574 research outputs found
Optical fiber based spectral response measurement system for multi-junction solar cells
We report an optical fiber based spectral response measurement system for multijunction solar cells. We have also fabricated single junction GaAs cells on GaAS and Ge substrates and measured lighted I-V characteristics. Preliminary quantum efficiency measurements on these devices are also presented.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2200
Coherent Control for a Two-level System Coupled to Phonons
The interband polarizations induced by two phase-locked pulses in a
semiconductor show strong interference effects depending on the time tau_1
separating the pulses. The four-wave mixing signal diffracted from a third
pulse delayed by tau is coherently controlled by tuning tau_1. The four-wave
mixing response is evaluated exactly for a two-level system coupled to a single
LO phonon. In the weak coupling regime it shows oscillations with the phonon
frequency which turn into sharp peaks at multiples of the phonon period for a
larger coupling strength. Destructive interferences between the two
phase-locked pulses produce a splitting of the phonon peaks into a doublet. For
fixed tau but varying tau_1 the signal shows rapid oscillations at the
interband-transition frequency, whose amplitude exhibits bursts at multiples of
the phonon period.Comment: 4 pages, 4 figures, RevTex, content change
Anisotropic structural and optical properties of a-plane (11-20) AlInN nearly-lattice-matched to GaN
We report epitaxial growth of a-plane (11-20) AlInN layers
nearly-lattice-matched to GaN. Unlike for c-plane oriented epilayers, a-plane
Al_{1-x}In_{x}N cannot be simultaneously lattice-matched to GaN in both
in-plane directions. We study the influence of temperature on indium
incorporation and obtain nearly-lattice-matched Al_{0.81}In_{0.19}N at a growth
temperature of 760^{o}C. We outline a procedure to check in-plane lattice
mismatch using high resolution x-ray diffraction, and evaluate the strain and
critical thickness. Polarization-resolved optical transmission measurements of
the Al_{0.81}In_{0.19}N epilayer reveal a difference in bandgap of ~140 meV
between (electric field) E_parallel_c [0001]-axis and E_perpendicular_c
conditions with room-temperature photoluminescence peaked at 3.38 eV strongly
polarized with E_parallel_c, in good agreement with strain-dependent
band-structure calculations
The effects of macroscopic inhomogeneities on the magneto transport properties of the electron gas in two dimensions
In experiments on electron transport the macroscopic inhomogeneities in the
sample play a fundamental role. In this paper and a subsequent one we introduce
and develop a general formalism that captures the principal features of sample
inhomogeneities (density gradients, contact misalignments) in the magneto
resistance data taken from low mobility heterostructures. We present detailed
assessments and experimental investigations of the different regimes of
physical interest, notably the regime of semiclassical transport at weak
magnetic fields, the plateau-plateau transitions as well as the
plateau-insulator transition that generally occurs at much stronger values of
the external field only.
It is shown that the semiclassical regime at weak fields plays an integral
role in the general understanding of the experiments on the quantum Hall
regime. The results of this paper clearly indicate that the plateau-plateau
transitions, unlike the the plateau-insulator transition, are fundamentally
affected by the presence of sample inhomogeneities. We propose a universal
scaling result for the magneto resistance parameters. This result facilitates,
amongst many other things, a detailed understanding of the difficulties
associated with the experimental methodology of H.P. Wei et.al in extracting
the quantum critical behavior of the electron gas from the transport
measurements conducted on the plateau-plateau transitions.Comment: 20 pages, 9 figure
Fermi-edge singularities in linear and non-linear ultrafast spectroscopy
We discuss Fermi-edge singularity effects on the linear and nonlinear
transient response of an electron gas in a doped semiconductor. We use a
bosonization scheme to describe the low energy excitations, which allows to
compute the time and temperature dependence of the response functions. Coherent
control of the energy absorption at resonance is analyzed in the linear regime.
It is shown that a phase-shift appears in the coherent control oscillations,
which is not present in the excitonic case. The nonlinear response is
calculated analytically and used to predict that four wave-mixing experiments
would present a Fermi-edge singularity when the exciting energy is varied. A
new dephasing mechanism is predicted in doped samples that depends linearly on
temperature and is produced by the low-energy bosonic excitations in the
conduction band.Comment: long version; 9 pages, 4 figure
Optical symmetries and anisotropic transport in high-Tc superconductors
A simple symmetry analysis of in-plane and out-of-plane transport in a family
of high temperature superconductors is presented. It is shown that generalized
scaling relations exist between the low frequency electronic Raman response and
the low frequency in-plane and out-of-plane conductivities in both the normal
and superconducting states of the cuprates. Specifically, for both the normal
and superconducting state, the temperature dependence of the low frequency
Raman slope scales with the axis conductivity, while the
Raman slope scales with the in-plane conductivity. Comparison with experiments
in the normal state of Bi-2212 and Y-123 imply that the nodal transport is
largely doping independent and metallic, while transport near the BZ axes is
governed by a quantum critical point near doping holes per
CuO plaquette. Important differences for La-214 are discussed. It is also
shown that the axis conductivity rise for is a consequence of
partial conservation of in-plane momentum for out-of-plane transport.Comment: 16 pages, 8 Figures (3 pages added, new discussion on pseudogap and
charge ordering in La214
Ward Identities, B-> \rho Form Factors and |V_ub|
The exclusive FCNC beauty semileptonic decay B-> \rho is studied using Ward
identities in a general vector meson dominance framework, predicting vector
meson couplings involved. The long distance contributions are discussed which
results to obtain form factors and |V_ub|. A detailed comparison is given with
other approaches.Comment: 30 pages+four postscript figures, an Appendix adde
Local optical spectroscopy of semiconductor nanostructures in the linear regime
We present a theoretical approach to calculate the local absorption spectrum of excitons confined in a semiconductor nanostructure. Using the density-matrix formalism, we derive a microscopic expression for the nonlocal susceptibility, both in the linear and nonlinear regimes, which includes a three-dimensional description of electronic quantum states and their Coulomb interaction. The knowledge of the nonlocal susceptibility allows us to calculate a properly defined local absorbed power, which depends on the electromagnetic field distribution. We report on explicit calculations of the local linear response of excitons confined in single and coupled T-shaped quantum wires with realistic geometry and composition. We show that significant interference effects in the interacting electron-hole wave function induce new features in the space-resolved optical spectra, particularly in coupled nanostructures. When the spatial extension of the electromagnetic field is comparable to the exciton Bohr radius, Coulomb effects on the local spectra must be taken into account for a correct assignment of the observed features
Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors
The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. Video Abstract: Features learned from comparative sequence and structural analyses enabled prediction of peptide ligands for orphan GPCRs that, when coupled with functional validation, expose physiologically relevant signaling systems. © 2019 The Author(s
A CHIME/FRB Study of Burst Rate and Morphological Evolution of the Periodically Repeating FRB 20180916B
FRB 20180916B is a repeating fast radio burst (FRB) with a 16.3 day periodicity in its activity. In this study, we present morphological properties of 60 FRB 20180916B bursts detected by CHIME/FRB between 2018 August and 2021 December. We recorded raw voltage data for 45 of these bursts, enabling microseconds time resolution in some cases. We studied variation of spectro-temporal properties with time and activity phase. We find that the variation in dispersion measure (DM) is ≲1 pc cm−3 and that there is burst-to-burst variation in scattering time estimates ranging from ∼0.16 to over 2 ms, with no discernible trend with activity phase for either property. Furthermore, we find no DM and scattering variability corresponding to the recent change in rotation measure from the source, which has implications for the immediate environment of the source. We find that FRB 20180916B has thus far shown no epochs of heightened activity as have been seen in other active repeaters by CHIME/FRB, with its burst count consistent with originating from a Poissonian process. We also observe no change in the value of the activity period over the duration of our observations and set a 1σ upper limit of 1.5 × 10−4 day day−1 on the absolute period derivative. Finally, we discuss constraints on progenitor models yielded by our results, noting that our upper limits on changes in scattering and DM as a function of phase do not support models invoking a massive binary companion star as the origin of the 16.3 day periodicity.</p
- …