{65}$. Then by Lemma 1.3 .8 the following inequalities enable us to conclude that the point P must be located in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$:

$$
\begin{gathered}
\left(D-a_{0} L_{x y}\right) \cdot L_{x y}=\frac{4+44 a_{0}}{19 \cdot 29} \leqslant \frac{36}{65}, \quad\left(D-a_{1} L_{z t}\right) \cdot L_{z t}=\frac{4+23 a_{1}}{13 \cdot 14} \leqslant \frac{36}{65} \\
\left(D-a_{2} R_{x}\right) \cdot R_{x}=\frac{12+3 a_{2}}{14 \cdot 29} \leqslant \frac{36}{65}, \quad\left(D-a_{3} R_{y}\right) \cdot R_{y}=\frac{8-2 a_{3}}{13 \cdot 19} \leqslant \frac{36}{65} \\
\left(D-a_{4} R_{z}\right) \cdot R_{z}=\frac{12+30 a_{4}}{13 \cdot 29} \leqslant \frac{36}{65}, \quad\left(D-a_{5} R_{t}\right) \cdot R_{t}=\frac{8-20 a_{5}}{7 \cdot 19} \leqslant \frac{36}{65}
\end{gathered}
$$

We consider the pencil \mathcal{L} defined by $\lambda t x+\mu y^{3}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. The base locus of the pencil consists of the curve $L_{x y}$ and the point O_{x}. Let E be the unique divisor in \mathcal{L} that passes through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the divisor E is defined by the equation $t x=\alpha y^{3}$, where $\alpha \neq 0$.

Suppose that $\alpha \neq-1$. Then the curve E is isomorphic to the curve defined by the equations $t x=y^{3}$ and $x t^{2}+y z^{3}+x^{4} z=0$. Since the curve E is isomorphic to a general curve in \mathcal{L}, it is smooth at the point P. The affine piece of E defined by $t \neq 0$ is the curve given by $y\left(y^{2}+y^{11} z+z^{3}\right)=0$. Therefore, the divisor E consists of two irreducible and reduced curves $L_{x y}$ and C. We have

$$
D \cdot C=D \cdot E-D \cdot L_{x y}=\frac{800}{13 \cdot 19 \cdot 29} .
$$

Also, we see

$$
C^{2}=E \cdot C-C \cdot L_{x y} \geqslant E \cdot C-C_{x} \cdot C>0 .
$$

By Lemma 1.3.8 the inequality $D \cdot C<\frac{36}{65}$ gives us a contradiction.
Suppose that $\alpha=-1$. Then divisor E consists of three irreducible and reduced curves $L_{x y}$, R_{z}, and M. Note that the curve M is different from the curves R_{x} and $L_{z t}$. Also, it is smooth at the point P. We have

$$
\begin{gathered}
D \cdot M=D \cdot E-D \cdot L_{x y}-D \cdot R_{z}=\frac{572}{13 \cdot 19 \cdot 29}, \\
M^{2}=E \cdot M-L_{x y} \cdot M-R_{z} \cdot M \geqslant E \cdot M-C_{x} \cdot M-C_{z} \cdot M=\frac{5}{2} D \cdot M>0 .
\end{gathered}
$$

By Lemma 1.3 .8 the inequality $D \cdot M<\frac{36}{65}$ gives us a contradiction.
Lemma 3.4.9. Let X be a quasismooth hypersurface of degree 79 in $\mathbb{P}(13,14,23,33)$. Then $\operatorname{lct}(X)=\frac{65}{32}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{2} t+y^{4} z+x t^{2}+x^{5} y=0
$$

The surface X is singular at O_{x}, O_{y}, O_{z} and O_{t}. We have

$$
\operatorname{lct}\left(X, \frac{4}{13} C_{x}\right)=\frac{65}{32}<\operatorname{lct}\left(X, \frac{4}{13} C_{x}\right)=\frac{21}{8}<\operatorname{lct}\left(X, \frac{5}{25} C_{t}\right)=\frac{33}{10}<\operatorname{lct}\left(X, \frac{4}{23} C_{z}\right)=\frac{69}{20} .
$$

In particular, $\operatorname{lct}(X) \leqslant \frac{65}{32}$.
Each of the divisors C_{x}, C_{y}, C_{z}, and C_{t} consists of two irreducible and reduced components. The divisor C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of $L_{x z}\left(\right.$ resp. $\left.L_{y t}, L_{x z}, L_{y t}\right)$ and $R_{x}=\left\{x=y^{4}+z t=0\right\}$ (resp. $R_{y}=\left\{y=z^{2}+x t=0\right\}, R_{z}=\left\{z=x^{4} y+t^{2}=0\right\}, R_{t}=\left\{t=x^{5}+y^{3} z=0\right\}$). The curve $L_{x z}$ intersects R_{x} (resp. R_{z}) only at the point O_{t} (resp. O_{y}). The curve $L_{y t}$ intersects R_{y} (resp. R_{t}) only at the point O_{x} (resp. O_{z}).

We suppose that $\operatorname{lct}(X)<\frac{65}{32}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $\left(X, \frac{65}{32} D\right)$ is not \log canonical at some point $P \in X$.

The intersection numbers among the divisors $D, L_{x z}, L_{y t}, R_{x}, R_{y}, R_{z}, R_{t}$ are as follows:

$$
L_{x z}^{2}=-\frac{43}{14 \cdot 33}, R_{x}^{2}=-\frac{40}{23 \cdot 33}, L_{x z} \cdot R_{x}=\frac{4}{33}, D \cdot L_{x z}=\frac{4}{14 \cdot 33}, D \cdot R_{x}=\frac{16}{23 \cdot 33},
$$

$$
\begin{gathered}
L_{y t}^{2}=-\frac{32}{13 \cdot 23}, R_{y}^{2}=-\frac{38}{13 \cdot 33}, L_{y t} \cdot R_{y}=\frac{2}{13}, D \cdot L_{y t}=\frac{4}{13 \cdot 23}, D \cdot R_{y}=\frac{8}{13 \cdot 33}, \\
R_{z}^{2}=\frac{20}{13 \cdot 14}, L_{x z} \cdot R_{z}=\frac{2}{14}, D \cdot R_{z}=\frac{8}{13 \cdot 14}, \\
R_{t}^{2}=\frac{95}{14 \cdot 13}, L_{y t} \cdot R_{t}=\frac{5}{23}, D \cdot R_{t}=\frac{20}{14 \cdot 23} .
\end{gathered}
$$

By Lemma 1.3.6 we may assume that the support of D does not contain at least one component of each divisor $C_{x}, C_{y}, C_{z}, C_{t}$. Since the curve R_{t} is singular at the point O_{z} with multiplicity 3 and the curve R_{z} is singular at the point O_{y}, in each of the following pairs of inequalities, at least one of two must hold:

$$
\begin{array}{ll}
\operatorname{mult}_{O_{x}}(D) \leqslant 13 D \cdot L_{y t}=\frac{4}{23}<\frac{32}{65}, & \operatorname{mult}_{O_{x}}(D) \leqslant 13 D \cdot R_{y}=\frac{8}{33}<\frac{32}{65} \\
\operatorname{mult}_{O_{y}}(D) \leqslant 14 D \cdot L_{x z}=\frac{4}{33}<\frac{32}{65}, & \operatorname{mult}_{O_{y}}(D) \leqslant \frac{14}{2} D \cdot R_{z}=\frac{4}{13}<\frac{32}{65} \\
\operatorname{mult}_{O_{z}}(D) \leqslant 23 D \cdot L_{y t}=\frac{4}{13}<\frac{32}{65}, & \operatorname{mult}_{O_{z}}(D) \leqslant \frac{23}{3} D \cdot R_{t}=\frac{10}{21}<\frac{32}{65}
\end{array}
$$

Therefore, the point P can be none of O_{x}, O_{y}, O_{z}.
Put $D=m_{0} L_{x z}+m_{1} L_{y t}+m_{2} R_{x}+m_{3} R_{y}+m_{4} R_{z}+m_{5} R_{t}+\Omega$, where Ω is an effective \mathbb{Q} divisor whose support contains none of $L_{x z}, L_{y t}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{65}{32} D\right)$ is \log canonical at the points O_{x}, O_{y}, O_{z}, we have $m_{i} \leqslant \frac{32}{65}$ for each i. Since

$$
\begin{aligned}
& \left(D-m_{0} L_{x z}\right) \cdot L_{x z}=\frac{4+43 m_{0}}{14 \cdot 33} \leqslant \frac{32}{65}, \quad\left(D-m_{1} L_{y t}\right) \cdot L_{y t}=\frac{4+32 m_{1}}{13 \cdot 23} \leqslant \frac{32}{65}, \\
& \left(D-m_{2} R_{x}\right) \cdot R_{x}=\frac{16+40 m_{2}}{23 \cdot 33} \leqslant \frac{32}{65}, \quad\left(D-m_{3} R_{y}\right) \cdot R_{y}=\frac{8+38 m_{3}}{13 \cdot 33} \leqslant \frac{32}{65}, \\
& \left(D-m_{4} R_{z}\right) \cdot R_{z}=\frac{8-20 m_{4}}{13 \cdot 14} \leqslant \frac{32}{65}, \quad\left(D-m_{5} R_{t}\right) \cdot R_{t}=\frac{20-95 m_{5}}{14 \cdot 23} \leqslant \frac{32}{65}
\end{aligned}
$$

Lemma 1.3 .8 implies that the point P cannot be a smooth point of X on $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$. Therefore, the point P is either a point in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$ or the point O_{t}.

Suppose that $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$. Then we consider the pencil \mathcal{L} on X defined by the equations $\lambda x t+\mu z^{2}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. There is a unique curve Z_{α} in the pencil passing through the point P. This curve is cut out by

$$
x t+\alpha z^{2}=0
$$

where α is a non-zero constant.
The curve Z_{α} is reduced. But it is always reducible. Indeed, one can easily check that

$$
Z_{\alpha}=C_{\alpha}+L_{x z}
$$

where C_{α} is a reduced curve whose support contains no $L_{x y}$. Let us prove that C_{α} is irreducible if $\alpha \neq 1$.

Any component of the curve C_{t} is not contained in the curve Z_{α}. The open subset $Z_{\alpha} \backslash C_{t}$ of the curve Z_{α} is a \mathbb{Z}_{33}-quotient of the affine curve

$$
x+\alpha z^{2}=z^{2}+y^{4} z+x+x^{5} y=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[x, y, z]),
$$

that is isomorphic to a plane affine curve defined by the equation

$$
z\left((\alpha-1) z+y^{4}-\alpha^{5} y z^{9}\right)=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

Thus, if $\alpha \neq 1$, then the curve Z_{α} consists of two irreducible and reduced curves $L_{x z}$ and C_{α}. If $\alpha=1$, then the curve Z_{α} consists of three irreducible and reduced curves $L_{x z}, R_{y}$, and C_{1}. In both cases, the curve C_{α} (including $\alpha=1$) is smooth at the point P. By Lemma 1.3.6, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of the curve Z_{α}.

If $\alpha \neq 1$, then

$$
\begin{gathered}
D \cdot C_{\alpha}=\frac{8}{13 \cdot 14} \\
C_{\alpha}^{2}=Z_{\alpha} \cdot C_{\alpha}-L_{x z} \cdot C_{\alpha} \geqslant Z_{\alpha} \cdot C_{\alpha}-\left(R_{x}+L_{x z}\right) \cdot C_{\alpha}=\frac{33}{4} D \cdot C_{\alpha}>0 .
\end{gathered}
$$

If $\alpha=1$, then

$$
D \cdot C_{1}=\frac{152}{13 \cdot 14 \cdot 33},
$$

$C_{1}^{2}=Z_{1} \cdot C_{1}-\left(L_{x z}+R_{y}\right) \cdot C_{1} \geqslant Z_{1} \cdot C_{1}-\left(R_{x}+L_{x z}\right) \cdot C_{1}-\left(L_{y t}+R_{y}\right) \cdot C_{1}=\frac{19}{4} D \cdot C_{1}>0$.
We put $D=m C_{\alpha}+\Delta_{\alpha}$, where Δ_{α} is an effective \mathbb{Q}-divisor such that $C_{\alpha} \not \subset \operatorname{Supp}\left(\Delta_{\alpha}\right)$. Since C_{α} intersects the curve C_{t} and the pair $\left(X, \frac{65}{32} D\right)$ is \log canonical along the curve C_{t}, we obtain $m \leqslant \frac{32}{65}$. Then, the inequality

$$
\left(D-m C_{\alpha}\right) \cdot C_{\alpha} \leqslant D \cdot C_{\alpha}<\frac{32}{65}
$$

implies that the pair $\left(X, \frac{65}{32} D\right)$ is \log canonical at the point P by Lemma 1.3.8, The obtained contradiction conclude that the point P must be the point O_{t}.

If $L_{x z}$ is not contained in the support of D, then the inequality

$$
\operatorname{mult}_{O_{t}}(D) \leqslant 33 D \cdot L_{x z}=\frac{2}{7}<\frac{32}{65}
$$

is a contradiction. Therefore, the curve $L_{x z}$ must be contained in the support of D, and hence the curve R_{x} is not contained in the support of D. Put $D=a L_{x z}+b R_{y}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support contains neither $L_{x z}$ nor R_{y}. Then

$$
\frac{16}{23 \cdot 33}=D \cdot R_{x} \geqslant a L_{x z} \cdot R_{x}+\frac{\operatorname{mult}_{O_{t}}(D)-a}{33}>\frac{3 a}{33}+\frac{32}{33 \cdot 65}
$$

and hence $a<\frac{304}{3 \cdot 23 \cdot 65}$. If $b \neq 0$, then $L_{y t}$ is not contained in the support of D. Therefore,

$$
\frac{4}{13 \cdot 23}=D \cdot L_{y t} \geqslant b R_{y} \cdot L_{y t}=\frac{2 b}{13},
$$

and hence $b \leqslant \frac{2}{23}$.
Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up at the point O_{t} with weights $(13,19)$ and let F be the exceptional curve of the morphism π. Then F contains two singular points Q_{13} and Q_{19} of \bar{X} such that Q_{13} is a singular point of type $\frac{1}{13}(1,1)$, and Q_{19} is a singular point of type $\frac{1}{19}(3,7)$. Then
$K_{\bar{X}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)-\frac{1}{33} F, \quad \bar{L}_{x z} \sim_{\mathbb{Q}} \pi^{*}\left(L_{x z}\right)-\frac{19}{33} F, \quad \bar{R}_{y} \sim_{\mathbb{Q}} \pi^{*}\left(R_{y}\right)-\frac{13}{33} F, \quad \bar{\Delta} \sim_{\mathbb{Q}} \pi^{*}(\Delta)-\frac{c}{33} F$,
where $\bar{L}_{x z}, \bar{R}_{y}$ and $\bar{\Delta}$ are the proper transforms of $L_{x z}, R_{y}$ and Δ by π, respectively, and c is a non-negative rational number. Note that $F \cap \bar{R}_{y}=\left\{Q_{19}\right\}$ and $F \cap \bar{L}_{x z}=\left\{Q_{13}\right\}$.

The \log pull-back of the \log pair $\left(X, \frac{65}{32} D\right)$ by π is the \log pair

$$
\left(\bar{X}, \frac{65 a}{32} \bar{L}_{x z}+\frac{65 b}{32} \bar{R}_{y}+\frac{65}{32} \bar{\Delta}+\theta_{1} F\right),
$$

where

$$
\theta_{1}=\frac{32+65(19 a+13 b+c)}{32 \cdot 33} .
$$

This is not \log canonical at some point $Q \in F$. We have

$$
0 \leqslant \bar{\Delta} \cdot \bar{L}_{x z}=\frac{4+43 a}{14 \cdot 33}-\frac{b}{33}-\frac{c}{13 \cdot 33} .
$$

This inequality shows $13 b+c \leqslant \frac{13}{14}(4+43 a)$. Since $a \leqslant \frac{304}{3 \cdot 23 \cdot 65}$, we obtain

$$
\theta_{1}=\frac{32+1235 a}{32 \cdot 33}+\frac{65(13 b+c)}{32 \cdot 33} \leqslant \frac{32+1235 a}{32 \cdot 33}+\frac{13 \cdot 65(4+43 a)}{14 \cdot 32 \cdot 33}<1 .
$$

Suppose that the point Q is neither Q_{13} nor Q_{19}. Then, the point Q is not in $\bar{L}_{x z} \cup \bar{R}_{y}$. Therefore, the pair $\left(\bar{X}, \frac{65}{32} \bar{\Delta}+F\right)$ is not \log canonical at the point Q, and hence

$$
1<\frac{65}{32} \bar{\Delta} \cdot F=\frac{65 c}{13 \cdot 19 \cdot 32} .
$$

But $c \leqslant 13 b+c \leqslant \frac{13}{14}(4+43 a)<\frac{13 \cdot 19 \cdot 32}{65}$ since $a \leqslant \frac{304}{3 \cdot 23 \cdot 65}$. Therefore, the point Q is either Q_{13} or Q_{19}.

Suppose that the point Q is Q_{13}. Then the point Q is in $\bar{L}_{x z}$ but not in \bar{R}_{y}. Therefore, the pair $\left(\bar{X}, \bar{L}_{x z}+\frac{65}{32} \bar{\Delta}+\theta_{1} F\right)$ is not log canonical at the point Q. However, this is impossible since

$$
\begin{aligned}
13\left(\frac{65}{32} \bar{\Delta}+\theta_{1} F\right) \cdot \bar{L}_{x z} & =\frac{13 \cdot 65}{32}\left(\frac{4+43 a}{14 \cdot 33}-\frac{b}{33}-\frac{c}{13 \cdot 33}\right)+\theta_{1}= \\
& =\frac{32+1235 a}{32 \cdot 33}+\frac{13 \cdot 65(4+43 a)}{14 \cdot 32 \cdot 33}<1 .
\end{aligned}
$$

Therefore, the point Q must be the point Q_{19}.
Let $\psi: \tilde{X} \rightarrow \bar{X}$ be the weighted blow up at the point Q_{19} with weights $(3,7)$ and let E be the exceptional curve of the morphism ψ. The exceptional curve E contains two singular points O_{3} and O_{7} of \tilde{X}. The point O_{3} is of type $\frac{1}{3}(1,2)$ and the point O_{7} is of type $\frac{1}{7}(4,5)$. Then

$$
K_{\tilde{X}} \sim_{\mathbb{Q}} \psi^{*}\left(K_{\bar{X}}\right)-\frac{9}{19} E, \quad \tilde{R}_{y} \sim_{\mathbb{Q}} \psi^{*}\left(\bar{R}_{y}\right)-\frac{3}{19} E, \quad \tilde{F} \sim_{\mathbb{Q}} \psi^{*}(F)-\frac{7}{19} E, \quad \tilde{\Delta} \sim_{\mathbb{Q}} \psi^{*}(\bar{\Delta})-\frac{d}{19} E,
$$

where \tilde{R}_{y}, \tilde{F} and $\tilde{\Delta}$ are the proper transforms of \bar{R}_{y}, F and $\bar{\Delta}$ by ψ, respectively, and d is a non-negative rational number.

The \log pull-back of the \log pair $\left(X, \frac{65}{32} D\right)$ by $\pi \circ \psi$ is the \log pair

$$
\left(\tilde{X}, \frac{65 a}{32} \tilde{L}_{x z}+\frac{65 b}{32} \tilde{R}_{y}+\frac{65}{32} \tilde{\Delta}+\theta_{1} \tilde{F}+\theta_{2} E\right),
$$

where $\tilde{L}_{x z}$ is the proper transform of $\bar{L}_{x z}$ by ψ and

$$
\theta_{2}=\frac{65(3 b+d)}{19 \cdot 32}+\frac{7}{19} \theta_{1}+\frac{9}{19}=\frac{9728+65(133 a+190 b+7 c+33 d)}{19 \cdot 32 \cdot 33} .
$$

This is not \log canonical at some point $O \in E$.
We have

$$
0 \leqslant \tilde{\Delta} \cdot \tilde{R}_{y}=\bar{\Delta} \cdot \bar{R}_{y}-\frac{d}{7 \cdot 19}=\frac{8+38 b}{13 \cdot 33}-\frac{19 a+c}{19 \cdot 33}-\frac{d}{7 \cdot 19}
$$

and hence $133 a+7 c+33 d \leqslant \frac{133}{13}(8+38 b)$. Therefore, this inequality together with $b<\frac{2}{23}$ gives us

$$
\begin{aligned}
\theta_{2} & =\frac{9728+65 \cdot 190 b}{19 \cdot 32 \cdot 33}+\frac{65(133 a+7 c+33 d)}{19 \cdot 32 \cdot 33} \leqslant \\
& \leqslant \frac{9728+65 \cdot 190 b}{19 \cdot 32 \cdot 33}+\frac{65 \cdot 7(8+38 b)}{13 \cdot 32 \cdot 33}<1 .
\end{aligned}
$$

Suppose that the point O is in the outside of \tilde{R}_{y} and \tilde{F}. Then the \log pair $\left(E,\left.\frac{65}{32} \tilde{\Delta}\right|_{E}\right)$ is not \log canonical at the point O and hence

$$
1<\frac{65}{32} \tilde{\Delta} \cdot E=\frac{65 d}{3 \cdot 7 \cdot 32} .
$$

However,

$$
d \leqslant \frac{1}{33}(133 a+7 c+33 d) \leqslant \frac{133}{13 \cdot 33}(8+38 b)<\frac{3 \cdot 7 \cdot 32}{65}
$$

since $b \leqslant \frac{2}{23}$. This is a contradiction.
Suppose that the point O belongs to \tilde{R}_{y}. Then the log pair $\left(\tilde{X}, \frac{65 b}{32} \tilde{R}_{y}+\frac{65}{32} \tilde{\Delta}+\theta_{2} E\right)$ is not \log canonical at the point O and hence

$$
1<7\left(\frac{65}{32} \tilde{\Delta}+\theta_{2} E\right) \cdot \tilde{R}_{x}=\frac{7 \cdot 65}{32}\left(\frac{8+38 b}{13 \cdot 33}-\frac{19 a+c}{19 \cdot 33}-\frac{d}{7 \cdot 19}\right)+\theta_{2} .
$$

However,

$$
\frac{7 \cdot 65}{32}\left(\frac{8+38 b}{13 \cdot 33}-\frac{19 a+c}{19 \cdot 33}-\frac{d}{7 \cdot 19}\right)+\theta_{2}=\frac{9728+65 \cdot 190 b}{19 \cdot 32 \cdot 33}+\frac{65 \cdot 7(8+38 b)}{13 \cdot 32 \cdot 33}<1 .
$$

This is a contradiction. Therefore, the point O is the point O_{3}.
Suppose that the point O belongs to \tilde{F}. Then the \log pair $\left(\tilde{X}, \frac{65}{32} \tilde{\Delta}+\theta_{1} \tilde{F}+\theta_{2} E\right)$ is not \log canonical at the point O and hence

$$
1<3\left(\frac{65}{32} \tilde{\Delta}+\theta_{2} E\right) \cdot \tilde{F}=\frac{3 \cdot 65}{32}\left(\frac{c}{13 \cdot 19}-\frac{d}{3 \cdot 19}\right)+\theta_{2} .
$$

However,

$$
\begin{aligned}
\frac{3 \cdot 65}{32}\left(\frac{c}{13 \cdot 19}-\frac{d}{3 \cdot 19}\right)+\theta_{2}= & \frac{3 \cdot 65 c}{13 \cdot 19 \cdot 32}+\frac{9728+65(133 a+190 b+7 c)}{19 \cdot 32 \cdot 33}= \\
& =\frac{512+455 a}{32 \cdot 33}+\frac{65 \cdot 190(13 b+c)}{13 \cdot 19 \cdot 32 \cdot 33} \leqslant \\
& \leqslant \frac{512+455 a}{32 \cdot 33}+\frac{65 \cdot 190(4+43 a)}{14 \cdot 19 \cdot 32 \cdot 33}<1
\end{aligned}
$$

since $13 b+c \leqslant \frac{13}{14}(4+43 a)$ and $a \leqslant \frac{304}{3 \cdot 23 \cdot 65}$. This is a contradiction.
Lemma 3.4.10. Let X be a quasismooth hypersurface of degree 166 in $\mathbb{P}(13,23,51,83)$. Then $\operatorname{lct}(X)=\frac{91}{40}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{5} z+x z^{3}+x^{11} y=0
$$

The surface X is singular only at the points O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{91}{40}=\operatorname{lct}\left(X, \frac{4}{13} C_{x}\right)<\operatorname{lct}\left(X, \frac{4}{23} C_{y}\right)=\frac{115}{24},
$$

and hence $\operatorname{lct}(X) \leqslant \frac{91}{40}$.
Suppose that $\operatorname{lct}(X)<\frac{91}{40}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{91}{40} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains neither C_{x} nor C_{y}. Then the inequalities

$$
51 D \cdot C_{x}=\frac{8}{23}<\frac{40}{91}, \quad 13 D \cdot C_{y}=\frac{8}{51}<\frac{40}{91}
$$

show that the point P is a smooth point of X in the outside of C_{x}. However, $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(663)\right)$ contains $x^{51}, y^{13} x^{28}, y^{26} x^{5}$ and z^{13}, and hence it follows from Lemma 1.3 .9 that the point P is either a singular point of X or a point on C_{x}. This is a contradiction.

3.5. Sporadic cases with $I=5$

Lemma 3.5.1. Let X be a quasismooth hypersurface of degree 63 in $\mathbb{P}(11,13,19,25)$. Then $\operatorname{lct}(X)=\frac{13}{8}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{2} t+y t^{2}+x y^{4}+x^{4} z=0
$$

and X is singular at O_{x}, O_{y}, O_{z} and O_{t}.
The curve C_{x} (resp. C_{y}, C_{z}, C_{t}) consists of two irreducible and reduced curves $L_{x t}$ (resp $L_{y z}$, $L_{y z}, L_{x t}$) and $R_{x}=\left\{x=z^{2}+y t=0\right\}$ (resp. $R_{y}=\left\{y=x^{4}+z t=0\right\}, R_{z}=\left\{z=t^{2}+x y^{3}=0\right\}$, $R_{t}=\left\{t=y^{4}+x^{3} z=0\right\}$). The curve $L_{x t}$ intersects R_{x} (resp. R_{t}) only at the point O_{y} (resp. O_{z}). The curve $L_{y z}$ intersects R_{y} (resp. R_{z}) only at the point O_{t} (resp. O_{x}).

We have the following intersection numbers

$$
\begin{gathered}
D \cdot L_{x t}=\frac{5}{13 \cdot 19}, \quad D \cdot L_{y z}=\frac{1}{5 \cdot 11}, \quad D \cdot R_{x}=\frac{2}{5 \cdot 13}, \quad D \cdot R_{y}=\frac{4}{5 \cdot 19}, \quad D \cdot R_{z}=\frac{10}{11 \cdot 13}, \\
D \cdot R_{t}=\frac{20}{11 \cdot 19}, \quad L_{x t} \cdot R_{x}=\frac{2}{13}, \quad L_{x t} \cdot R_{t}=\frac{4}{19}, \quad L_{y z} \cdot R_{y}=\frac{4}{25}, \quad L_{y z} \cdot R_{z}=\frac{2}{11}, \\
L_{x t}^{2}=-\frac{27}{13 \cdot 19}, \quad L_{y z}^{2}=-\frac{31}{11 \cdot 25}, \quad R_{x}^{2}=-\frac{28}{13 \cdot 25}, \quad R_{y}^{2}=-\frac{24}{19 \cdot 25}, \quad R_{z}^{2}=\frac{12}{11 \cdot 13}, \quad R_{t}^{2}=\frac{56}{11 \cdot 19} .
\end{gathered}
$$

We have

$$
\operatorname{lct}\left(X, \frac{5}{13} C_{y}\right)=\frac{13}{8}<\operatorname{lct}\left(X, \frac{5}{11} C_{x}\right)=\frac{33}{20}<\operatorname{lct}\left(X, \frac{5}{25} C_{t}\right)=\frac{35}{16}<\operatorname{lct}\left(X, \frac{5}{19} C_{z}\right)=\frac{19}{8} \text {. }
$$

In particular, we have $\operatorname{lct}(X) \leqslant \frac{13}{8}$.
We suppose that $\operatorname{lct}(X)<\frac{13}{8}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the \log pair $\left(X, \frac{13}{8} D\right)$ is not \log canonical at some point $P \in X$.

Suppose that the point P is located in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$. We consider the pencil \mathcal{L} on X defined by the equations $\lambda x^{4}+\mu z t=0$, where $[\lambda: \mu] \in \mathbb{P}^{1}$. The curve $L_{x t}$ is the unique base component of the pencil \mathcal{L}. There is a unique member Z in the pencil \mathcal{L} passing through the point P. Since the point P is in the outside of $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the curve Z is defined by an equation of the form

$$
\alpha x^{4}+z t=0,
$$

where α is a non-zero constant.
The open subset $Z \backslash C_{z}$ of the curve Z is a \mathbb{Z}_{19}-quotient of the affine curve

$$
\alpha x^{4}+t=t+y t^{2}+x y^{4}+x^{4}=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[x, y, z])
$$

that is isomorphic to the affine curve given by the equation

$$
x\left((1-\alpha) x^{3}+\alpha^{2} x^{7} y+y^{4}\right)=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z]) .
$$

If $\alpha \neq 1$, the divisor Z consists of two irreducible and reduced curves $L_{x t}$ and Z_{α}. On the other hand, if $\alpha=1$, then the divisor Z consists of three irreducible and reduced curves $L_{x t}, R_{y}$ and Z_{1}. Since $P \notin C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$, the point P must be contained in Z_{α} (including $\alpha=1$). Also, the curve Z_{α} is smooth at the point P.

Write $D=n Z_{\alpha}+\Gamma$, where Γ is an effective \mathbb{Q}-divisor whose support contains Z_{α}. Since Z_{α} passing through the point O_{t} and the pair $\left(X, \frac{13}{8} D\right)$ is \log canonical at the point O_{z}, we have $n \leqslant \frac{8}{13}$. We can easily check

$$
D \cdot Z_{\alpha}=\left\{\begin{array}{l}
D \cdot\left(Z-L_{x t}\right)=\frac{227}{5 \cdot 13 \cdot 19} \text { if } \alpha \neq 1, \\
D \cdot\left(Z-L_{x t}-R_{y}\right)=\frac{35}{13 \cdot 19} \text { if } \alpha=1 .
\end{array}\right.
$$

Also, if $\alpha \neq 1$, then

$$
Z_{\alpha}^{2}=Z \cdot Z_{\alpha}-L_{x t} \cdot Z_{\alpha} \geqslant Z \cdot Z_{\alpha}-\left(L_{x t}+R_{x}\right) \cdot Z_{\alpha}=\frac{33}{5} D \cdot Z_{\alpha} .
$$

If $\alpha=1$,

$$
Z_{\alpha}^{2}=Z \cdot Z_{\alpha}-\left(L_{x t}+R_{y}\right) \cdot Z_{\alpha} \geqslant Z \cdot Z_{\alpha}-\left(L_{x t}+R_{x}+L_{y z}+R_{y}\right) \cdot Z_{\alpha}=4 D \cdot Z_{\alpha}
$$

In both cases, we have $Z_{\alpha}^{2}>0$. Since

$$
\left(D-n Z_{\alpha}\right) \cdot Z_{\alpha} \leqslant D \cdot Z_{\alpha}<\frac{8}{13}
$$

Lemma 1.3 .8 shows that the pair $\left(X, \frac{13}{8} D\right)$ is \log canonical at the point P. This is a contradiction. Therefore, the point P must belong to the set $C_{x} \cup C_{y} \cup C_{z} \cup C_{t}$.

It follows from Lemma 1.3 .6 that we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of the curves $C_{x}, C_{y}, C_{z}, C_{t}$. Since the curve R_{t} is singular at the point O_{z} with multiplicity 3 and the support of D does not contain either $L_{x t}$ or R_{t}, one of the inequalities

$$
\operatorname{mult}_{O_{z}}(D) \leqslant 19 D \cdot L_{x t}=\frac{5}{13}<\frac{8}{13}, \quad \operatorname{mult}_{O_{z}}(D) \leqslant \frac{19}{3} D \cdot R_{t}=\frac{20}{3 \cdot 11}<\frac{8}{13}
$$

must hold, and hence the point P cannot be the point O_{z}. Similarly, we see that the point P can be neither O_{x} nor O_{y}.

Now we write $D=m_{0} L_{x t}+m_{1} L_{y z}+m_{2} R_{x}+m_{3} R_{y}+m_{4} R_{z}+m_{5} R_{t}+\Omega$, where Ω is an effective \mathbb{Q}-divisor whose support contains none of $L_{x t}, L_{y z}, R_{x}, R_{y}, R_{z}, R_{t}$. Since the pair $\left(X, \frac{13}{8} D\right)$ is \log canonical at the points O_{x}, O_{y}, O_{z}, we must have $m_{i} \leqslant \frac{8}{13}$. Then the inequalities

$$
\left.\begin{array}{l}
\left(D-m_{0} L_{x t}\right) \cdot L_{x t}=\frac{5+27 m_{0}}{13 \cdot 19} \\
\left(D-m_{1} L_{y z}\right) \cdot L_{y z}=\frac{5+31 m_{1}}{11 \cdot 25} \\
\left(D-m_{2} R_{x}\right) \cdot R_{x}=\frac{10+28 m_{2}}{25 \cdot 13} \\
\left(D-m_{3} R_{y}\right) \cdot R_{y}=\frac{20+24 m_{3}}{25 \cdot 19} \\
\left(D-m_{4} R_{z}\right) \cdot R_{z}=\frac{10-12 m_{4}}{11 \cdot 13} \\
\left(D-m_{5} R_{t}\right) \cdot R_{t}=\frac{20-56 m_{5}}{11 \cdot 19}
\end{array}\right\} \leqslant \frac{8}{13}
$$

imply that the point P must be the point O_{t}.
Put $D=a L_{y z}+b R_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support contains neither the curve $L_{y z}$ nor R_{x}. If $a=0$, then we obtain

$$
\operatorname{mult}_{O_{t}}(D) \leqslant 25 D \cdot L_{y z}=\frac{5}{11}<\frac{8}{13} .
$$

This is a contradiction. Therefore, $a>0$, and hence the support of D dose not contain the curve R_{y}. Since

$$
\frac{4}{5 \cdot 19}=D \cdot R_{y} \geqslant a L_{y z} \cdot R_{y}+\frac{\operatorname{mult}_{O_{t}}(D)-a}{25}>\frac{3 a}{25}+\frac{8}{13 \cdot 25},
$$

and hence $a \leqslant \frac{36}{247}$. If $b>0$, then

$$
\frac{5}{13 \cdot 19}=D \cdot L_{x t} \geqslant b R_{x} \cdot L_{x t}=\frac{2 b}{13},
$$

and hence $b \leqslant \frac{5}{38}$.
Let $\pi: \bar{X} \rightarrow X$ be the weighted blow up of O_{t} with weights $(7,3)$ and let F be the exceptional curve of π. Then

$$
K_{\bar{X}} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}\right)-\frac{15}{25} F, \bar{L}_{y z} \sim_{\mathbb{Q}} \pi^{*}\left(L_{y z}\right)-\frac{3}{25} F, \bar{R}_{x} \sim_{\mathbb{Q}} \pi^{*}\left(R_{x}\right)-\frac{7}{25} F, \bar{\Delta} \sim_{\mathbb{Q}} \pi^{*}(\Delta)-\frac{c}{25} F,
$$

where $\bar{\Delta}, \bar{L}_{y z}, \bar{R}_{x}$ are the proper transforms of $\Delta, L_{y z}, R_{x}$, respectively, and c is a non-negative rational number. The curve F contains two singular points Q_{7} and Q_{3} of \bar{X}. The point Q_{7} is a singular point of type $\frac{1}{7}(1,1)$ and the point Q_{3} is of type $\frac{1}{3}(2,1)$. Note that the curve \bar{R}_{x} passes through the point Q_{3} but not the point Q_{7}. The curve $\bar{L}_{y z}$ passes through the point Q_{7} but not the point Q_{3}.

The \log pull-back of the \log pair $\left(X, \frac{13}{8} D\right)$ by π is the \log pair

$$
\left(\bar{X}, \frac{13 a}{8} \bar{L}_{y z}+\frac{13 b}{8} \bar{R}_{x}+\frac{13}{8} \bar{\Delta}+\theta_{1} F\right),
$$

where

$$
\theta_{1}=\frac{13(3 a+7 b+c)+120}{8 \cdot 25}
$$

This pair is not \log canonical at some point $Q \in F$. We have

$$
0 \leqslant \bar{\Delta} \cdot \bar{R}_{x}=\frac{10+28 b}{13 \cdot 25}-\frac{a}{25}-\frac{c}{3 \cdot 25} .
$$

This inequality shows $3 a+c \leqslant \frac{3}{13}(10+28 b)$. Then

$$
\theta_{1}=\frac{13(3 a+c)+91 b+120}{8 \cdot 25} \leqslant \frac{6+7 b}{8}<1
$$

since $b \leqslant \frac{5}{38}$.
Suppose that the point Q is neither the point Q_{7} nor the point Q_{3}. Then the \log pair $\left(\bar{X}, \frac{13}{8} \bar{\Delta}+F\right)$ is not \log canonical at the point Q. Then

$$
\frac{13 c}{8 \cdot 21}=\frac{13}{8} \bar{\Delta} \cdot F>1
$$

by Lemma 1.3.4. However, $c \leqslant 3 a+c \leqslant \frac{3}{13}(10+28 b)$. This is a contradiction since $b \leqslant \frac{5}{38}$. Therefore, the point Q is either the point Q_{7} or the point Q_{3}.

Suppose that the point Q is the point Q_{3}. This point is the intersection point of F and \bar{R}_{x}. Then the log pair $\left(\bar{X}, \frac{13 b}{8} \bar{R}_{x}+\frac{13}{8} \bar{\Delta}+\theta_{1} F\right)$ is not \log canonical at the point Q. It then follows from Lemma 1.3.4 that

$$
1<3\left(\frac{13}{8} \bar{\Delta}+\theta_{1} F\right) \cdot \bar{R}_{x}=\frac{13 \cdot 3}{8}\left(\frac{10+28 b}{13 \cdot 25}-\frac{a}{25}-\frac{c}{3 \cdot 25}\right)+\theta_{1} .
$$

However,

$$
\frac{13 \cdot 3}{8}\left(\frac{10+28 b}{13 \cdot 25}-\frac{a}{25}-\frac{c}{3 \cdot 25}\right)+\theta_{1}=\frac{6+7 b}{8}<1 .
$$

Therefore, the point Q is the point Q_{7}. This point is the intersection point of F and $\bar{L}_{y z}$.
Let $\phi: \tilde{X} \rightarrow \bar{X}$ be the blow up at the point Q_{7}. Let G be the exceptional divisor of the morphism ϕ. The surface \tilde{X} is smooth along the exceptional divisor G. Let $\tilde{L}_{y z}, \tilde{R}_{x}, \tilde{\Delta}$ and \tilde{F} be the proper transforms of $L_{y z}, R_{x}, \Delta$ and F by $\pi \circ \phi$, respectively. We have

$$
K_{\tilde{X}} \sim_{\mathbb{Q}} \phi^{*}\left(K_{\bar{X}}\right)-\frac{5}{7} G, \tilde{L}_{y z} \sim_{\mathbb{Q}} \phi^{*}\left(\bar{L}_{y z}\right)-\frac{1}{7} G, \tilde{F} \sim_{\mathbb{Q}} \phi^{*}(F)-\frac{1}{7} G, \tilde{\Delta} \sim_{\mathbb{Q}} \phi^{*}(\bar{\Delta})-\frac{d}{7} G,
$$

where d is a non-negative rational number. The log pull-back of the \log pair $\left(X, \frac{13}{8} D\right)$ via $\pi \circ \phi$ is

$$
\left(\tilde{X}, \frac{13 a}{8} \tilde{L}_{y z}+\frac{13 b}{8} \tilde{R}_{x}+\frac{13}{8} \tilde{\Delta}+\theta_{1} \tilde{F}+\theta_{2} G\right),
$$

where

$$
\theta_{2}=\frac{13}{7 \cdot 8}(a+d)+\frac{\theta_{1}}{7}+\frac{5}{7}=\frac{1120+13(28 a+7 b+c+25 d)}{7 \cdot 8 \cdot 25} .
$$

This \log pair is not \log canonical at some point $O \in G$. We have

$$
0 \leqslant \tilde{\Delta} \cdot \tilde{L}_{y z}=\frac{5+31 a}{11 \cdot 25}-\frac{b}{25}-\frac{c}{7 \cdot 25}-\frac{d}{7}
$$

We then obtain $7 b+c+25 d \leqslant \frac{7}{11}(5+31 a)$. Since $a \leqslant \frac{36}{247}$, we see

$$
\theta_{2}=\frac{1120+13(28 a+7 b+c+25 d)}{7 \cdot 8 \cdot 25} \leqslant \frac{511+273 a}{7 \cdot 8 \cdot 11}<1
$$

Suppose that $O \notin \tilde{F} \cup \tilde{L}_{y z}$. The \log pair $\left(\tilde{X}, \frac{13}{8} \tilde{\Delta}+G\right)$ is not \log canonical at the point O. Applying Lemma 1.3.4, we get

$$
1<\frac{13}{8} \tilde{\Delta} \cdot G=\frac{13 d}{8}
$$

and hence $d>\frac{8}{13}$. However, $d \leqslant \frac{1}{25}(7 b+c+25 d) \leqslant \frac{7}{11 \cdot 25}(5+31 a)$. This is a contradiction since $a \leqslant \frac{36}{247}$. Therefore, the point O is either the intersection point of G and \tilde{F} or the intersection point of G and $\tilde{L}_{y z}$. In the latter case, the pair $\left(\tilde{X}, \frac{13 a}{8} \tilde{L}_{y z}+\frac{13}{8} \tilde{\Delta}+\theta_{2} G\right)$ is not log canonical at the point O. Then, applying Lemma 1.3.4, we get

$$
1<\left(\frac{13}{8} \tilde{\Delta}+\theta_{2} G\right) \cdot \tilde{L}_{y z}=\frac{13}{8}\left(\frac{5+31 a}{11 \cdot 25}-\frac{b}{25}-\frac{c}{7 \cdot 25}-\frac{d}{7}\right)+\theta_{2} .
$$

However,

$$
\frac{13}{8}\left(\frac{5+31 a}{11 \cdot 25}-\frac{b}{25}-\frac{c}{7 \cdot 25}-\frac{d}{7}\right)+\theta_{2}=\frac{511+273 a}{7 \cdot 8 \cdot 11}<1 .
$$

Therefore, the point O must be the intersection point of G and \tilde{F}.
Let $\xi: \hat{X} \rightarrow \tilde{X}$ be the blow up at the point O and let H be the exceptional divisor of ξ. We also let $\hat{L}_{y z}, \hat{R}_{x}, \hat{\Delta}, \hat{G}$, and \hat{F} be the proper transforms of $\tilde{L}_{y z}, \tilde{R}_{x}, \tilde{\Delta}, G$ and \tilde{F} by ξ, respectively. Then \hat{X} is smooth along the exceptional divisor H. We have

$$
K_{\hat{X}} \sim_{\mathbb{Q}} \xi^{*}\left(K_{\tilde{X}}\right)-H, \hat{G} \sim_{\mathbb{Q}} \xi^{*}(G)-H, \hat{F} \sim_{\mathbb{Q}} \xi^{*}(\tilde{F})-H, \hat{\Delta} \sim_{\mathbb{Q}} \xi^{*}(\tilde{\Delta})-e H,
$$

where e is a non-negative rational number. The log pull-back of the \log pair $\left(X, \frac{13}{8} D\right)$ via $\pi \circ \phi \circ \xi$ is

$$
\left(\hat{X}, \frac{13 a}{8} \hat{L}_{y z}+\frac{13 b}{8} \hat{R}_{x}+\frac{13}{8} \hat{\Delta}+\theta_{1} \hat{F}+\theta_{2} \hat{G}+\theta_{3} H\right),
$$

where

$$
\theta_{3}=\theta_{1}+\theta_{2}+\frac{13 e}{8}-1=\frac{560+13(49 a+56 b+8 c+25 d+175 e)}{7 \cdot 8 \cdot 25}
$$

This \log pair is not \log canonical at some point $A \in H$. We have

$$
\frac{c}{21}-\frac{d}{7}-e \hat{\Delta} \cdot \hat{F} \geqslant 0
$$

Therefore, $3 d+21 e \leqslant c$.
Then

$$
\begin{aligned}
\theta_{3} & =\frac{560+13(49 a+56 b+8 c)}{7 \cdot 8 \cdot 25}+\frac{13(d+7 e)}{7 \cdot 8} \leqslant \\
& \leqslant \frac{1680+13(147 a+168 b+49 c)}{3 \cdot 7 \cdot 8 \cdot 25}= \\
& =\frac{1680+1284 b}{3 \cdot 7 \cdot 8 \cdot 25}+\frac{13 \cdot 49(3 a+c)}{3 \cdot 7 \cdot 8 \cdot 25} \leqslant \\
& \leqslant \frac{140+107 b}{2 \cdot 7 \cdot 25}+\frac{7(5+14 b)}{4 \cdot 25}=\frac{21+36 b}{28}<1
\end{aligned}
$$

since $b \leqslant \frac{5}{38}$ and $3 a+c \leqslant \frac{3}{13}(10+28 b)$. In particular, θ_{3} is a positive number.
Suppose that $A \notin \hat{F} \cup \hat{G}$. Then the \log pair $\left(\hat{X}, \frac{13}{8} \hat{\Delta}+\theta_{3} H\right)$ is not log canonical at the point A. Applying Lemma 1.3.4, we get

$$
1<\frac{13}{8} \hat{\Delta} \cdot H=\frac{13 e}{8} .
$$

However,

$$
e \leqslant \frac{1}{21}(3 d+21 e) \leqslant \frac{c}{21} \leqslant \frac{1}{21}(3 a+c) \leqslant \frac{3(10+28 b)}{13 \cdot 21} \leqslant \frac{8}{13} .
$$

Therefore, the point A must be either in \hat{F} or in \hat{G}.
Suppose that $A \in \hat{F}$. Then the \log pair $\left(\hat{X}, \frac{13}{8} \hat{\Delta}+\theta_{1} \hat{F}+\theta_{3} H\right)$ is not \log canonical at the point A. Applying Lemma 1.3.4, we get

$$
1<\left(\frac{13}{8} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{F}=\frac{13}{8}\left(\frac{c}{21}-\frac{d}{7}-e\right)+\theta_{3}=\frac{1680+13(147 a+168 b+49 c)}{3 \cdot 7 \cdot 8 \cdot 25} .
$$

However,

$$
\frac{1680+13(147 a+168 b+49 c)}{3 \cdot 7 \cdot 8 \cdot 25} \leqslant \frac{21+36 b}{28}<1 .
$$

Therefore, the point A is the intersection point of H and \hat{G}. Then the \log pair $\left(\hat{X}, \frac{13}{8} \hat{\Delta}+\theta_{2} \hat{G}+\theta_{3} H\right)$ is not log canonical at the point A. From Lemma 1.3.4 we obtain

$$
1<\left(\frac{13}{8} \hat{\Delta}+\theta_{3} H\right) \cdot \hat{G}=\frac{13}{8}(d-e)+\theta_{3}=\frac{560+13(49 a+56 b+8 c+200 d)}{7 \cdot 8 \cdot 25} .
$$

However,

$$
\frac{560+13(49 a+56 b+8 c+200 d)}{7 \cdot 8 \cdot 25}=\frac{80+91 a}{8 \cdot 25}+\frac{13(7 b+c+25 d)}{7 \cdot 25} \leqslant \frac{56+169 a}{8 \cdot 11}<1
$$

since $a<\frac{36}{247}$ and $7 b+c+25 d \leqslant \frac{7}{11}(5+31 a)$. The obtained contradiction completes the proof.
Lemma 3.5.2. Let X be a quasismooth hypersurface of degree 136 in $\mathbb{P}(11,25,37,68)$. Then $\operatorname{lct}(X)=\frac{11}{6}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
x y^{5}+x^{9} z+y z^{3}+t^{2}=0 .
$$

The surface X is singular at the points O_{x}, O_{y} and O_{z}.
The curves C_{x} and C_{y} are reduced and irreducible. We have

$$
\frac{11}{6}=\operatorname{lct}\left(X, \frac{5}{11} C_{x}\right)<\operatorname{lct}\left(X, \frac{5}{25} C_{y}\right)=\frac{55}{18} .
$$

Thus, $\operatorname{lct}(X) \leqslant \frac{11}{6}$.
Suppose that $\operatorname{lct}(X)<\frac{11}{6}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{11}{6} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6 we may assume that the support of D contains neither C_{x} nor C_{y}. Then two inequalities

$$
37 D \cdot C_{x}=\frac{2}{5}<\frac{6}{11}, \quad 11 D \cdot C_{y}=\frac{10}{37}<\frac{6}{11}
$$

imply that the point P is neither a singular point of X nor a point on C_{x}. Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(407)\right)$ contains x^{37}, z^{11} and $x^{12} y^{11}$, we see that this cannot happen by Lemma 1.3.9,

Lemma 3.5.3. Let X be a quasismooth hypersurface of degree 136 in $\mathbb{P}(13,19,41,68)$. Then $\operatorname{lct}(X)=\frac{91}{50}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
x^{9} y+x z^{3}+y^{5} z+t^{2}=0 .
$$

The surface X is singular only at the points O_{x}, O_{y} and O_{z}.
The curves C_{x} and C_{y} are reduced and irreducible. Also, it is easy to check

$$
\frac{91}{50}=\operatorname{lct}\left(X, \frac{5}{13} C_{x}\right)<\operatorname{lct}\left(X, \frac{5}{19} C_{y}\right)=\frac{19}{6} .
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{50}{91}$.
Suppose that $\operatorname{lct}(X)<\frac{91}{50}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{91}{50} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6 we may assume that the support of D contains neither C_{x} nor C_{y}. Then two inequalities

$$
41 D \cdot C_{x}=\frac{10}{19}<\frac{50}{91}, \quad 13 D \cdot C_{y}=\frac{10}{41}<\frac{50}{91}
$$

imply that the point P is neither a singular point of X nor a point on C_{x}. However, by Lemma 1.3 .9 this is impossible since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(533)\right)$ contains x^{41}, z^{13} and $x^{3} y^{26}$.

3.6. Sporadic cases with $I=6$

Lemma 3.6.1. Let X be a quasismooth hypersurface of degree 45 in $\mathbb{P}(7,10,15,19)$. Then $\operatorname{lct}(X)=\frac{35}{54}$.
Proof. The surface X can be defined by the equation $z^{3}-y^{3} z+x t^{2}+x^{5} y=0$. It is singular at the points O_{x}, O_{y}, O_{t} and $Q=[0: 1: 1: 0]$.

The curve C_{x} consists of two irreducible and reduced curves $L_{x z}$ and $R_{x}=\left\{x=z^{2}-y^{3}=0\right\}$. These two curves $L_{x z}$ and R_{x} meets each other at the point O_{t}. Also,

$$
L_{x z}^{2}=-\frac{23}{10 \cdot 19}, \quad R_{x}^{2}=-\frac{8}{5 \cdot 19}, \quad L_{x z} \cdot R_{x}=\frac{3}{19} .
$$

The curve R_{x} is singular at the point O_{t}. The curve C_{y} is irreducible and

$$
\frac{35}{54}=\operatorname{lct}\left(X, \frac{6}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{6}{10} C_{y}\right)=\frac{25}{18} .
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{35}{54}$.
Suppose that $\operatorname{lct}(X)<\frac{35}{54}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{35}{54} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D does not contain the curve C_{y}. Similarly, we may assume that either $L_{x z} \nsubseteq \operatorname{Supp}(D)$ or $R_{x} \nsubseteq \operatorname{Supp}(D)$.

Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(105)\right)$ contains the monomials $x^{15}, y^{7} x^{5}$ and z^{7}, it follows from Lemma 1.3.9 that the point P is either a point on C_{x} or the singular point O_{x}.

Since either $L_{x z} \nsubseteq \operatorname{Supp}(D)$ or $R_{x} \nsubseteq \operatorname{Supp}(D)$, one of the inequalities

$$
\operatorname{mult}_{O_{t}}(D) \leqslant 19 D \cdot L_{x z}=\frac{3}{5}<\frac{54}{35}, \operatorname{mult}_{O_{t}}(D) \leqslant \frac{19}{2} D \cdot R_{x}=\frac{3}{5}<\frac{54}{35}
$$

must hold, and hence the point P cannot be the point O_{t}. On the other hand, the inequality $7 D \cdot C_{y}=\frac{18}{19}<\frac{54}{35}$ shows that the point P cannot be the point O_{x}.

Put $D=m L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{6}{5 \cdot 19}=D \cdot R_{x} \geqslant m L_{x z} \cdot R_{x}=\frac{3 m}{19}
$$

and hence $m \leqslant \frac{2}{5}$. Then,

$$
10\left(D-m L_{x z}\right) \cdot L_{x z}=\frac{6+23 m}{19} \leqslant \frac{54}{35} .
$$

Thus it follows from Lemma 1.3 .8 that the point P cannot belong to $L_{x z}$.
Now we write $D=\epsilon R_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $R_{x} \not \subset \operatorname{Supp}(\Delta)$. If $\epsilon \neq 0$, then

$$
\frac{3}{5 \cdot 19}=D \cdot L_{x z} \geqslant \epsilon R_{x} \cdot L_{x z}=\frac{3 \epsilon}{19}
$$

and hence $\epsilon \leqslant \frac{1}{5}$. Then

$$
5\left(D-\epsilon R_{x}\right) \cdot R_{x}=\frac{3+8 \epsilon}{19} \leqslant \frac{54}{35} .
$$

By Lemma 1.3 .8 the point P cannot be contained in R_{x} either. Therefore, the point P is located nowhere.

Lemma 3.6.2. Let X be a quasismooth hypersurface of degree 106 in $\mathbb{P}(11,19,29,53)$. Then $\operatorname{lct}(X)=\frac{55}{36}$.
Proof. We may assume that the surface X is defined by the quasihomogeneous equation

$$
x^{7} z+x y^{5}+y z^{3}+t^{2}=0
$$

The surface X is singular at O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible. It is easy to see

$$
\operatorname{lct}\left(X, \frac{6}{11} C_{x}\right)=\frac{55}{36}<\operatorname{lct}\left(X, \frac{6}{19} C_{y}\right)=\frac{57}{28} .
$$

Suppose that $\operatorname{lct}(X)<\frac{55}{36}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{55}{36} D\right)$ is not \log canonical. For a smooth point $P \in X \backslash C_{x}$, we have

$$
\operatorname{mult}_{P}(D) \leqslant \frac{6 \cdot 319 \cdot 106}{11 \cdot 19 \cdot 29 \cdot 53}<\frac{36}{55}
$$

by Lemma 1.3 .9 since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(319)\right)$ contains the monomials x^{29}, z^{11} and $x^{10} y^{11}$. Therefore, either there is a point $P \in C_{x}$ such that mult $P_{P}(D)>\frac{36}{55}$ or we have mult $O_{x}(D)>\frac{36}{55}$. Since the pairs $\left(X, \frac{6.55}{11 \cdot 36} C_{x}\right)$ and $\left(X, \frac{6.55}{19 \cdot 36} C_{y}\right)$ are log canonical and the curves C_{x} and C_{y} are irreducible, we may assume that the support of D contains neither the curve C_{x} nor the curve C_{y}. Then we can obtain

$$
\operatorname{mult}_{O_{x}}(D) \leqslant 11 C_{y} \cdot D \leqslant \frac{11 \cdot 19 \cdot 106 \cdot 6}{11 \cdot 19 \cdot 29 \cdot 53}<\frac{36}{55}
$$

and for any point $P \in C_{x}$

$$
\operatorname{mult}_{P}(D) \leqslant 29 C_{x} \cdot D \leqslant \frac{29 \cdot 11 \cdot 106 \cdot 6}{11 \cdot 19 \cdot 29 \cdot 53}<\frac{36}{55} .
$$

This is a contradiction. Therefore, $\operatorname{lct}(X)=\frac{55}{36}$.
Lemma 3.6.3. Let X be a quasismooth hypersurface of degree 106 in $\mathbb{P}(13,15,31,53)$. Then $\operatorname{lct}(X)=\frac{91}{60}$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
x^{7} y+x z^{3}+y^{5} z+t^{2}=0 .
$$

The surface X is singular at the points O_{x}, O_{y} and O_{z}.
The curves C_{x}, C_{y} and C_{z} are reduced and irreducible. We have

$$
\operatorname{lct}\left(X, \frac{6}{13} C_{x}\right)=\frac{91}{60}<\operatorname{lct}\left(X, \frac{6}{15} C_{y}\right)=\frac{25}{12}<\operatorname{lct}\left(X, \frac{6}{31} C_{z}\right)=\frac{93}{28} .
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{91}{60}$.
Suppose that $\operatorname{lct}(X)<\frac{91}{60}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{91}{60} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6 we may assume that the support of D contains none of C_{x}, C_{y}, C_{z}. Since C_{y} is singular at the point O_{z} and $\frac{31}{2} D \cdot C_{y}=\frac{6}{13}<\frac{60}{91}$, the point P must be in the outside of C_{y}. Furthermore, the point P is in the outside of $C_{x} \cup C_{z}$ since $15 D \cdot C_{x}=\frac{12}{31}<\frac{60}{91}$ and $D \cdot C_{z}=\frac{4}{65}<\frac{60}{91}$.

Now we consider the pencil \mathcal{L} on X defined by the equations $\lambda z^{3}+\mu x^{6} y=0,[\lambda: \mu] \in \mathbb{P}^{1}$. Then there is a unique member C in \mathcal{L} passing through the point P. Since the point P is located
in the outside of $C_{x} \cup C_{y} \cup C_{z}$, the curve C is cut out by the equation of the form $x^{6} y+\alpha z^{3}=0$, where α is a non-zero constant. Since the curve C is a double cover of the curve defined by the equation $x^{6} y+\alpha z^{3}=0$ in $\mathbb{P}(13,15,31)$, we have mult ${ }_{P}(C) \leqslant 2$. Therefore, we may assume that the support of D does not contain at least one irreducible component. If $\alpha \neq 1$, then the curve C is irreducible, and hence the inequality

$$
\operatorname{mult}_{P}(D) \leqslant D \cdot C=\frac{12}{65}<\frac{60}{91}
$$

is a contradiction. If $\alpha=1$, then the curve C consists of two distinct irreducible and reduced curve C_{1} and C_{2}. We have

$$
D \cdot C_{1}=D \cdot C_{2}=\frac{6}{65}, \quad C_{1}^{2}=C_{2}^{2}=\frac{8}{13} .
$$

Put $D=a_{1} C_{1}+a_{2} C_{2}+\Delta$, where Δ is an effective \mathbb{Q}-divisor whose support contains neither C_{1} nor C_{2}. Since the pair $\left(X, \frac{91}{60} D\right)$ is \log canonical at O_{x}, both a_{1} and a_{2} are at most $\frac{60}{91}$. Then a contradiction follows from Lemma 1.3 .8 since

$$
\left(D-a_{i} C_{i}\right) \cdot C_{i} \leqslant D \cdot C_{i}=\frac{12}{65}<\frac{60}{91}
$$

for each i.

3.7. Sporadic cases with $I=7$

Lemma 3.7.1. Let X be a quasismooth hypersurface of degree 76 in $\mathbb{P}(11,13,21,38)$. Then $\operatorname{lct}(X)=\frac{13}{10}$.
Proof. We may assume that the surface X is defined by the equation $t^{2}+y z^{3}+x y^{5}+x^{5} z=0$. The surface X is singular at O_{x}, O_{y} and O_{z}. The curves C_{x}, C_{y} and C_{z} are irreducible. We have

$$
\frac{21}{10}=\operatorname{lct}\left(X, \frac{7}{21} C_{z}\right)>\frac{55}{42}=\operatorname{lct}\left(X, \frac{7}{11} C_{x}\right)>\operatorname{lct}\left(X, \frac{7}{13} C_{y}\right)=\frac{13}{10} .
$$

Therefore, $\operatorname{lct}(X) \leqslant \frac{13}{10}$.
Suppose that $\operatorname{lct}(X)<\frac{13}{10}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{13}{10} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of D contains none of the curves C_{x}, C_{y} and C_{z}.

Since the curve C_{y} is singular at the point O_{z}, the inequality $11 D \cdot C_{y}=\frac{2}{3}<\frac{10}{13}$ shows that the point P does not belong to the curve C_{y}. Also, the inequality $13 D \cdot C_{x}=\frac{2}{3}<\frac{10}{13}$ implies that the point P cannot belong to C_{x} either. The inequality $D \cdot C_{z}=\frac{14}{11 \cdot 13}<\frac{10}{13}$ shows that the point P cannot belong to C_{z}

Consider the pencil \mathcal{L} on X defined by the equations $\lambda y^{5}+\mu x^{4} z=0,[\lambda: \mu] \in \mathbb{P}^{1}$. There is a unique member Z in \mathcal{L} passing through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z}$, the curve Z is defined by an equation of the form $x^{4} z=\alpha y^{5}$, where α is a non-zero constant. The open subset $Z \backslash C_{x}$ of the curve Z is a \mathbb{Z}_{11}-quotient of the affine curve

$$
z-\alpha y^{5}=t^{2}+y z^{3}+y^{5}+z=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t])
$$

that is isomorphic to the plane affine curve $C \subset \mathbb{C}^{2}$ defined by the equation

$$
t^{2}+\alpha^{3} y^{16}+(1+\alpha) y^{5}=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

The curve C is irreducible if $\alpha \neq-1$ and reducible if $\alpha=1$. Since the C_{x} is not contained in the support of Z, the curve Z is irreducible if $\alpha \neq-1$ and reducible if $\alpha=1$. From the equation of C, we can see that the \log pair $\left(X, \frac{7}{50} Z\right)$ is \log canonical at the point P. By Lemma 1.3.6, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of the curve Z.

Suppose that $\alpha \neq-1$. Then $Z \nsubseteq \operatorname{Supp}(D)$ and

$$
\frac{10}{33}=D \cdot Z \geqslant \operatorname{mult}_{P}(D)>\frac{10}{13}
$$

This is a contradiction. Thus, $\alpha=-1$. Then it follows from the equation of C that the curve Z consists of two irreducible and reduced curves Z_{1} and Z_{2}. Without loss of generality we may assume that the point P belongs to the curve Z_{1}.

Put $D=m Z_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $Z_{1} \not \subset \operatorname{Supp}(\Omega)$. Since the pair $\left(X, \frac{13}{10} D\right)$ is \log canonical at the point O_{x}, one has $m \leqslant \frac{10}{13}$. Then

$$
\left(D-m Z_{1}\right) \cdot Z_{1}<D \cdot Z_{1}=\frac{5}{33}<\frac{10}{13} .
$$

since $Z_{1}^{2}>0$. By Lemma 1.3.8, the \log pair $\left(X, \frac{13}{10} D\right)$ is \log canonical at the point P. This is a contradiction.

3.8. Sporadic cases with $I=8$

Lemma 3.8.1. Let X be a quasismooth hypersurface of degree 46 in $\mathbb{P}(7,11,13,23)$. Then $\operatorname{lct}(X)=\frac{35}{48}$.
Proof. The surface X can be defined by the equation $t^{2}+y^{3} z+x z^{3}+x^{5} y=0$. The surface X is singular at the points O_{x}, O_{y} and O_{z}. The curves C_{x}, C_{y} and C_{z} are irreducible. We have

$$
\frac{35}{48}=\operatorname{lct}\left(X, \frac{8}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{8}{13} C_{z}\right)=\frac{91}{80}<\operatorname{lct}\left(X, \frac{8}{11} C_{y}\right)=\frac{55}{48} .
$$

In particular, $\operatorname{lct}(X) \leqslant \frac{35}{48}$. Suppose that $\operatorname{lct}(X)<\frac{35}{48}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{35}{48} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains none of the curves C_{x}, C_{y} and C_{z}.

Since the curve C_{x} is singular at the point O_{z}, the inequality

$$
11 D \cdot C_{x}=\frac{16}{13}<\frac{48}{35}
$$

shows that the point P cannot belong to C_{x}. Also, the inequality

$$
7 D \cdot C_{y}=\frac{16}{13}<\frac{48}{35}
$$

implies that the point P is not in C_{y}. Since

$$
D \cdot C_{z}=\frac{16}{7 \cdot 11}<\frac{48}{35},
$$

the point P cannot be in C_{z} either.

Consider the pencil \mathcal{L} on X defined by the equations $\lambda x^{4} y+\mu z^{3}=0,[\lambda: \mu] \in \mathbb{P}^{1}$. There is a unique member Z in \mathcal{L} passing through the point P. Since $P \notin C_{x} \cup C_{y} \cup C_{z}$, the curve Z is defined by an equation of the form $x^{4} y=\alpha z^{3}$, where α is a non-zero constant. The open subset $Z \backslash C_{x}$ of the curve Z is a \mathbb{Z}_{7}-quotient of the affine curve

$$
y-\alpha z^{3}=t^{2}+y^{3} z+z^{3}+y=0 \subset \mathbb{C}^{3} \cong \operatorname{Spec}(\mathbb{C}[y, z, t])
$$

that is isomorphic to the plane affine curve $C \subset \mathbb{C}^{2}$ defined by the equation

$$
t^{2}+\alpha^{3} z^{10}+(1+\alpha) z^{3}=0 \subset \mathbb{C}^{2} \cong \operatorname{Spec}(\mathbb{C}[y, z])
$$

The curve C is irreducible if $\alpha \neq-1$ and reducible if $\alpha=-1$. Since the C_{x} is not contained in the support of Z, the curve Z is irreducible if $\alpha \neq-1$ and reducible if $\alpha=-1$. From the equation of C, we can see that the \log pair $\left(X, \frac{35}{234} Z\right)$ is \log canonical at the point P. By Lemma 1.3.6, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of the curve Z.

Suppose that $\alpha \neq-1$. Then $Z \nsubseteq \operatorname{Supp}(D)$ and

$$
\frac{48}{77}=D \cdot Z \geqslant \operatorname{mult}_{P}(D)>\frac{48}{35} .
$$

This is a contradiction. Thus, $\alpha=-1$. Then it follows from the equation of C that the curve Z consists of two irreducible and reduced curves Z_{1} and Z_{2}. Without loss of generality we may assume that the point P belongs to the curve Z_{1}.

Put $D=m Z_{1}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $Z_{1} \not \subset \operatorname{Supp}(\Omega)$. Since the pair $\left(X, \frac{48}{35} D\right)$ is \log canonical at the point O_{x}, one has $m \leqslant \frac{35}{48}$. Then

$$
\left(D-m Z_{1}\right) \cdot Z_{1}<D \cdot Z_{1}=\frac{24}{77}<\frac{48}{35} .
$$

since $Z_{1}^{2}>0$. By Lemma 1.3.8, the \log pair $\left(X, \frac{48}{35} D\right)$ is \log canonical at the point P. This is a contradiction.

Lemma 3.8.2. Let X be a quasismooth hypersurface of degree 81 in $\mathbb{P}(7,18,27,37)$. Then $\operatorname{lct}(X)=\frac{35}{72}$.

Proof. The surface X can be defined by the quasihomogeneous equation

$$
z^{3}-y^{3} z+x t^{2}+x^{9} y=0
$$

The surface X is singular at the points O_{x}, O_{y}, O_{t} and $Q=[0: 1: 1: 0]$.
The curve C_{x} consists of two irreducible and reduced curves $L_{x z}$ and $R_{x}=\left\{x=z^{2}-y^{3}=0\right\}$. These two curves intersect each other only at the point O_{t}. Also,

$$
L_{x z}^{2}=-\frac{47}{18 \cdot 37}, \quad R_{x}^{2}=-\frac{20}{9 \cdot 37}, \quad L_{x z} \cdot R_{x}=\frac{3}{37} .
$$

The curve C_{y} is irreducible and

$$
\frac{35}{72}=\operatorname{lct}\left(X, \frac{8}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{8}{18} C_{y}\right)=\frac{15}{8} .
$$

Suppose that $\operatorname{lct}(X)<\frac{35}{72}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{35}{72} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D does not contain the curve C_{y}. Similarly, we may assume that either $L_{x z} \nsubseteq \operatorname{Supp}(D)$ or $R_{x} \nsubseteq \operatorname{Supp}(D)$.

Since either $L_{x z} \nsubseteq \operatorname{Supp}(D)$ or $R_{x} \nsubseteq \operatorname{Supp}(D)$, one of the inequalities

$$
\operatorname{mult}_{O_{t}}(D) \leqslant 37 D \cdot L_{x z}=\frac{4}{9}<\frac{72}{35}, \quad \operatorname{mult}_{O_{t}}(D) \leqslant 37 D \cdot R_{x}=\frac{8}{9}<\frac{72}{35}
$$

must hold, and hence the point P cannot be O_{t}. Since mult $O_{x}(D) \leqslant 7 D \cdot C_{y}=\frac{24}{37}<\frac{72}{35}$, the point P cannot be the point O_{x}.

Put $D=m L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{16}{18 \cdot 37}=D \cdot R_{x} \geqslant m L_{x z} \cdot R_{x}=\frac{3 m}{37},
$$

and hence $m \leqslant \frac{8}{27}$. Since

$$
18\left(D-m L_{x z}\right) \cdot L_{x z}=\frac{8+47 m}{37} \leqslant \frac{72}{35}
$$

it follows from Lemma 1.3 .8 that the point P cannot belong to $L_{x z}$.
Now we write $D=\epsilon Z_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $Z_{x} \not \subset \operatorname{Supp}(\Delta)$. If $\epsilon \neq 0$, then

$$
\frac{8}{18 \cdot 37}=D \cdot L_{x z} \geqslant \epsilon R_{x} \cdot L_{x z}=\frac{3 \epsilon}{37},
$$

and hence $\epsilon \leqslant \frac{4}{27}$. Since

$$
9\left(D-\epsilon R_{x}\right) \cdot R_{x}=\frac{8+20 \epsilon}{37} \leqslant \frac{72}{35}
$$

it follows from Lemma 1.3 .8 that the point P cannot belong to R_{x}. Consequently, the point P must be a smooth point in the outside of C_{x}. However, since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(189)\right)$ contains the monomials $x^{27}, y^{7} x^{9}$ and z^{7}, it follows from Lemma 1.3 .9 that P must be either a singular point of X or a point on C_{x}. This is a contradiction.

3.9. Sporadic cases with $I=9$

Lemma 3.9.1. Let X be a quasismooth hypersurface of degree 64 in $\mathbb{P}(7,15,19,32)$. Then $\operatorname{lct}(X)=\frac{35}{54}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{3} z+x z^{3}+x^{7} y=0
$$

The surface X is singular only at the points O_{x}, O_{y} and O_{z}. The curves C_{x} and C_{y} are irreducible, and

$$
\frac{35}{54}=\operatorname{lct}\left(X, \frac{9}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{9}{15} C_{y}\right)=\frac{25}{18} .
$$

In particular, $\operatorname{lct}(X) \leqslant \frac{35}{54}$.
Suppose that $\operatorname{lct}(X)<\frac{35}{54}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{35}{54} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the
support of the divisor D contains neither the curve C_{x} nor the curve C_{y}. Then two inequalities $19 D \cdot C_{x}=\frac{6}{5}<\frac{54}{35}, 7 D \cdot C_{y}=\frac{18}{19}<\frac{54}{35}$ show that the point P must be a smooth point in the outside of C_{x}.

Note that $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(133)\right)$ contains the monomials $x^{19}, y^{7} x^{4}$ and z^{7} and hence it follows from Lemma 1.3 .9 that the point P is either a singular point of X or a point on C_{x}. This is a contradiction.

3.10. Sporadic cases with $I=10$

Lemma 3.10.1. Let X be a quasismooth hypersurface of degree 82 in $\mathbb{P}(7,19,25,41)$. Then $\operatorname{lct}(X)=\frac{7}{12}$.
Proof. The surface X can be defined by the quasihomogeneous equation

$$
t^{2}+y^{3} z+x z^{3}+x^{9} y=0
$$

It is singular at the points O_{x}, O_{y} and O_{z}.
The curves C_{x} and C_{y} are irreducible. We have

$$
\frac{7}{12}=\operatorname{lct}\left(X, \frac{10}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{10}{19} C_{y}\right)=\frac{19}{12}
$$

and hence $\operatorname{lct}(X) \leqslant \frac{7}{12}$.
Suppose that $\operatorname{lct}(X)<\frac{7}{12}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{7}{12} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D contains neither the curve C_{x} nor the curve C_{y}. Since $25 D \cdot C_{x}=\frac{20}{19}<\frac{12}{7}$ and $7 D \cdot C_{y}=\frac{4}{5}<\frac{12}{7}$, the point P must be a smooth point in the outside of the curve C_{x}. Note that $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(175)\right)$ contains the monomials $x^{25}, x^{6} y^{7}$ and z^{7}, and hence the point P cannot be a smooth point in the outside of C_{x} by Lemma 1.3.9. Consequently, $\operatorname{lct}(X)=\frac{7}{12}$.
Lemma 3.10.2. Let X be a quasismooth hypersurface of degree 117 in $\mathbb{P}(7,26,39,55)$. Then $\operatorname{lct}(X)=\frac{7}{18}$.
Proof. The surface X can be defined by the equation $z^{3}-y^{3} z+x t^{2}+x^{13} y=0$. It is singular at the points O_{x}, O_{y}, O_{t} and $Q=[0: 1: 1: 0]$.

The curve C_{x} consists of two irreducible curves $L_{x z}$ and $R_{x}=\left\{x=z^{2}-y^{3}=0\right\}$. These two curves intersect each other only at the point O_{t}. It is easy to check

$$
L_{x z}^{2}=-\frac{71}{26 \cdot 55}, \quad R_{x}^{2}=-\frac{32}{13 \cdot 55}, \quad L_{x z} \cdot R_{x}=\frac{3}{55} .
$$

On the other hand, the curve C_{y} is irreducible. We have

$$
\frac{7}{18}=\operatorname{lct}\left(X, \frac{10}{7} C_{x}\right)<\operatorname{lct}\left(X, \frac{10}{26} C_{y}\right)=\frac{13}{6} .
$$

In particular, $\operatorname{lct}(X) \leqslant \frac{7}{18}$.
Suppose that $\operatorname{lct}(X)<\frac{7}{18}$. Then there is an effective \mathbb{Q}-divisor $D \sim_{\mathbb{Q}}-K_{X}$ such that the pair $\left(X, \frac{7}{18} D\right)$ is not \log canonical at some point P. By Lemma 1.3.6, we may assume that the support of the divisor D does not contain the curve C_{y}. Similarly, we may assume that either $L_{x z} \not \subset \operatorname{Supp}(D)$ or $R_{x} \not \subset \operatorname{Supp}(D)$.

Since $7 D \cdot C_{y}=\frac{6}{11}<\frac{18}{7}$, the point P cannot be the point O_{x}. Meanwhile, since the support of D does not contain at least one components of C_{x}, one of the inequalities

$$
\begin{aligned}
& \operatorname{mult}_{O_{t}}(D) \leqslant 55 D \cdot L_{x z}=\frac{5}{13}<\frac{18}{7}, \\
& \text { mult }_{O_{t}}(D) \leqslant 55 D \cdot R_{x}=\frac{10}{13}<\frac{18}{7}
\end{aligned}
$$

must hold, and hence the point P cannot be the point O_{t}.
Put $D=m L_{x z}+\Omega$, where Ω is an effective \mathbb{Q}-divisor such that $L_{x z} \not \subset \operatorname{Supp}(\Omega)$. If $m \neq 0$, then

$$
\frac{10}{13 \cdot 55}=D \cdot R_{x} \geqslant m L_{x z} \cdot R_{x}=\frac{3 m}{55}
$$

and hence $m \leqslant \frac{10}{39}$. Then

$$
26\left(D-m L_{x z}\right) \cdot L_{x z}=\frac{10+71 m}{55}<\frac{18}{7}
$$

and hence Lemma 1.3 .8 implies that the point P cannot belong to $L_{x z}$.
Now we write $D=\epsilon R_{x}+\Delta$, where Δ is an effective \mathbb{Q}-divisor such that $R_{x} \not \subset \operatorname{Supp}(\Delta)$. If $\epsilon \neq 0$, then

$$
\frac{10}{26 \cdot 55}=D \cdot L_{x z} \geqslant \epsilon R_{x} \cdot L_{x z}=\frac{3 \epsilon}{55},
$$

and hence $\epsilon \leqslant \frac{5}{39}$. Then

$$
13\left(D-\epsilon R_{x}\right) \cdot R_{x}=\frac{10+32 \epsilon}{55}<\frac{18}{7} .
$$

Thus, Lemma 1.3.4 shows that the point P is not on R_{x}.
Therefore, the point P must be a smooth point in the outside of the curve C_{x}. Since $H^{0}\left(\mathbb{P}, \mathcal{O}_{\mathbb{P}}(273)\right)$ contains the monomials $x^{39}, y^{7} x^{13}$ and z^{7}, it follows from Lemma 1.3 .9 that P is either a point on C_{x} or a singular point of X. This is a contradiction.

Part 4. The Big Table

The tables contains the following information on del Pezzo surfaces.

- The first column: the weights $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ of the weighted projective space \mathbb{P}.
- The second column: the degree of the surface $X \subset \mathbb{P}$.
- The third column: the self-intersection number K_{X}^{2} of an anticanonical divisor of X.
- The fourth column: the rank ρ of the Picard group of the surface X.
- The fifth column: the global log canonical theeshold $\operatorname{lct}(X)$ of X.
- The sixth column: the possible monomials in x, y, z, t in the defining equation $f(x, y, z, t)=0$ of the surface X.
- The seventh column: the information on the singular points of X. We use the standard notation for cyclic quotient singularities along with the following convention: when we write, for instance, $O_{x} O_{y}=n \times \frac{1}{r}(a, b)$, we mean that there are n cyclic quotient singularities of type $\frac{1}{r}(a, b)$ cut out on X by the equations $z=t=0$ that are different from the point O_{x} in the case when $O_{x} \in X$ and O_{x} is not of type $\frac{1}{r}(a, b)$, and that are different from the point O_{y} in the case when $O_{y} \in X$ and O_{y} is not of type $\frac{1}{r}(a, b)$.

Log del Pezzo surfaces with $I=1$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(2,2 n+1,2 n+1,4 n+1)$	$8 n+4$	$\frac{2}{(2 n+1)(4 n+1)}$	8	1	$\begin{gathered} y^{4}, y^{3} z, y^{2} z^{2}, \\ y z^{3}, z^{4}, x t^{2}, \\ x^{n+1} y t, x^{n+1} z t, \\ x^{2 n+1} y^{2}, \\ x^{2 n+1} y z, \\ x^{2 n+1} z^{2}, x^{4 n+2} \end{gathered}$	$\begin{aligned} & O_{t}=\frac{1}{4 n+1}(1,1) \\ & O_{y} O_{z}= \\ & \quad=4 \times \frac{1}{2 n+1}(1, n) \end{aligned}$
$(1,2,3,5)$	10	$\frac{1}{3}$	9	$\begin{aligned} & 1^{\mathrm{a}} \\ & \frac{7}{10} \end{aligned}$	$\begin{gathered} t^{2}, y z t, y^{2} z^{2}, y^{5}, \\ x z^{3}, x y^{2} t, x y^{3} z, \\ x^{2} z t, x^{2} y z^{2}, \\ x^{2} y^{4}, x^{3} y t, \\ x^{3} y^{2} z, x^{4} z^{2}, \\ x^{4} y^{3}, x^{5} t, x^{5} y z, \\ x^{6} y^{2}, x^{7} z, x^{8} y, \\ x^{10} \end{gathered}$	$O_{z}=\frac{1}{3}(1,1)$
$(1,3,5,7)$	15	$\frac{1}{7}$	9	$\begin{aligned} & 1^{c}{ }^{c} \\ & \frac{8}{15} \end{aligned}$	$\begin{gathered} \hline z^{3}, y z t, y^{5}, x t^{2}, \\ x y^{3} z, x^{2} y z^{2}, \\ x^{2} y^{2} t, x^{3} z t, \\ x^{3} y^{4}, x^{4} y^{2} z, \\ x^{5} z^{2}, x^{5} y t, x^{6} y^{3}, \\ x^{7} y z, x^{8} t, x^{9} y^{2}, \\ x^{10} z, x^{12} y, x^{15} \end{gathered}$	$O_{t}=\frac{1}{7}(3,5)$
$(1,3,5,8)$	16	$\frac{2}{15}$	10	1	$\begin{gathered} t^{2}, y z t, y^{2} z^{2}, \\ x z^{3}, x y^{5}, x^{2} y^{2} t, \\ x^{2} y^{3} z, x^{3} z t, \\ x^{3} y z^{2}, x^{4} y^{4}, \\ x^{5} y t, x^{5} y^{2} z, \\ x^{6} z^{2}, x^{7} y^{3}, x^{8} t, \\ x^{8} y z, x^{10} y^{2}, \\ x^{11} z, x^{13} y, x^{16} \\ \hline \end{gathered}$	$\begin{aligned} & O_{y}=\frac{1}{3}(1,1) \\ & O_{z}=\frac{1}{5}(1,1) \end{aligned}$

a: if C_{x} has an ordinary double point, b : if C_{x} has a non-ordinary double point,
c: if the defining equation of X contains $y z t$, d : if the defining equation of X does not contain $y z t$.

Log del Pezzo surfaces with $I=1$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
(2, 3, 5, 9)	18	$\frac{1}{15}$	7	$\begin{aligned} & 2^{\mathrm{a}} \\ & \frac{11}{6} \end{aligned}$	$\begin{gathered} t^{2}, y z^{3}, y^{3} t, y^{6}, \\ x y^{2} z^{2}, x^{2} z t, \\ x^{2} y^{3} z, x^{3} y t, \\ x^{3} y^{4}, x^{4} z^{2}, x^{5} y z, \\ x^{6} y^{2}, x^{9} \\ \hline \end{gathered}$	$\begin{aligned} & O_{z}=\frac{1}{5}(1,2) \\ & O_{y} O_{t}=2 \times \frac{1}{3}(1,1) \end{aligned}$
$(3,3,5,5)$	15	$\frac{1}{15}$	5	2	$\begin{gathered} t^{3}, z t^{2}, z^{2} t, z^{3}, \\ y^{5}, x y^{4}, x^{2} y^{3}, \\ x^{3} y^{2}, x^{4} y, x^{5} \end{gathered}$	$\begin{aligned} & O_{x} O_{y}=5 \times \frac{1}{3}(1,1) \\ & O_{z} O_{t}=3 \times \frac{1}{5}(1,1) \end{aligned}$
$(3,5,7,11)$	25	$\frac{5}{231}$	5	$\frac{21}{10}$	$\begin{gathered} z^{2} t, y^{5}, x t^{2}, \\ x y^{3} z, x^{2} y z^{2} \\ x^{3} y t, x^{5} y^{2}, x^{6} z \end{gathered}$	$\begin{array}{\|l} \hline O_{x}=\frac{1}{3}(1,1) \\ O_{z}=\frac{1}{7}(3,5) \\ O_{t}=\frac{1}{11}(5,7) \\ \hline \end{array}$
(3, 5, 7, 14)	28	$\frac{2}{105}$	6	$\frac{9}{4}$	$\begin{gathered} t^{2}, z^{2} t, z^{4}, x y^{5}, \\ x^{2} y^{3} z, x^{3} y t, \\ x^{3} y z^{2}, x^{6} y^{2}, x^{7} z \end{gathered}$	$\begin{aligned} & \hline O_{x}=\frac{1}{3}(1,1) \\ & O_{y}=\frac{1}{5}(1,2) \\ & O_{z} O_{t}=2 \times \frac{1}{7}(3,5) \\ & \hline \end{aligned}$
$(3,5,11,18)$	36	$\frac{2}{165}$	6	$\frac{21}{10}$	$\begin{gathered} t^{2}, y^{5} z, x z^{3}, \\ x y^{3} t, x^{2} y^{6}, \\ x^{3} y z^{2}, x^{5} y^{2} z, \\ x^{6} t, x^{7} y^{3}, x^{12} \\ \hline \end{gathered}$	$\begin{aligned} & \hline O_{y}=\frac{1}{5}(1,1) \\ & O_{z}=\frac{1}{11}(5,7) \\ & O_{x} O_{t}=2 \times \frac{1}{3}(1,1) \end{aligned}$
($5,14,17,21$)	56	$\frac{4}{1785}$	4	$\frac{25}{8}$	$\begin{gathered} y t^{2}, y^{4}, \underset{x^{7} t}{x z^{3}}, x^{5} y z \\ x^{5} \end{gathered}$	$\begin{aligned} & \hline O_{x}=\frac{1}{5}(2,1) \\ & O_{z}=\frac{1}{17}(7,2) \\ & O_{t}=\frac{1}{21}(5,17) \\ & O_{y} O_{t}=1 \times \frac{1}{7}(5,3) \\ & \hline \end{aligned}$
($5,19,27,31$)	81	$\frac{3}{2945}$	3	$\frac{25}{6}$	$\begin{gathered} z^{3}, y t^{2}, x y^{4}, x^{7} y z, \\ x^{10} t \end{gathered}$	$\begin{aligned} & \hline O_{x}=\frac{1}{5}(2,1) \\ & O_{y}=\frac{1}{19}(2,3) \\ & O_{t}=\frac{1}{3!}(5,27) \\ & \hline \end{aligned}$
($5,19,27,50$)	100	$\frac{2}{2565}$	4	$\frac{25}{6}$	$\begin{gathered} t^{2}, y z^{3}, x y^{5}, x^{7} y^{2} z, \\ x^{10} t, x^{20} \end{gathered}$	$\begin{aligned} & O_{y}=\frac{1}{19}(2,3) \\ & O_{z}=\frac{1}{27}(5,23) \\ & O_{x} O_{t}=2 \times \frac{1}{5}(2,1) \end{aligned}$
(7,11, 27, 37)	81	$\frac{3}{2849}$	3	$\frac{49}{12}$	$\begin{gathered} z^{3}, y^{4} t, x t^{2}, x^{3} y^{3} z \\ x^{10} y \end{gathered}$	$\begin{aligned} & O_{x}=\frac{1}{7}(3,1) \\ & O_{y}=\frac{1}{11}(7,5) \\ & O_{t}=\frac{1}{37}(11,27) \\ & \hline \end{aligned}$

a: if C_{y} has a tacnodal point, b : if C_{y} has no tacnodal points.

Log del Pezzo surfaces with $I=1$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(7,11,27,44)$	88	$\frac{2}{2079}$	4	$\frac{35}{8}$	$t^{2}, y^{4} t, y^{8}, x z^{3}$, $x^{4} y^{3} z, x^{11} y$	$O_{x}=\frac{1}{7}(3,1)$ $O_{z}=\frac{1}{27}(11,17)$ $O_{y}=2 \times \frac{1}{11}(7,5)$
$(9,15,17,20)$	60	$\frac{1}{765}$	3	$\frac{21}{4}$	$t^{3}, y^{4}, x z^{3}, x^{5} y$	$O_{x}=\frac{1}{9}(4,1)$ $O_{z}=\frac{1}{17}(5,1)$ $O_{x} O_{y}=1 \times \frac{1}{3}(1,1)$ $O_{y} O_{t}=1 \times \frac{1}{5}(2,1)$
$(9,15,23,23)$	69	$\frac{1}{1035}$	5	6	$t^{3}, z t^{2}, z^{2} t, z^{3}, x y^{4}$, $x^{6} y$	$O_{x}=\frac{1}{9}(1,1)$ $O_{y}=\frac{1}{15}(1,1)$ $O_{x} O_{y}=1 \times \frac{1}{3}(1,1)$ $O_{z} O_{t}=3 \times \frac{1}{23}(3,5)$
$(11,29,39,49)$	127	$\frac{127}{609609}$	3	$\frac{33}{4}$	$z^{2} t, y t^{2}, x y^{4}, x^{8} z$	$O_{x}=\frac{1}{11}(7,5)$ $O_{y}=\frac{1}{29}(1,2)$ $O_{z}=\frac{1}{39}(11,29)$ $O_{t}=\frac{1}{49}(11,39)$
$(11,49,69,128)$	256	$\frac{2}{37191}$	2	$\frac{55}{6}$	$t^{2}, y z^{3}, x y^{5}, x^{17} z$	$O_{x}=\frac{1}{11}(5,7)$ $O_{y}=\frac{1}{49}(2,3)$ $\left.O_{z}=\frac{1}{69} 911,59\right)$
$(13,23,35,57)$	127	$\frac{127}{596505}$	3	$\frac{65}{8}$	$z^{2} t, y^{4} z, x t^{2}, x^{8} y$	$O_{x}=\frac{1}{13}(9,5)$ $O_{y}=\frac{1}{23}(13,11)$ $O_{z}=\frac{1}{35}(13,23)$ $O_{t}=\frac{1}{57}(23,35)$
$(13,35,81,128)$	256	$\frac{2}{36855}$	2	$\frac{91}{10}$	$t^{2}, y^{5} z, x z^{3}, x^{17} y$	$O_{x}=\frac{1}{13}(3,11)$ $O_{y}=\frac{1}{35}(13,23)$ $O_{z}=\frac{1}{81}(35,47)$

Log del Pezzo surfaces with $I=2$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(3,3 n, 3 n+1,3 n+1)$	$9 n+3$	$\frac{4}{3 n(3 n+1)}$	7	1	$\begin{gathered} t^{3}, z t^{2}, z^{2} t, z^{3}, x y^{3} \\ x^{n+1} y^{2}, x^{2 n+1} y \\ x^{3 n+1} \end{gathered}$	$\begin{aligned} & \hline O_{y}=\frac{1}{3 n}(1,1) \\ & O_{x} O_{y}=3 \times \frac{1}{3}(1,1) \\ & O_{z} O_{t}=3 \times \frac{1}{3 n+1}(1, n) \\ & \hline \end{aligned}$
$(3,3 n+1,3 n+2,3 n+2)$	$9 n+6$	$\frac{4}{(3 n+1)(3 n+2)}$	5	1	$\begin{gathered} t^{3}, z t^{2}, z^{2} t, z^{3}, x y^{3}, \\ x^{n+1} y t, x^{n+1} y z \\ x^{3 n+2} \end{gathered}$	$\begin{aligned} & O_{y}=\frac{1}{3 n+1}(1,1) \\ & O_{z} O_{t}= \\ & =3 \times \frac{1}{3 n+2}(3,3 n+1) \end{aligned}$
$(3,3 n+1,3 n+2,6 n+1)$	$12 n+5$	$\frac{4(12 n+5)}{3(3 n+1)(3 n+2)(6 n+1)}$	5	1	$\begin{gathered} x^{3 n+1} z, y^{3} z, z^{2} t \\ t^{2} x, x^{n} y z^{2}, x^{n+1} y t \\ x^{2 n+1} y^{2} \end{gathered}$	$\begin{aligned} & O_{x}=\frac{1}{3}(1,1) \\ & O_{y}=\frac{1}{3 n+1}(3,3 n) \\ & O_{z}=\frac{1}{3 n+2}(3,3 n+1) \\ & O_{t}=\frac{1}{6 n+1}(3 n+1,3 n+2) \\ & \hline \end{aligned}$
$(3,3 n+1,6 n+1,9 n)$	$18 n+3$	$\frac{4}{9 n(3 n+1)}$	5	1	$\begin{gathered} z^{3}, y^{3} t, x t^{2} x^{n} y z^{2} \\ x^{2 n} y^{2} z, x^{3 n} y^{3} \\ x^{3 n+1} t, x^{6 n+1} \end{gathered}$	$\begin{aligned} & O_{y}=\frac{1}{3 n+1}(1, n) \\ & O_{t}=\frac{1}{9 n}(3 n+1,6 n+1) \\ & O_{x} O_{t}=2 \times \frac{1}{3}(1,1) \\ & \hline \end{aligned}$
$(3,3 n+1,6 n+1,9 n+3)$	$18 n+6$	$\frac{8}{3(3 n+1)(6 n+1)}$	6	1	$\begin{gathered} t^{2}, y^{3} t, y^{6}, x z^{3}, \\ x^{n+1} y z^{2}, x^{2 n+1} y^{2} z, \\ x^{3 n+1} t, x^{3 n+1} y^{3} \\ x^{6 n+2} \end{gathered}$	$\begin{aligned} & O_{z}=\frac{1}{6 n+1}(3 n+1,3 n+2) \\ & O_{x} O_{t}=2 \times \frac{1}{3}(1,1) \\ & O_{y} O_{t}=2 \times \frac{1}{3 n+1}(1, n) \end{aligned}$
$(4,2 n+1,4 n+2,6 n+1)$	$12 n+6$	$\frac{3}{(2 n+1)(6 n+1)}$	6	1	$\begin{gathered} z^{3}, y^{2} z^{2}, y^{4} z, y^{6} \\ x t^{2}, x^{n+1} y t, x^{2 n+1} z \\ x^{2 n+1} y^{2} \end{gathered}$	$\begin{aligned} & \hline O_{x}=\frac{1}{4}(1,1) \\ & O_{t}=\frac{1}{6 n+1}(2 n+1,4 n+2) \\ & O_{x} O_{z}=1 \times \frac{1}{2}(1,1) \\ & O_{y} O_{z}=3 \times \frac{1}{2 n+1}(1, n) \\ & \hline \end{aligned}$
$(4,2 n+3,2 n+3,4 n+4)$	$8 n+12$	$\frac{1}{(n+1)(2 n+3)}$	7	1	$\begin{gathered} y^{4}, y^{3} z, y^{2} z^{2}, y z^{3} \\ z^{4}, x t^{2}, x^{n+2} t \\ x^{2 n+3} \end{gathered}$	$\begin{aligned} & O_{t}=\frac{1}{4 n+4}(2,2) \\ & O_{x} O_{t}=2 \times \frac{1}{4}(1,1) \\ & O_{y} O_{z}= \\ & \quad=4 \times \frac{1}{2 n+3}(4,2 n+1) \end{aligned}$

Log del Pezzo surfaces with $I=2$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(2,3,4,5)$	12	$\frac{2}{5}$	5	1^{a} $\frac{7}{2}^{\mathrm{b}}$	$z^{3}, y z t, y^{4}, x t^{2}$, $x y^{2} z, x^{2} z^{2}, x^{2} y t$, $x^{3} y^{2}, x^{4} z, x^{6}$	$O_{t}=\frac{1}{5}(3,4)$ $O_{x} O_{z}=3 \times \frac{1}{2}(1,1)$
$(2,3,4,7)$	14	$\frac{1}{3}$	6	1	$t^{2}, y z t, y^{2} z^{2}, x z^{3}$, $x y^{4}, x^{2} y t, x^{2} y^{2} z$, $x^{3} z^{2}, x^{4} y^{2}, x^{5} z, x^{7}$	$O_{y}=\frac{1}{3}(1,1)$ $O_{z}=\frac{1}{4}(1,1)$ $O_{x} O_{z}=3 \times \frac{1}{2}(1,1)$
$(3,4,5,10)$	20	$\frac{2}{15}$	5	$\frac{3}{2}$	$t^{2}, z^{2} t, z^{4}, y^{5}, x y^{3} z$, $x^{2} y t, x^{2} y z^{2}, x^{4} y^{2}$, $x^{5} z$	$O_{x}=\frac{1}{3}(1,1)$ $O_{y} O_{t}=1 \times \frac{1}{2}(1,1)$ $O_{z} O_{t}=2 \times \frac{1}{5}(3,4)$
$(3,4,10,15)$	30	$\frac{1}{15}$	7	$\frac{3}{2}$	$t^{2}, z^{3}, y^{5} z, x y^{3} t$, $x^{2} y z^{2}, x^{2} y^{6}, x^{4} y^{2} z$, $x^{5} t, x^{6} y^{3}, x^{10}$	$O_{y}=\frac{1}{4}(1,1)$ $O_{y} O_{z}=1 \times \frac{1}{2}(1,1)$ $O_{z} O_{t}=1 \times \frac{1}{5}(3,4)$ $O_{x} O_{t}=2 \times \frac{1}{3}(1,1)$
$(5,13,19,22)$	57	$\frac{6}{715}$	3	$\frac{25}{12}$	$t^{2} y, z^{3}, x y^{4}, x^{5} y z$, $x^{7} t$	$O_{x}=\frac{1}{5}(3,4)$ $O_{y}=\frac{1}{13}(2,3)$ $O_{t}=\frac{1}{22}(5,19)$
$(5,13,19,35)$	70	$\frac{8}{1235}$	3	$\frac{25}{12}$	$t^{2}, y z^{3}, x y^{5}, x^{5} y^{2} z$, $x^{7} t, x^{14}$	$O_{y}=\frac{1}{13}(2,3)$ $O_{z}=\frac{1}{19}(5,16)$ $O_{x} O_{t}=2 \times \frac{1}{5}(3,4)$
$(6,9,10,13)$	36	$\frac{4}{195}$	4	$\frac{25}{12}$	$t^{2} z, y^{4}, x z^{3}, x^{3} y^{2}$, x^{6}	$O_{z}=\frac{1}{10}(3,1)$ $O_{t}=\frac{1}{13}(2,3)$ $O_{x} O_{y}=2 \times \frac{1}{3}(1,1)$ $O_{x} O_{z}=1 \times \frac{1}{2}(1,1)$

a: if the defining equation of X contains $y z t$, b: if the defining equation of X contains no $y z t$.

Log del Pezzo surfaces with $I=2$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(7,8,19,25)$	57	$\frac{57}{6650}$	3	$\frac{49}{24}$	$\begin{gathered} t y^{4}, z^{3}, x t^{2}, x^{2} y^{3} z \\ x^{7} y \end{gathered}$	$\begin{aligned} & O_{x}=\frac{1}{7}(5,4) \\ & O_{y}=\frac{1}{8}(7,3) \\ & O_{t}=\frac{1}{25}(8,19) \end{aligned}$
$(7,8,19,32)$	64	$\frac{1}{133}$	4	$\frac{35}{16}$	$\begin{gathered} t^{2}, t y^{4}, y^{8}, x z^{3} \\ x^{3} y^{3} z, x^{8} y \end{gathered}$	$\begin{aligned} & O_{x}=\frac{1}{7}(5,4) \\ & O_{z}=\frac{1}{19}(8,13) \\ & O_{y} O_{t}=2 \times \frac{1}{8}(7,3) \end{aligned}$
$(9,12,13,16)$	48	$\frac{1}{117}$	3	$\frac{63}{24}$	$t^{3}, y^{4}, x z^{3}, x^{4} y$	$\begin{aligned} & O_{x}=\frac{1}{9}(4,7) \\ & O_{z}=\frac{1}{13}(4,1) \\ & O_{x} O_{y}=1 \times \frac{1}{3}(1,1) \\ & O_{y} O_{t}=1 \times \frac{1}{4}(1,1) \end{aligned}$
$(9,12,19,19)$	57	$\frac{1}{171}$	5	3	$\begin{gathered} t^{3}, t^{2} z, t z^{2}, z^{3}, x y^{4} \\ x^{5} y \end{gathered}$	$\begin{aligned} & O_{x}=\frac{1}{9}(1,1) \\ & O_{y}=\frac{1}{12}(1,1) \\ & O_{x} O_{y}=1 \times \frac{1}{3}(1,1) \\ & O_{z} O_{t}=3 \times \frac{1}{19}(3,4) \\ & \hline \end{aligned}$
$(9,19,24,31)$	81	$\frac{3}{1178}$	3	3	$t^{2} y, y^{3} z, x z^{3}, x^{9}$	$\begin{aligned} & \hline O_{y}=\frac{1}{19}(3,4) \\ & O_{z}=\frac{1}{24}(19,7) \\ & O_{t}=\frac{1}{31}(3,8) \\ & O_{x} O_{z}=1 \times \frac{1}{3}(1,1) \end{aligned}$
$(10,19,35,43)$	105	$\frac{6}{4085}$	3	$\frac{57}{14}$	$t^{2} y, z^{3}, x y^{5}, x^{7} z$	$\begin{aligned} & O_{x}=\frac{1}{10}(3,1) \\ & O_{y}=\frac{1}{19}(16,5) \\ & O_{t}=\frac{1}{43}(2,7) \\ & O_{x} O_{z}=1 \times \frac{1}{5}(4,3) \end{aligned}$
$(11,21,28,47)$	105	$\frac{5}{3619}$	3	$\frac{77}{30}$	$y^{5}, y z^{3}, x t^{2}, x^{7} z$	$\begin{aligned} & O_{x}=\frac{1}{11}(10,3) \\ & O_{y}=\frac{1}{28}(11,19) \\ & O_{t}=\frac{1}{47}(3,4) \\ & O_{y} O_{z}=1 \times \frac{1}{7}(4,5) \end{aligned}$

Log del Pezzo surfaces with $I=2$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(11,25,32,41)$	107	$\frac{107}{90200}$	3	$\frac{11}{3}$	$t^{2} y, y^{3} z, x z^{3}, x^{6} t$	$O_{x}=\frac{1}{11}(3,10)$ $O_{y}=\frac{1}{25}(11,16)$ $O_{z}=\frac{1}{32}(25,9)$ $O_{t}=\frac{1}{41}(11,32)$
$(11,25,34,43)$	111	$\frac{222}{201025}$	3	$\frac{33}{8}$	$t^{2} y, z^{2} t, x y^{4}, x^{7} z$	$O_{x}=\frac{1}{11}(3,10)$ $O_{y}=\frac{1}{25}(1,2)$ $O_{z}=\frac{1}{34}(11,25)$ $O_{t}=\frac{1}{43}(11,34)$
$(11,43,61,113)$	226	$\frac{8}{28853}$	2	$\frac{55}{12}$	$t^{2}, y z^{3}, x y^{5}, x^{15} z$	$O_{x}=\frac{1}{11}(10,3)$ $O_{y}=\frac{1}{43}(2,3)$ $O_{z}=\frac{1}{61}(11,52)$
$(13,18,45,61)$	135	$\frac{2}{2379}$	3	$\frac{91}{30}$	$z^{3}, y^{5} z, x t^{2}, x^{9} y$	$O_{x}=\frac{1}{13}(2,3)$ $O_{y}=\frac{1}{18}(13,7)$ $O_{t}=\frac{1}{61}(2,5)$ $O_{y} O_{z}=1 \times \frac{1}{9}(4,7)$
$(13,20,29,47)$	107	$\frac{107}{88595}$	3	$\frac{65}{18}$	$y^{3} t, y z^{3}, x t^{2}, x^{6} z$	$O_{x}=\frac{1}{13}(7,8)$ $O_{y}=\frac{1}{20}(13,9)$ $O_{z}=\frac{1}{29}(13,18)$ $O_{t}=\frac{1}{47}(20,29)$
$(13,20,31,49)$	111	$\frac{111}{98735}$	3	$\frac{65}{16}$	$z^{3} t, y^{4} z, x t^{2}, x^{7} y$	$O_{x}=\frac{1}{13}(1,2)$ $O_{y}=\frac{1}{20}(13,9)$ $O_{z}=\frac{1}{31}(13,20)$ $O_{t}=\frac{1}{49}(20,31)$
$(13,31,71,113)$	226	$\frac{8}{28613}$	2	$\frac{91}{20}$	$t^{2}, y^{5} z, x z^{3}, x^{15} y$	$O_{x}=\frac{1}{13}(6,9)$ $O_{y}=\frac{1}{31}(13,20)$ $O_{z}=\frac{1}{71}(31,42)$
$(14,17,29,41)$	99	$\frac{198}{141491}$	3	$\frac{51}{10}$	$t^{2} y, z^{2} t, x y^{5}, x^{5} z$	$O_{x}=\frac{1}{14}(3,13)$ $O_{y}=\frac{1}{17}(12,7)$ $O_{z}=\frac{1}{29}(14,17)$ $O_{t}=\frac{1}{41}(14,29)$

Log del Pezzo surfaces with $I=3$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points		
$(5,7,11,13)$	33	$\frac{27}{455}$	3	$\frac{49}{36}$	$t^{2} y, z^{3}, x y^{4}, x^{3} y z$, $x^{4} t$	$O_{x}=\frac{1}{5}(2,1)$ $O_{y}=\frac{1}{7}(2,3)$ $O_{t}=\frac{1}{13}(5,11)$		
$(5,7,11,20)$	40	$\frac{18}{385}$	4	$\frac{25}{18}$	$t^{2}, y z^{3}, x y^{5}, x^{3} y^{2} z$, $x^{4} t, x^{8}$	$O_{y}=\frac{1}{7}(2,3)$ $O_{z}=\frac{1}{11}(1,4)$ $O_{x} O_{t}=2 \times \frac{1}{5}(2,1)$		
$(11,21,29,37)$	95	$\frac{285}{82621}$	3	$\frac{11}{4}$	$t^{2} y, z^{2} t, x y^{4}, x^{6} z$	$O_{x}=\frac{1}{11}(5,2)$ $O_{y}=\frac{1}{21}(1,2)$ $O_{z}=\frac{1}{29}(11,21)$ $O_{t}=\frac{1}{37}(11,29)$		
$(11,37,53,98)$	196	$\frac{18}{21571}$	2	$\frac{55}{18}$	$t^{2}, y z^{3}, x y^{5}, x^{13} z$	$O_{x}=\frac{1}{11}(2,5)$ $O_{y}=\frac{1}{37}(2,3)$ $O_{z}=\frac{1}{53}(11,45)$		
$(13,17,27,41)$	95	$\frac{95}{27183}$	3	$\frac{65}{24}$	$z^{2} t, y^{4} z, x t^{2}, x^{6} y$	$O_{x}=\frac{1}{13}(1,2)$ $O_{y}=\frac{1}{17}(13,7)$ $O_{z}=\frac{1}{27}(13,17)$		
$(13,27,61,98)$	196	$\frac{2}{2379}$	2	$\frac{91}{30}$	$t^{2}, y^{5} z, x z^{3}, x^{13} y$	$O_{x}=\frac{1}{41}(17,27)$ $O_{y}=\frac{1}{13}(9,7)$ $O_{z}=\frac{1}{61}(13,17)$		
$(15,19,43,74)$	148	$\frac{6}{4085}$	2	$\frac{57}{14}$	$t^{2}, y z^{3}, x y^{7}, x^{7} z$			$O_{x}=\frac{1}{15}(2,7)$
:---								
$O_{y}=\frac{1}{19}(5,17)$								
$O_{z}=\frac{1}{43}(15,31)$								

Log del Pezzo surfaces with $I=4$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(6,6 n+3,6 n+5,6 n+5)$	$18 n+15$	$\frac{8}{(6 n+3)(6 n+5)}$	5	1	$\begin{aligned} & t^{3}, z t^{2}, z^{2} t, z^{3} \\ & \quad x y^{3}, x^{2 n+2} y \end{aligned}$	$\begin{aligned} & O_{x}=\frac{1}{6}(1,1) \\ & O_{y}=\frac{1}{6 n+3}(1,1) \\ & O_{x} O_{y}=1 \times \frac{1}{3}(1,1) \\ & O_{z} O_{t}= \\ & \quad=3 \times \frac{1}{6 n+5}(2,2 n+1) \\ & \hline \end{aligned}$
$(6,6 n+5,12 n+8,18 n+9)$	$36 n+24$	$\frac{8}{3(6 n+3)(6 n+5)}$	3	1	$\begin{gathered} z^{3}, y^{3} t, x t^{2} \\ x^{2 n+1} y^{2} z, x^{6 n+4} \end{gathered}$	$\begin{aligned} & O_{y}=\frac{1}{6 n+5}(2,2 n+1) \\ & O_{t}=\frac{1}{18 n+9}(6 n+5,12 n+8) \\ & =\frac{1}{2}(1,1) \\ & O_{x} O_{z}=1 \times \frac{1}{2}(1) \\ & O_{x} O_{t}=1 \times \frac{1}{3}(1,1) \\ & \hline \end{aligned}$
$(6,6 n+5,12 n+8,18 n+15)$	$36 n+30$	$\frac{4}{3(3 n+2)(6 n+5)}$	4	1	$\begin{aligned} & t^{2}, y^{3} t, y^{6}, x z^{3}, \\ & x^{2 n+2} y^{2} z, x^{6 n+5} \end{aligned}$	$\begin{aligned} & O_{z}=\frac{1}{12 n+8}(6 n+5,6 n+7) \\ & O_{x} O_{z}=1 \times \frac{1}{2}(1,1) \\ & O_{x} O_{t}=1 \times \frac{1}{3}(1,1) \\ & O_{y} O_{t}= \\ & \quad=2 \times \frac{1}{6 n+5}(2,2 n+1) \\ & \hline \end{aligned}$
$(5,6,8,9)$	24	$\frac{8}{45}$	3	1	$\begin{gathered} t^{2} y, y^{4}, z^{3}, x^{2} y z \\ x^{3} t \end{gathered}$	$\begin{aligned} & \hline O_{x}=\frac{1}{5}(1,3) \\ & O_{t}=\frac{1}{9}(5,8) \\ & O_{y} O_{z}=1 \times \frac{1}{2}(1,1) \\ & O_{y} O_{t}=1 \times \frac{1}{3}(1,1) \\ & \hline \end{aligned}$
$(5,6,8,15)$	30	$\frac{2}{15}$	4	1	$\begin{gathered} t^{2}, y^{5}, y z^{3}, \\ x^{2} y^{2} z, x^{3} t, x^{6} \end{gathered}$	$\begin{aligned} & O_{z}=\frac{1}{8}(5,7) \\ & O_{x} O_{t}=2 \times \frac{1}{5}(1,3) \\ & O_{y} O_{t}=1 \times \frac{1}{3}(1,1) \\ & O_{y} O_{z}=1 \times \frac{1}{2}(1,1) \end{aligned}$
$(9,11,12,17)$	45	$\frac{20}{561}$	3	$\frac{77}{60}$	$t^{2} y, y^{3} z, x z^{3}, x^{5}$	$\begin{aligned} & O_{y}=\frac{1}{11}(3,2) \\ & O_{z}=\frac{1}{12}(11,5) \\ & O_{t}=\frac{1}{17}(3,4) \\ & O_{x} O_{z}=1 \times \frac{1}{3}(1,1) \end{aligned}$

Log del Pezzo surfaces with $I=4$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(10,13,25,31)$	75	$\frac{24}{2015}$	3	$\frac{91}{60}$	$t^{2} y, z^{3}, x y^{5}, x^{5} z$	$\begin{aligned} & O_{x}=\frac{1}{10}(3,1) \\ & O_{y}=\frac{1}{13}(12,5) \\ & O_{t}=\frac{1}{31}(2,5) \\ & O_{x} O_{z}=1 \times \frac{1}{5}(3,1) \\ & \hline \end{aligned}$
(11, 17, 20, 27)	71	$\frac{284}{25245}$	3	$\frac{11}{6}$	$t^{2} y, y^{3} z, x z^{3}, x^{4} t$	$\begin{aligned} & O_{x}=\frac{1}{11}(2,3) \\ & O_{y}=\frac{1}{17}(11,10) \\ & O_{z}=\frac{1}{20}(17,7) \\ & O_{t}=\frac{1}{27}(11,20) \\ & \hline \end{aligned}$
(11, 17, 24, 31)	79	$\frac{158}{17391}$	3	$\frac{33}{16}$	$t^{2} y, t z^{2}, x y^{4}, x^{5} z$	$\begin{aligned} & O_{x}=\frac{1}{11}(2,3) \\ & O_{y}=\frac{1}{17}(1,2) \\ & O_{z}=\frac{1}{24}(11,17) \\ & O_{t}=\frac{1}{31}(11,24) \\ & \hline \end{aligned}$
$(11,31,45,83)$	166	$\frac{32}{15345}$	2	$\frac{55}{24}$	$t^{2}, y z^{3}, x y^{5}, x^{11} z$	$\begin{aligned} & O_{x}=\frac{1}{11}(3,2) \\ & O_{y}=\frac{1}{31}(2,3) \\ & O_{z}=\frac{1}{45}(11,38) \\ & \hline \end{aligned}$
(13, 14, 19, 29)	71	$\frac{568}{50141}$	3	$\frac{65}{36}$	$t y^{3}, y z^{3}, x t^{2}, x^{4} z$	$\begin{aligned} & O_{x}=\frac{1}{13}(1,3) \\ & O_{y}=\frac{1}{14}(13,5) \\ & O_{z}=\frac{1}{19}(13,10) \\ & O_{t}=\frac{1}{29}(14,19) \\ & \hline \end{aligned}$
(13, 14, 23, 33)	79	$\frac{632}{69069}$	3	$\frac{65}{32}$	$t z^{2}, y^{4} z, x t^{2}, x^{5} y$	$\begin{aligned} & O_{x}=\frac{1}{13}(1,2) \\ & O_{y}=\frac{1}{14}(13,5) \\ & O_{z}=\frac{1}{23}(13,14) \\ & O_{t}=\frac{1}{33}(14,23) \\ & \hline \end{aligned}$
$(13,23,51,83)$	166	$\frac{32}{15249}$	2	$\frac{91}{40}$	$t^{2}, y^{5} z, x z^{3}, x^{11} y$	$\begin{aligned} & O_{x}=\frac{1}{11}(7,6) \\ & O_{y}=\frac{1}{23}(13,14) \\ & O_{z}=\frac{1}{51}(23,32) \\ & \hline \end{aligned}$

Log del Pezzo surfaces with $I=5$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(11,13,19,25)$	63	$\frac{63}{2717}$	3	$\frac{13}{8}$	$t^{2} y, t z^{2}, x y^{4}, x^{4} z$	$O_{x}=\frac{1}{11}(2,3)$ $O_{y}=\frac{1}{13}(1,2)$ $O_{z}=\frac{1}{19}(11,13)$ $O_{t}=\frac{1}{25}(11,19)$
$(11,25,37,68)$	136	$\frac{2}{407}$	2	$\frac{11}{6}$	$t^{2}, y z^{3}, x y^{5}, x^{9} z$	$O_{x}=\frac{1}{11}(3,2)$ $O_{y}=\frac{1}{25}(2,3)$ $O_{z}=\frac{1}{37}(11,31)$
$(13,19,41,68)$	136	$\frac{50}{10127}$	2	$\frac{91}{50}$	$t^{2}, y^{5} z, x z^{3}, x^{9} y$	$O_{x}=\frac{1}{13}(2,3)$ $O_{y}=\frac{1}{19}(13,11)$ $O_{z}=\frac{1}{41}(19,27)$

Log del Pezzo surfaces with $I=6$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(8,4 n+5,4 n+7,4 n+9)$	$12 n+23$	$\frac{9(12 n+23)}{2(4 n+5)(4 n+7)(4 n+9)}$	3			

Log del Pezzo surfaces with $I=7$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(11,13,21,38)$	76	$\frac{14}{429}$	2	$\frac{13}{10}$	$t^{2}, y z^{3}, x y^{5}, x^{5} z$	$O_{x}=\frac{1}{11}(2,5)$ $O_{y}=\frac{1}{13}(2,3)$ $O_{z}=\frac{1}{21}(11,17)$

Log del Pezzo surfaces with $I=8$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(7,11,13,23)$	46	$\frac{128}{1001}$	2	$\frac{35}{48}$	$t^{2}, y^{3} z, x z^{3}, x^{5} y$	$O_{x}=\frac{1}{7}(3,1)$ $O_{y}=\frac{1}{11}(7,1)$ $O_{z}=\frac{1}{13}(11,10)$
$(7,18,27,37)$	81	$\frac{32}{777}$	3	$\frac{35}{72}$	$y^{3} z, z^{3}, x t^{2}, x^{9} y$	$O_{x}=\frac{1}{7}(3,1)$ $O_{y}=\frac{1}{18}(7,1)$ $O_{t}=\frac{1}{37}(2,3)$ $O_{y} O_{z}=1 \times \frac{1}{9}(7,1)$

Log del Pezzo surfaces with $I=9$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(7,15,19,32)$	64	$\frac{54}{665}$	2	$\frac{35}{54}$	$t^{2}, y^{3} z, x z^{3}, x^{7} y$	$O_{x}=\frac{1}{7}(5,4)$ $O_{y}=\frac{1}{15}(7,2)$ $O_{z}=\frac{1}{19}(15,13)$

Log del Pezzo surfaces with $I=10$

Weights	Degree	K_{X}^{2}	ρ	lct	Monomials	Singular Points
$(7,19,25,41)$	82	$\frac{8}{133}$	2	$\frac{7}{12}$	$t^{2}, y^{3} z, x z^{3}, x^{9} y$	$O_{x}=\frac{1}{7}(2,3)$ $O_{y}=\frac{1}{19}(7,3)$ $O_{z}=\frac{1}{25}(19,16)$
$(7,26,39,55)$	117	$\frac{30}{1001}$	3	$\frac{7}{18}$	$y^{3} z, z^{3}, x t^{2}, x^{13} y$	$O_{x}=\frac{1}{7}(2,3)$ $O_{y}=\frac{1}{26}(7,3)$ $O_{t}=\frac{1}{55}(26,39)$ $O_{y} O_{z}=1 \times \frac{1}{13}(7,3)$

References

[1] C. Araujo, Kähler-Einstein metrics for some quasi-smooth log del Pezzo surfaces Transactions of the American Mathematical Society 354 (2002), 4303-3312
[2] C. Boyer, Sasakian geometry: the recent work of Krzysztof Galicki arXiv:0806.0373 (2008)
[3] C. Boyer, K. Galicki, M. Nakamaye, Sasakian-Einstein structures on $9 \#\left(S^{2} \times S^{3}\right)$ Transactions of the American Mathematical Society 354 (2002), 2983-2996
[4] C. Boyer, K. Galicki, M. Nakamaye, On the geometry of Sasakian-Einstein 5-manifolds Mathematische Annalen 325 (2003), 485-524
[5] J. W. Bruce, C. T. C. Wall, On the classification of cubic surfaces Journal of the London Mathematical Society 19 (1979), 245-256
[6] I. Cheltsov, Log canonical thresholds on hypersurfaces Sbornik: Mathematics 192 (2001), 1241-1257
[7] I. Cheltsov, Fano varieties with many selfmaps Advances in Mathematics 217 (2008), 97-124
[8] I. Cheltsov, Double spaces with isolated singularities Sbornik: Mathematics 199 (2008), 291-306
[9] I. Cheltsov, Log canonical thresholds and Kähler-Einstein metrics on Fano threefold hypersurfaces Izvestiya: Mathematics, to appear
[10] I. Cheltsov, Extremal metrics on two Fano varieties Sbornik: Mathematics, to appear
[11] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces Geometric and Functional Analysis, 18 (2008), 1118-1144
[12] I. Cheltsov, On singular cubic surfaces arXiv:0706.2666 (2007)
[13] I. Cheltsov, J. Park, J. Won, Log canonical thresholds of certain Fano hypersurfaces arXiv:math.AG/0706.0751 (2007)
[14] I. Cheltsov, C. Shramov, Log canonical thresholds of smooth Fano threefolds. With an appendix by JeanPierre Demailly Russian Mathematical Surveys 63 (2008), 73-180
[15] I. Cheltsov, C. Shramov, Del Pezzo zoo arXiv:0904.0114 (2009)
[16] J.-P. Demailly, J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds Annales Scientifiques de l'École Normale Supérieure 34 (2001), 525-556
[17] S. Donaldson, Scalar curvature and stability of toric varieties Journal of Differential Geometry 62 (2002), 289-349
[18] R. Elkik, Rationalitè des singularitès canoniques Inventiones Mathematicae 64 (1981), 1-6
[19] A. Futaki, An obstruction to the existence of Einstein-Kähler metrics Inventiones Mathematicae 73 (1983), 437-443
[20] J. Gauntlett, D. Martelli, J. Sparks, S.-T. Yau, Obstructions to the existence of Sasaki-Einstein metrics Communications in Mathematical Physics 273 (2007) 803-827
[21] J.-M. Hwang, Log canonical thresholds of divisors on Fano manifolds of Picard rank 1 Compositio Mathematica 143 (2007), 89-94
[22] A. R. Iano-Fletcher, Working with weighted complete intersections L.M.S. Lecture Note Series 281 (2000), 101-173
[23] S. Ishii, Yu. Prokhorov, Hypersurface exceptional singularities International Journal of Mathematics 12 (2001), 661-687
[24] J. Johnson, J. Kollár, Fano hypersurfaces in weighted projective 4-spaces Experimental Mathematics 10 (2001), 151-158
[25] J. Johnson, J. Kollár, Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces Annales de l'Institut Fourier 51 (2001), 69-79
[26] J. Kollár, Singularities of pairs Proceedings of Symposia in Pure Mathematics 62 (1997), 221-287
[27] S. Keel, J. McKernan, Rational curves on quasi-projective surfaces Memoirs of the American Mathematical Society 669 (1999)
[28] S. Kudryavtsev, On purely log terminal blow ups Mathematical Notes 69 (2002), 814-819
[29] S. Kudryavtsev, Classification of three-dimensional exceptional log-canonical hypersurface singularities. I Izvestiya: Mathematics 66 (2002), 949-1034
[30] T. Kuwata, On log canonical thresholds of reducible plane curves American Journal of Mathematics 121 (1999), 701-721
[31] M. Lübke, Stability of Einstein-Hermitian vector bundles Manuscripta Mathematica 42 (1983), 245-257
[32] D. Markushevich, Yu. Prokhorov, Exceptional quotient singularities American Journal of Mathematics 121 (1999), 1179-1189
[33] Y. Matsushima, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne Nagoya Mathematical Journal 11 (1957), 145-150
[34] A. Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature Annals of Mathematics 132 (1990), 549-596
[35] D. Phong, N. Sesum, J. Sturm, Multiplier ideal sheaves and the Kähler-Ricci flow Communications in Analysis and Geometry 15 (2007), 613-632
[36] Yu. Prokhorov, Blow-ups of canonical singularities arXiv:math/9810097 (1998)
[37] Yu. Prokhorov, Lectures on complements on log surfaces MSJ Memoirs 10 (2001)
[38] A. Pukhlikov, Birational geometry of Fano direct products Izvestiya: Mathematics 69 (2005), 1225-1255
[39] M. Reid, Canonical 3-folds Journes de Gèometrie Algèbrique d'Angers (1980), 273-310
[40] J. Ross, R. Thomas, An obstruction to the existence of constant scalar curvature Kähler metrics Journal of Differential Geometry 72 (2006), 429-466
[41] Y. Rubinstein, Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics Advances in Mathematics 218 (2008), 1526-1565
[42] V.Shokurov, Complements on surfaces Journal of Mathematical Sciences 102 (2000), 3876-3932
[43] J. Sparks, New results in Sasaki-Einstein geometry arXiv:math/0701518 (2007)
[44] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$ Inventiones Mathematicae 89 (1987), 225-246
[45] G. Tian, On Calabi's conjecture for complex surfaces with positive first Chern class Inventiones Mathematicae 101 (1990), 101-172
[46] G. Tian, On a set of polarized Kähler metrics on algebraic manifolds Journal of Differential Geometry 32 (1990), 99-130
[47] G. Tian, Kähler-Einstein metrics with positive scalar curvature Inventiones Mathematicae 130 (1997), 1-37
[48] G. Tian, S.-T. Yau, Kähler-Einstein metrics metrics on complex surfaces with $C_{1}>0$ Communications in Mathematical Physics 112 (1987), 175-203
[49] S. S.-T. Yau, Y. Yu, Classification of 3-dimensional isolated rational hypersurface singularities with \mathbb{C}^{*}-action arXiv:math/0303302 (2003)
[50] Q. Zhang, Rational connectedness of $\log \mathbb{Q}$-Fano varietiess Journal fur die Reine und Angewandte Mathematik 590 (2006), 131-142

Ivan Cheltsov
School of Mathematics, The University of Edinburgh, Edinburgh, EH9 3JZ, UK; cheltsov@yahoo.com
Jihun Park
Department of Mathematics, POSTECH, Pohang, Kyungbuk 790-784, Korea; wlog@postech.ac.kr
Constantin Shramov
School of Mathematics, The University of Edinburgh, Edinburgh, EH9 3JZ, UK; shramov@mccme.ru

[^0]: ${ }^{1}$ For notions of exceptional and weakly exceptional singularities see [36, Definition 4.1], 42], [23].

[^1]: ${ }^{2}$ By family we mean either one-parameter series (which actually gives rise to an infinite number of deformation families) or a sporadic case. We hope that this would not lead to a confusion.

