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SUMMARY

The peptidergic system is the most abundant
network of ligand-receptor-mediated signaling in hu-
mans. However, the physiological roles remain
elusive for numerous peptides and more than 100 G
protein-coupled receptors (GPCRs). Here we report
the pairing of cognate peptides and receptors. Inte-
grating comparative genomics across 313 species
and bioinformatics on all protein sequences and
structures of human class A GPCRs, we identify
universal characteristics that uncover additional po-
tential peptidergic signaling systems. Using three
orthogonal biochemical assays, we pair 17 proposed
endogenous ligands with five orphan GPCRs that
are associated with diseases, including genetic,
neoplastic, nervous and reproductive system disor-
ders. We also identify additional peptides for nine re-
ceptors with recognized ligands and pathophysio-
logical roles. This integrated computational and
multifaceted experimental approach expands the
peptide-GPCR network and opens the way for
studies to elucidate the roles of these signaling sys-
tems in human physiology and disease.

INTRODUCTION

Peptide hormones and neuropeptides are ubiquitous signaling

molecules that predominantly stimulate cell surface receptors

in numerous physiological processes. Over 85 endogenous pep-

tide/protein-derived drugs target 51 proteins, half of which are G

protein-coupled receptors (GPCRs) (Wishart et al., 2018). More-

over, such biological agents and peptide-activated GPCRs are
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gaining traction in current clinical trials (Hauser et al., 2017).

However, despite their physiological importance and therapeutic

potential, the cognate interactions for numerous peptides and

over 100 GPCRs remain elusive; thus, they are referred to here

as ‘‘orphan’’ receptors (Laschet et al., 2018) or, for simplicity,

‘‘oGPCRs.’’

Deorphanization, i.e., unambiguous pairing of cognate ligands

and receptors, has consistently transformed the understanding

of human biology (Civelli et al., 2013), and illumination of

understudied drug targets is a key objective of modern drug

discovery (Oprea et al., 2018; Roth and Kroeze, 2015).

However, deorphanization has been slow in recent years (https://

www.guidetopharmacology.org/latestPairings.jsp). Furthermore,

oGPCRs typically have uncharacterized signaling pathways

(Rothetal., 2017), necessitating theuseofpromiscuousGproteins

(Huang et al., 2015) and b-arrestin assays to report cellular re-

sponses (Kroeze et al., 2015; Southern et al., 2013). Because not

all GPCRs couple efficiently to promiscuous/chimeric G proteins

and/or may not robustly induce b-arrestin recruitment, these

assays may miss many bona fide receptor-ligand interactions.

Equally, the pluridimensional nature of GPCR signaling and

the ability of some ligands to preferentially activate one signaling

pathway at the expense of others (i.e., to bias their stimulus)

requires the use of multiple complementary assays to effectively

study oGPCRs.

Human peptide ligands, such as QRFP peptides, osteocalcin,

and spexin, were discovered using bioinformatics approaches

(Fukusumi et al., 2003; Mirabeau et al., 2007; Sonmez et al.,

2009), which have the ability to interrogate complete genomes.

However,bioinformaticsapproachesmustaccount for conceptual

challenges related to biological processes, including identification

of signal peptides for secretion, alternative splicing of precursor

genes, and enzymatic peptide cleavage (Ozawa et al., 2010).

Furthermore, post-translational modifications and protein folding

are generally not covered by computational methods, although
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somesequencemotif-basedmodificationscanbepredicted, such

as the introduction of C-terminal amidation and disulfide bridges.

Massspectrometry-based techniqueshavebeenused todiscover

endogenous ligands in the mouse (Fricker, 2010) and the human

precursor proSAAS (Fricker et al., 2000), which contains bioactive

peptides involved in circadian rhythms (Hatcher et al., 2008). How-

ever, mass spectrometry can be limited in terms of detection of

low-abundance peptides in complex samples.

Here we provide an integrated computational and experi-

mental approach for peptide-oGPCR pairing (Figure S1). We

initially utilized comparative sequence and structural analyses

to gain biological insights into the human peptide-receptor

signaling landscape and leveraged these features tomine candi-

date peptide ligands in the human genome.We then identified in-

teractions via multiple orthogonal assay platforms to indepen-

dently screen class A GPCRs against key signal transduction

events. Ultimately, we discovered potential endogenous peptide

ligands for five oGPCRs as well as secondary ligands for a num-

ber of known peptide receptors.

RESULTS

Cognate Peptide Ligands and Receptors Co-evolved to
Form the Largest Signal Transduction System in
Humans
Initially, we explored the current knowledge regarding endoge-

nous ligands and receptor systems by evaluating 341 peptide/

protein (encoded by 160 genes) and 174 non-peptide ligands

(Harding et al., 2018). Both ligand classes mediate physiological

functions predominantly through GPCRs (67% and 64%,

respectively; Figure 1A; Table S1). The entire network of known

interactions between GPCRs and cognate ligands spans 348 re-

ported interactions between 120 receptors and 185 peptides.

These interactions range from simple receptor-ligand systems

with a one-to-one relationship to complex many-to-many sys-

tems (Figure 1D). For instance, the peptide hormone motilin sig-

nals through a single receptor, whereas the melanocortin and

purinergic P2Y receptors are activated by multiple peptides

and nucleotides, respectively. On average, each receptor is acti-

vated by 2.9 peptide or 1.7 non-peptidergic ligands. Peptides

are larger (average molecular weight, 7.7 kDa versus 0.4 kDa)

and interact with their targets with higher affinity (average pKi:

9.4 versus 8.0) and potency (average pEC/IC50: 9.0 versus 6.9)

than non-peptides (Figures 1B and 1C; Table S1). The mRNA

abundance is generally lower for peptide than non-peptide

GPCRs (Figure S2A), although peptide ligand precursors and

both types of receptors are expressed in all organs. Taken

together, our most common and potent type of signaling mole-

cules evolved through genetic encoding.

Next, we sought to investigate how the success of peptide

ligands was shaped together with their cognate receptors (Mira-

beau and Joly, 2013) by analyzing 23,606,407 peptide-GPCR re-

lationships across 313 eukaryotic genomes. When considering

the minimal signaling system of one peptide and receptor, we

found that 39 of 42 (93%) of the known human families arose dur-

ing vertebrate evolution (Table S2), consistent with two early

genome duplications (Holland et al., 1994). Notably, among all

receptor families in all species, few have only the precursor
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(4%) or GPCR (15%) gene, indicating nearly universal coevolu-

tion. Moreover, by generating evolutionary fingerprints of

conserved or lost gene orthologs (Figure S2B), we observed

significantly higher coevolution of cognate ligand-receptor than

random protein-protein pairs (average identities of 91% and

56%, respectively). This coevolution is higher (average identities

of 95% and 89%, respectively) when merging the fingerprints of

peptide precursors, but not of GPCRs, within the same receptor

family (Figure S2C). These results suggest higher evolutionary

pressure to conserve the distinct physiological function of recep-

tors than ligands. Similarly, we found that the human receptor

repertoire is more conserved than peptide ligands (average J =

0.64 versus 0.49; Figure S2D). Thus, cognate peptides and

GPCRs have coevolved, and ligands have been more adaptive

than receptors in shaping new signaling systems.

Precursors, Peptides, and Receptors Possess Universal
Evolutionary, Sequence, and Structural Characteristics
We next explored whether comparative genomics and biological

processing paradigms could be predictively used to identify

peptide precursors and peptides. We found that 99% of all pep-

tide ligand precursors contain an N-terminal signal peptide (Fig-

ure 2A), a requirement for extracellular secretion (Blobel and

Dobberstein, 1975). Proteins are enzymatically cleaved at spe-

cific sites (Ozawa et al., 2010), and we found that 80%/66% of

the 184 human peptide ligand N/C termini are flanked by a

dibasic motif (with a conserved glycine at C termini; Figure 2B).

In addition, evolutionary trace analysis showed that known

peptides make up the most conserved segments of precursor

sequences (Wilcoxon rank-sum test, p < 1 3 10�5; Figure 2C).

Strikingly, the peptide ligand subsequences can be recognized

precisely within their precursors as highly conserved segments

flanked by consensus cleavage sites, the signal peptide, or the

C terminus (Figure 2D).

We then investigated the characteristic features of peptide

receptors. By multi-dimensional scaling of residue properties

across all aligned GPCR positions, we found that the vast ma-

jority of class A GPCRs cluster by ligand type and that protein

and peptide receptors exhibit separate clusters (Figure 3A).

GPCR structure analysis revealed a characteristic b sheet in

the second extracellular loop with a distinct sequence conser-

vation pattern (Figure 3B) and a long (>20 amino acid) distal

segment of this loop that is twice as common in peptide recep-

tors compared with non-peptide receptors (Figure 3C). Further-

more, principal-component analysis of GPCR structures re-

vealed a clear separation of the peptide/protein receptors.

Displacement trajectories of the two most significant principal

components showed that the residue positions with the largest

deviation from the average inactive structure are located within

the extracellular portions of transmembrane helices 1–5 and the

first two extracellular loops (Figure 3D). Moreover, these struc-

tures of peptide/protein receptors have nearly three times

larger binding cavities than non-peptide GPCRs (mean volume,

1,226 Å3 and 469 Å3, respectively; Figure 3E). Taken together,

these analyses reveal several sequence and structural charac-

teristics, of which the b sheet, a long ECL2, and a large binding

cavity can directly facilitate the binding of large proteins/

peptides.
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Figure 1. The Human G Protein-Coupled Receptor-Ligand System

(A) GPCRs represent the predominant targets for endogenous ligands. Peptides aremore numerous, larger and bind with higher affinity than non-peptide ligands.

From the top: (1) distinct endogenous ligands by target family; (2) endogenous GPCR ligands, of which ‘‘principal’’ ligands are considered most physiologically

relevant; (3) peptide and small-molecule binding receptors, of which ‘‘paired’’ ones have a known principal endogenous ligand; and (4) ligands per receptor and

vice versa (averages).

(B and C) Ligand molecular weight distribution (B) and cognate receptor affinity (C) (boxplots show a median and interquartile range of 1.5; Wilcoxon rank-sum

test, p < 1 3 10�5). Data are from the Guide to Pharmacology database (Harding et al., 2018).

(D) GPCR-ligand systems vary in complexity from 1:1 to many:many (gray circles show numbers of each system; data are shown in Table S1).

See also Figure S2.
Universal Characteristics Reveal Plausible Additional
Human Peptides and Receptors
We sought to investigate whether it was possible to mine poten-

tial peptide ligands from the entire human proteome. First we

identified putative precursors by sequentially filtering for proteins

annotated in Swiss-Prot as secreted or with a signal peptide
(�4,800) and those with unknown or precursor-compatible func-

tional annotations (�1,400) (Figure 2A). This yielded 1,227 ‘‘pep-

tide cleavage variants,’’ representing candidate ligands that

span the precursor signal peptide and C terminus or intermedi-

ate consensus cleavage sites. We selected representative

cleavage variants for pharmacological screening using a 5-fold
Cell 179, 895–908, October 31, 2019 897
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Figure 2. Universal Precursor Processing and Peptide Ligand Gene Conservation Hotspots

(A) Potential precursors can be mined from the human proteome based on the presence of secretion signal peptides and an unknown or ligand-precursor-like

function (Table S4).

(B) The vast majority of GPCR peptide ligands are cleaved from precursors at specific dibasic sites.

(C) GPCR peptide ligands are more evolutionarily conserved than random sequences of similar length (up to 45 residues) (Wilcoxon rank-sum test,

p < 1 3 10�5).

(D) Human peptide ligands can be deduced from precursor cleavage sites and conservation hotspots. The example depicts the pro-opiomelanocortin precursor

containing endogenous ligands for melanocortin (a-MSH, b-MSH, g-MSH, and ACTH) and opioid (b-endorphin) receptors.
cross-validated random forest classifier based on length and

several evolutionary conservation scores of known peptides

and their precursors. This analysis resulted in 120 peptide se-

quences representing the most plausible GPCR ligands. These

were combined with 43 recently proposed unpaired rat peptides

(Secher et al., 2016) to give a total of 163 putative peptide

ligands, 112 of which came from precursors that have not

been associated previously with GPCR activity. The final library

containing 218 peptides was subsequently synthesized,

including 55 known class AGPCR ligands (Table S5). To account

for post-translational modification, we incorporated disulfide

bridges and C-terminal amidation in 26 and 77 peptides, respec-

tively. This synthetic peptide library contained the most GPCR

ligand-like peptide cleavage variant, in effect ‘‘lead ligands’’ for

primary screening.

In parallel, the conserved characteristics allowed us to predict

peptide-activated receptors, of which we selected 21 class A

GPCRs with rodent ortholog diverse disease associations

(Table S5). Our cell lines for 15 (71%) oGPCRs displayed robust

doxycycline-induced cell surface expression, and 12 (57%) pro-
898 Cell 179, 895–908, October 31, 2019
moted constitutive G protein signaling, including couplings for

three receptors not reported previously (Figure S3). Furthermore,

10 oGPCR cell lines were validated with commercially available

compounds (Table S5).

A Multifaceted Screening Strategy Captures Pathway-
and Assay-Dependent Receptor Responses
GPCRs can couple tomultiple signaling pathways, with the com-

bined signals constituting an overall response (Kenakin, 2017b).

The measured response can appear different depending on the

signal pathway, cell type, and time course investigated. Ligands

can also intrinsically favor given receptor conformations that

preferentially activate specific pathways (Kenakin, 2017b).

These phenomena of assay-dependent observational bias and

ligand-mediated signal bias are especially problematic for

orphan and understudied receptors with poorly characterized

signaling pathways (Huang et al., 2015; Roth et al., 2017).

For these reasons, we screened our 218 peptides and 21 pre-

dicted peptide receptors in three complementary orthogonal

assay platforms to cover multiple aspects of GPCR activation.
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Figure 3. Peptide Receptors Share Distinct Sequence and Structural Characteristics

(A) The majority of class A GPCRs cluster by endogenous ligand type based on ligand-interacting residue analysis with multi-dimensional scaling.

(B) Peptide receptors with a structure (n = 21, left) share a characteristic b sheet (green) substructure (left) and sequence (right) in extracellular loop 2 (ECL2), which

includes a conserved cysteine, Cys45350 (red, center).

(C) A long ECL2 segment (>20 residues) after Cys45350 is an overrepresented feature of peptide/protein receptors (Wilcoxon rank-sum test, p < 1 3 10�5).

(D) Principal-component analysis of receptor structures in a 2D plot (top left) and dendrogram (bottom) demonstrate separation of peptide (green), non-peptide

receptors (beige), and outliers (gray). Differences are predominantly found in the extracellularly facing ligand-binding domain, as shown by residue displacements

from the mean (right).

(E) Ligand-binding pocket volumes are larger in peptide than non-peptide class A receptors.

See also Table S3 for related 3D PCA and ECL2 motif data.
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The dynamic mass redistribution assay is ideal for investigating

oGPCR activation because it captures most (including all G pro-

tein) signaling pathways (Fang et al., 2008; Schröder et al., 2011).

The second assay measures pathway-independent receptor

internalization from the surface to the inside of cells

(Foster and Bräuner-Osborne, 2018). These assays are both

time resolved and provide valuable insights into receptor

signaling kinetics. The third, the b-arrestin recruitment assay, is

a highly amplified reporter gene-based readout of GPCR

signaling (Kroeze et al., 2015) that increases the sensitivity of de-

tecting positive pairings and allowed us to rapidly screen an

additional 46 orphan/understudied and 27 known peptide-acti-

vated class AGPCRs (Table S6). Collectively, these three assays

provided an ideal platform to detect peptide ligands for under-

characterized GPCRs and enabled physical interrogation of

21,446 potential peptide-receptor interactions.

We confirmed the activity of known agonists for 21 (78%)

recognized peptide receptors using the b-arrestin recruitment

assay. Our multifaceted screening identified peptide-mediated

responses for all 21 predicted orphan peptide receptors (Fig-

ure 4A; Table S6). These results validate our computational pep-

tide library design and provide good experimental coverage of

receptor signaling. The three screening platforms demonstrated

large variation in peptide pairings/GPCR targets (receptor inter-

nalization, 24/6; b-arrestin recruitment, 57/21; and mass redistri-

bution, 75/18; Table S6). We identified peptides that robustly

activated bombesin receptor 3 (BB3), GPR1, GPR15, GPR55,

and GPR68 in multiple primary assays (Figure 4A; Table S6).

Notably, all GPR55 and GPR68 peptides were inactive in b-ar-

restin recruitment, and, conversely, GPR1 pairings were only

observed in this assay, indicating potential ligand-mediated G

protein and b-arrestin signal pathway bias, respectively. For

the additional receptors only screened in the b-arrestin recruit-

ment assay, we observed hits for 33 (72%) oGPCRs and nine

known peptide receptors (Table S6). These findings underscore

the importance of broadly covering receptor signaling using a

multifaceted primary screening approach and additional func-

tional assays for hit validation (Huang et al., 2015; Kroeze

et al., 2015).

Discovery of Peptide-Receptor Pairs Expand the Human
Signaling System
We extensively characterized our peptide-GPCR receptor inter-

actions using additional orthogonal G protein and/or b-arrestin

assays (Figure 4B; Figure S4; Table S7). Our peptide-receptor

pairing criterion was activity in at least two assays. Furthermore,

we characterized additional cleavage variants of these peptides

to improve their potency (Figure 5; Figure S5). These experi-
Figure 4. General versus Assay-Specific Responses and Novel Peptid

(A) Themultifaceted screen of 218 peptides identified a variety of multiple and sing

redistribution data revealed repeat hitters (denoted with asterisks) that reflect p

additional class A orphan and peptide GPCRs are provided in Table S6.

(B) Pairing of 17 peptides with five orphan receptors. Colored circles show pEC

receptor. Other assays usedwere Gq/11 (IP1), Gs andGi/o (cAMP), and b-arrestin re

GPCR peptide ligand with the amino acid range of the cleaved peptide shown in

All data represent mean ± SEM for 3–4 independent experiments, each performed

(tested in a single assay) for GPR17, GPR161, GPR176, GPR183, and MAS1.
ments also addressed the possibility that multiple peptide vari-

ants can be endogenous agonists (Tatemoto et al., 1998) and

provided insights into determinants of activity for the discovered

peptide ligands.

BB3 is an orphan receptor, although it responds weakly to

physiologically relevant levels of the bombesin peptides neuro-

medin B and gastrin-releasing peptide, the endogenous ago-

nists of BB1 and BB2, respectively (Alexander et al., 2017). We

observed considerably more potent neuromedin B responses

inmass redistribution (pEC50, 7.43 ± 0.08) andGq/11 signaling as-

says (IP1 generation; pEC50, 6.39 ± 0.42) (Figure 4B; Table S7)

than reported previously (Jensen et al., 2008). We observed no

differences in BB3 responses between the 10-amino acid neuro-

medin B peptide (designated NMB(47–56) based on its precur-

sor residue number) and a longer, 32-residue cleavage variant,

NMB(25–56), in any assay (Figure S5A; Table S7). We also found

that the C terminus of gastrin-releasing peptide (GRP) activated

BB3 with a potency comparable with the full-length peptide

tested in the screen, whereas a truncated N-terminal variant,

GRP(24–40), was less potent/efficacious or inactive. In addition

to these ligands, we identified less potent BB3-mediated

signaling for new cleavage variants derived from neuromedin-

U and proenkephalin-A precursors (Figure 4B; Table S7). Taken

together, these findings present multiple new peptide pairings

for BB3, of which the neuromedin B peptides represent the

most likely endogenous ligands for BB3, albeit at lower potency

than at the BB1 receptor.

GPR1 (recently renamed chemerin receptor 2) has been re-

ported as a chemerin receptor, although its primary biological

function is currently unknown (Kennedy and Davenport, 2018).

No G protein has been unequivocally linked with GPR1 (Fig-

ure S3). Accordingly, we observed robust and selective GPR1-

dependent responses for four different peptides in two different

b-arrestin recruitment assays but not in other assays (Figures

S3A and S4A). Peptide 141 (Osteocrin-2-19) is the most potent

(pEC50, 5.60 ± 0.15 in Tango and 6.18 ± 0.09 in PathHunter

b-arrestin recruitment assays, respectively) (Table S7). Alterna-

tive osteocrin cleavage variants lacking two N-terminal amino

acids had reduced potency (Figure S5B; Table S7). For another

GPR1 hit, cholecystokinin (CCK-33), peptide cleavage variants

were less active than the full-length peptide, except for a

C-terminal 8-amino acid peptide, which was more potent in

PathHunter b-arrestin recruitment assays than CCK-33 (Fig-

ure S5B; Table S7). We also found that gastrin-releasing peptide

activated GPR1 in b-arrestin recruitment assays (Figure S5B;

Table S7). Interestingly, we found that this activity was depen-

dent on the peptide N terminus, whereas the C-terminal region

GRP(41–50) was critical for BB3 signaling.
e-Receptor Pairings

le-assay responses, including hits for all 21 predicted peptide receptors. Mass

eptide-dependent responses from endogenous targets. Screening results for

50 values and concentration-response curves the most potent ligand for each

cruitment (PathHunter). An asterisk indicates a new cleavage variant of a known

subscript; empty circles indicate inactivity.

in triplicate. Table S7 provides all related data and data for indicative pairings

Cell 179, 895–908, October 31, 2019 901
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Figure 5. Potential Peptide Cleavage Variants Elicit Increased GPR15 Signaling Responses

(A) Evolutionary trace and cleavage site (gray bars) analysis of the GPR15L gene-encoded precursor presents potential alternative peptide cleavage variants.

(B–D) GPR15-mediated responses forGPR15L cleavage variants in (B) cAMP inhibition, (C) mass redistribution, and (D) receptor internalization assays. Themost

potent peptide is the longest, 57-residue form the recently named ‘‘GPR15L’’ (Suply et al., 2017) (excluded in C because of assay interference).

Data represent mean ±SEM for 3–4 independent experiments performed in triplicate. Related pharmacological data for GPR15 as well as for cleavage variants of

peptides activating BB3, GPR55, and GPR1 are shown in Table S7 and Figures S4 and S5.
GPR15 was robustly activated by an 11-amino acid peptide

derived from the C terminus of ‘‘Uniprot:C10orf99’’ (Figure 4B;

Table S7). We demonstrated that GPR15 is Gi/o-coupled

because this peptide reduced cyclic AMP (cAMP) production

(pEC50, 6.72 ± 0.13). Notably, two cleavage variants of

this peptide (45 and 57 amino acids in length) had 10- and

100-fold improved potency, respectively (Figure 5; Table

S7). In the course of our study, two other groups reported

activation of GPR15 by the longest 57-residue cleavage

variant, renamed GPR15L (Ocón et al., 2017; Suply et al.,

2017). GPR15L contains two intramolecular disulfide bridges

characteristic of CC family chemokines; however, it differs

because peptide activity is not dependent on the N terminus

(Ocón et al., 2017; Figure 5). Furthermore, we showed

that the shortest, 11-residue C-terminal peptide, peptide 64

(GPR15L47-57) (lacking disulfide bridges) was sufficient to acti-

vate GPR15, although GPR15L represents the most potent

and likely principal ligand.
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We identified six peptides that promoted GPR55 internaliza-

tion and mass redistribution, including five previously unde-

scribed peptides and PACAP27, which exhibited a similar

potency (pEC50, 9.51 ± 0.07) as for its cognate receptor, PAC1

(Alexander et al., 2017; Figure 4B; Figure S5C; Table S7).

Progressive truncations of the PACAP-27 peptide completely

abrogated the GPR55 response (Figure S5C; Table S7).

Conversely, we found that longer peptide cleavage variants

(PACAP-38 and a 45-amino acid variant) elicited similar picomo-

lar-potency internalization responses to PACAP-27. One of the

six GPR55 ligands, peptide 143 originates from rat hypothala-

mus (Secher et al., 2016), and testing of the human 143

confirmed activity, albeit with 10-fold lower potency (Table S7)

GPR68 is a proton-sensing receptor abundantly expressed in

the hippocampus that is involved in learning andmemory (Huang

et al., 2015). We identified three peptides: 128 (Osteocrin33-55),

139 (CART(42-89)9-28), and rat 148 (Corticotropin17-40) that

led to GPR68-dependent mass redistribution responses with



sub- or low-micromolar potencies (Figure 4B; Table S7). These

responses were confirmed in the real-time internalization assay,

although with lower potency compared with mass redistribution

or G protein signaling assays (Roed et al., 2014). We further

demonstrated that these peptides activated Gq/11 (calcium

mobilization) and Gs (cAMP signaling) (Figure 4B; Figure S4A;

Table S7), consistent with previously reported GPR68 signaling

(Huang et al., 2015). We precluded a non-specific effect or direct

proton-sensing mechanism of activity because none of these

peptides induced responses in mock cells or elicited changes

in extracellular pH (data not shown). Given the known allosteric

modulation of proton-dependent GPR68 signaling by surrogate

ligands, we performed further analyses of Gs signaling. These

studies revealed that the three peptides are positive allosteric

modulators of the proton responses, with up to �2-fold

improved allosteric activity (log(ab/KB)) over the small-molecule

GPR68 ligand ogerin (Huang et al., 2015; Figure 4B; Figure S4A;

Table S7). Taken together, our pairings represent the first pep-

tides and the very intriguing examples of putative endogenous

allosteric modulators of proton-dependent agonism at GPR68.

In addition, we identified new peptide pairings for five other

orphan and understudied receptors in the b-arrestin recruitment

assays: GPR17, GPR161, GPR176, GPR183, and MAS1 (Fig-

ure S4B; Table S7). Because these receptors were not among

the 21 oGPCRs selected for themass redistribution and receptor

internalization assays, we did not pursue these findings here.

We also identified nine ‘‘repeat hitters’’ (in more than 5 recep-

tor-expressing or untransfected cells) that represent ‘‘orphan

peptide ligands’’ for receptors not assayed here (Table S6).

Furthermore, our complete library of 1,227 ‘‘cleavage variants’’

(Table S4) comprises a resource of putative ligands for future

deorphanization. Finally, all of our ‘‘lead peptides’’ may be alter-

natively cleaved by carboxypeptidases or post-translationally

modified into more potent biologically active receptor ligands,

as for GPR15L (Figure 5; Table S7).

DISCUSSION

The discovery of ligand-GPCR signaling systems often trans-

lates into clinical opportunities but first requires independent

validation and characterization by the wider research commu-

nity. Hence, we sought to explore the disease associations of

our peptide-receptor pairs and to independently validate

previously proposed pairings.

Therapeutic Potential of the Discovered Peptidergic
Receptor Systems
We combined literature reports with mRNA expression data from

ARCHS4 (Lachmann et al., 2018; Figure S6) and disease associa-

tions from https://www.opentargets.org (Figure 6; Table S4; Ko-

scielny et al., 2017). BB3 mouse knockout studies have demon-

strated an important role in energy homeostasis, making this

receptor a target in obesity and metabolic disorders (Alexander

et al., 2017). Interestingly, the Open Target data present several

additional disease areas (the strongest being nervous system dis-

ease) that strongly correlate with those of neuromedin-U and pro-

enkephalin-A and moderately with neuromedin B (disease profile

Pearsoncorrelationsof0.82, 0.80, and0.57, respectively; Figure6).
GPR1 has been linked to cancer and cardiovascular and

neurodegenerative disease (Kennedy and Davenport, 2018),

which is reflected in a broad tissue expression profile. Osteocrin

is a natriuretic peptide clearance (NPR3) receptor ligand impli-

cated in bone and muscle function (Nishizawa et al., 2004;

Thomas et al., 2003) and human brain development (Ataman

et al., 2016). It has also been described as an endocrine hormone

with potential therapeutic application to myocardial infarction

(Chiba et al., 2017; Miyazaki et al., 2018).

GPR15 is expressed in immune cells, whereas GPR15L is ex-

pressed in epithelial cells. GPR15L is secreted during inflamma-

tion responses and therefore represents a promising target for

inflammatory diseases, such as psoriasis and colitis (Suply

et al., 2017). The Open Target database presents additional as-

sociations of GPR15 with diseases of the endocrine, genetic,

metabolic, and nervous systems (Figure 6).

GPR55 responds to lipids, but the direct receptor dependence

of this signaling is somewhat controversial (Alhouayek et al.,

2018). The agonist-dependent GPR55 trafficking shown here for

PACAP27 and five new peptides open further avenues to investi-

gate its function. GPR55 is widely expressed and has been pro-

posed as a potential therapeutic target for a range of diseases,

including cancer, metabolic disorders, pain, and inflammation (Al-

houayek et al., 2018). In Open Target, GPR55 and the precursors

beta-microseminoprotein and clusterin-like protein 1 all have a

strong link to neoplasm, supporting a potential link to cancer

(Figure 6).

GPR68 acts as a proton sensor in bone, lung, and other tissue

to regulate inflammatory responses, cell proliferation, andmigra-

tion (Huang et al., 2015). Accordingly, it is a potential target in

inflammation and cancer (and a secondary target in anxiety;

Weiß et al., 2017). Recently, GPR68 has been described as a

flow sensor in arteriolar endothelium involved in cardiovascular

pathophysiology (Xu et al., 2018). Our GPR68 peptides span

multiple therapeutic areas (Figure 6). Most notably, peptide

139 (CART(42-89)9-28) is a shorter variant of cocaine- and

amphetamine-regulated portein (CART), which has been impli-

cated in addiction (Kuhar, 2016). CART is an orphan peptide

ligand of a GPCR; it has been shown to signal via protein

kinase A, protein kinase C, and cAMP response element-binding

protein (Chiu et al., 2009), as well as Gi/o. Furthermore, the

osteocrin-derived peptide 128 (Osteocrin33-50) shares disease

associations with GPR68, spanning cardiovascular, eye, ge-

netic, immune system, metabolic, and nervous system diseases.

Finally, the pro-opiomelanocortin-derived peptide 148 (Cortico-

tropin17-40) and GPR68 both have strong associations with

genetic and neoplastic disease. These analyses suggest that

GPR68 may hold (patho)physiological roles beyond proton and

flow sensing. Moreover, the three peptides act as positive allo-

steric modulators of the proton responses (Figure 4B; Fig-

ure S4A; Table S7), suggesting that the two types of ligands

may act in concert to regulate GPR68 activity.

Confirmation of Proposed Pairings and Identification of
Secondary Ligands Expand the Peptide GPCR Network
Independent confirmation of proposed ligand-receptor pairings

promotes consensus in the field and is essential to choose and

design the optimal follow-up studies (Davenport et al., 2013).
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Figure 6. Disease Associations for Novel Peptide-Receptor Pairs

Diseases associated with paired receptors and peptide precursors from https://www.opentargets.org. Open Targets presents associations with therapeutic

areas by agglomerating data; e.g., genome-wide associations, genetic variants, expression and animal models. Disease association scores between 0 and 1

(color intensity) summarize the strength of evidence. For precursors with disease correlation similar to the associated receptor target, the Pearson correlation

value is indicated. UniProt names for precursors are shown, with peptide library designation in parentheses (Table S4).
Consensus regarding pairings and their physiological relevance

is collated in the Guide to Pharmacology database (Harding

et al., 2018). We sought to repeat literature pairings for our 21

predicted peptide receptors (Figure S7A). We confirmed previ-

ously proposed pairings of chemerin/GPR1, the neuroendocrine

peptide PEN/GPR83 (Gomes et al., 2016), the melanocortin re-

ceptor ligands a-MSH and ACTH/GPR139 (Nøhr et al., 2017),

cortistatin and somatostatin/MRGPRX2, LPI/GPR55 (Henstridge

et al., 2010), and LPS/P2RY10 (Inoue et al., 2012) by selective re-

ceptor-dependent activation across multiple assays (Tables S5

and S7). In contrast, we found no activity for other proposed

peptide/GPCR pairings such as adropin/GPR19 (Stein et al.,

2016), head activator/GPR37 (Rezgaoui et al., 2006), prosap-

tide/GPR37/GPR37L1 (Meyer et al., 2013; Rezgaoui et al.,

2006), and galanin/GPR151 (Ignatov et al., 2004) or for the

lipid/GPCR pairings resolvin D1/GPR32 (Krishnamoorthy et al.,

2010) and lysophosphatidic acid/P2RY10 (Murakami et al.,

2008) (Tables S5 andS7). Themajority of proposed pairings eval-
904 Cell 179, 895–908, October 31, 2019
uated here were not assessed in previously published large

orphan receptor screening studies, which measured b-arrestin

recruitment in PathHunter (Southern et al., 2013) or Tango

assays (Kroeze et al., 2015).

Intriguingly, we also found that nine class A peptide recep-

tors are activated by six previously published and 16 potential

new peptide ligands (Figures S7B and S7C; Table S7). This

included a truncated glucagon variant that stimulated the

melanocortin MC4 receptor and a prolactin-releasing

peptide variant that activated NPY5. Although the potency of

these peptides is lower than for their principal agonists, the

potential secondary/cross-pharmacology warrants further

investigation.

In conclusion, our combined computational and pharmaco-

logical approach has expanded the known human peptidergic

signaling network from 348 to 407 interactions (an increase of

17%; Figure 7). 39 (74%) of the 53 peptides with validated

receptor-dependent responses were first discovered here,

https://www.opentargets.org


Figure 7. Expansion of the Human Peptidergic Receptor Signaling System

The new pairings (colored lines) increase the number of known ligand-receptor connections (edges) from 348 to 407 (putative peptide ligands from 185 to 214 and

putative peptide receptors from 120 to 130). Ligand-receptor systems are shownwith increasing ligand-to-receptor ratios (top to bottom). There aremore ligands

per receptor in both the established and novel peptidergic receptor systems.
demonstrating the predictive power of our approach, which

could be transferred to many other peptide/protein systems.

The discovery of peptide ligands for GPCRs has previously

opened fields of research and is often closely followed by rapid

translation into the clinic. Therefore, our findings are expected to

fuel many future studies to establish their physiological roles and

therapeutic potential.
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(2017). The orphan G protein-coupled receptor GPR139 is activated by the

peptides: Adrenocorticotropic hormone (ACTH), a-, and b-melanocyte stimu-

lating hormone (a-MSH, and b-MSH), and the conserved core motif HFRW.

Neurochem. Int. 102, 105–113.

Nørskov-Lauritsen, L., Thomsen, A.R., andBräuner-Osborne, H. (2014). G pro-
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Dialyzed FBS Omega Scientific Cat # FB-03
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SuperSignal ELISA Femto Substrate Thermo Fisher Scientific Cat # 37075

Bright-Glo Luciferase assay system Promega Cat # E2620
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Deposited Data

Crystal Structure of Bovine Rhodopsin at
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Protein Data Bank PDB: 1U19

High resolution crystal structure of human

B2-adrenergic G protein-coupled receptor.

Protein Data Bank PDB: 2RH1
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Protein Data Bank PDB: 3ODU
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Protein Data Bank PDB: 3PBL
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Protein Data Bank PDB: 3RZE

(Continued on next page)

Cell 179, 895–908.e1–e10, October 31, 2019 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Structure of the human M2 muscarinic

acetylcholine receptor bound to an antagonist

Protein Data Bank PDB: 3UON

Crystal Structure of a Lipid G protein-Coupled

Receptor at 2.80A

Protein Data Bank PDB: 3V2Y

High Resolution Structure of Thermostable

Agonist-bound Neurotensin Receptor 1

Mutant without Lysozyme Fusion

Protein Data Bank PDB: 4BUO

Ultra-thermostable beta1-adrenoceptor

with cyanopindolol bound

Protein Data Bank PDB: 4BVN

Structure of the human kappa opioid

receptor in complex with JDTic

Protein Data Bank PDB: 4DJH

Crystal structure of the mu-opioid receptor

bound to a morphinan antagonist

Protein Data Bank PDB: 4DKL

1.8 A Structure of the human delta opioid

7TM receptor

Protein Data Bank PDB: 4N6H

M3-mT4L receptor bound to tiotropium Protein Data Bank PDB: 4U15

Crystal Structure of Human Lysophosphatidic

Acid Receptor 1 in complex with ONO-3080573

Protein Data Bank PDB: 4Z36

Structures of the human OX1 orexin receptor

bound to selective and dual antagonists

Protein Data Bank PDB: 4ZJ8

Crystal Structure of Human Angiotensin

Receptor in Complex with Inverse

Agonist Olmesartan at 2.8A resolution

Protein Data Bank PDB: 4ZUD

Structure of the human M1 muscarinic

acetylcholine receptor bound to

antagonist Tiotropium

Protein Data Bank PDB: 5CXV

The crystal structure of nociceptin/orphanin

FQ peptide receptor (NOP) in complex with

SB-612111

Protein Data Bank PDB: 5DHH

Structure of the M4 muscarinic acetylcholine

receptor (M4-mT4L) bound to tiotropium

Protein Data Bank PDB: 5DSG

Crystal structure of the human CC chemokine

receptor type 9 (CCR9) in complex with

vercirnon

Protein Data Bank PDB: 5LWE

A2A Adenosine receptor room-temperature

structure determined by serial femtosecond

crystallography

Protein Data Bank PDB: 5NM4

High-resolution crystal structure of the human

CB1 cannabinoid receptor

Protein Data Bank PDB: 5U09

Crystal structure of the human adenosine A1

receptor A1AR-bRIL in complex with the

covalent antagonist DU172 at 3.2A resolution

Protein Data Bank PDB: 5UEN

Crystal Structure of CC Chemokine Receptor 5

(CCR5) in complex with high potency HIV

entry inhibitor 5P7-CCL5

Protein Data Bank PDB: 5UIW

Structure of apelin receptor in complex with

agonist peptide

Protein Data Bank PDB: 5VBL

Structure of the human D4 Dopamine

receptor in complex with Nemonapride

Protein Data Bank PDB: 5WIU

Crystal structure of human orexin 2 receptor

bound to the selective antagonist EMPA

determined by the synchrotron light source

at SPring-8.

Protein Data Bank PDB: 5WQC
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Human endothelin receptor type-B in

complex with antagonist K-8794

Protein Data Bank PDB: 5X93

Experimental Models: Cell Lines

Flp-In T-REx 293 cells Thermo Fisher Scientific Cat # R78007; RRID: CVCL_D585

Orphan GPCR T-REx 293 cell lines This study N/A

HTLA cells Gift from G. Barnea and R. Axel (Brown

University and Columbia University)

N/A

HA-OGR1 (GPR68) HEK293 cells Saxena et al., 2012 N/A

pcDNA3 (mock) HEK293 cells Saxena et al., 2012 N/A

293T cells ATCC Cat # CRL-3216; RRID: CVCL_0063

Recombinant DNA

pcDNA5/FRT/TO Vector Kit Thermo Fisher Scientific Cat # V652020

pOG44 Flp-Recombinase Expression Vector Thermo Fisher Scientific Cat # V600520

pcDNA6/TR Thermo Fisher Scientific Cat # V102520

pcDNA5/FRT/TO FLAG SNAP Pedersen et al., 2019 N/A

Roth Lab PRESTO-Tango GPCR Kit Kroeze et al., 2015 Addgene Kit # 1000000068

GloSensor cAMP plasmid Promega Cat # E2301

Software and Algorithms

Graphpad Prism 7 Graphpad Software https://www.graphpad.com/

Masshunter Agilent

PyMOL Molecular Graphics System,

Version 2.0

Schrödinger https://pymol.org/2/; RRID:SCR_000305

Bio3D v2.3 Skjærven et al., 2016 http://thegrantlab.org/bio3d/index.php

Arpeggio http://biosig.unimelb.edu.au/arpeggioweb/

Pandas v0.20.3 Wes McKinney https://pandas.pydata.org/

Scikit-learn v0.19.2 scikit-learn community https://scikit-learn.org/

CD-HIT Huang et al., 2010 http://weizhongli-lab.org/cd-hit/

GPCRdb Pándy-Szekeres et al., 2018 https://github.com/protwis/protwis

Python v2.7.13 and v3.6.5 Python Software Foundation https://www.python.org/;

RRID:SCR_008394

GetContacts Rasmus Fonseca and Anthony Ma https://getcontacts.github.io/

Flareplots Rasmus Fonseca https://gpcrviz.github.io/flareplot/

bio2mds Pelé et al., 2012 https://cran.r-project.org/web/

packages/bios2mds/index.html

Rate4Site Pupko et al., 2002 https://www.tau.ac.il/�itaymay/cp/

rate4site.html

Computed Atlas of Surface Topography

of proteins (CASTp) 3.0

Tian et al., 2018 http://sts.bioe.uic.edu/castp/index.html?2r7g

Theseus Theobald and Steindel, 2012 https://theobald.brandeis.edu/theseus/

Maestro Schrödinger Release 2017-4 Schrödinger https://www.schrodinger.com/maestro

Custom scripts for analysis This study Available upon request

Other

Epic Benchtop (BT) System Corning Cat # 5053

Epic 384-well cell assay microplate,

fibronectin-coated

Corning Cat # 5042

EnVision multimode plate reader PerkinElmer Cat # 2104

EnSpire multimode plate reader PerkinElmer Cat # 2300

Flex Station III Molecular Devices Cat # FLEX3
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David E.

Gloriam (david.gloriam@sund.ku.dk). The 21 orphan receptor cell lines generated in this study are available from the Lead Contact

with a completed Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mammalian cell culture conditions
Flp-In T-REx 293Cells (Thermo Fisher Scientific) were used for the generation of all oGPCR stable cell lines that were used in dynamic

mass redistribution (DMR) and receptor internalization screening, as well as subsequent cell signaling assays. This system is of

particular utility for studies on orphan receptors, where heterologous overexpressionmay be toxic to the cells over prolonged periods

(Bercher et al., 2009), or where the potential endogenous ligand may be present in the culture media. Cells were grown at 37�C and

5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/L glucose and GlutaMAX Supplement, without pyruvate

(GIBCO), supplemented with 10% dialyzed FBS (Thermo Fisher Scientific), 100 U/mL penicillin-streptomycin and 15 mg/mL

blasticidin (complete medium; Thermo Fisher Scientific). Prior to transfection with SNAP-tagged receptor constructs, parental

Flp-In T-REx 293 cells were cultured in complete medium supplemented with 100 mg/mL zeocin (Thermo Fisher Scientific). oGPCR

transfections were performed using Lipofectamine 2000 (3 mL of Lipofectamine per 1 mg of DNA). All stable cell lines were selected

and maintained in complete medium supplemented with 200 mg/mL hygromycin B (Thermo Fisher Scientific). HTLA cells were a

gift from the laboratory of R. Axel and were maintained in DMEM (Corning) supplemented with 10% FBS, 100 U/mL penicillin and

100 mg/ml streptomycin, 2 mg/mL puromycin and 100 mg/mL hygromycin B in a humidified atmosphere at 37�C in 5% CO2.

HEK293T and HEK293 stable cell lines (HA-OGR1 (GPR68) and vector pcDNA) (Saxena et al., 2012) were cultured at 37�C with

5% CO2 to near confluence in DMEM with 10% FBS (Corning).

METHOD DETAILS

Identification of human endogenous peptide and small molecule sets
To identify all human genome encoded peptides, we extracted the human proteome annotation from UniProtKB/Swiss-Prot (version

2018.3; released 28/03/2018) and searched for all PEPTIDE annotations. This led to a unique set of 163 peptide precursor proteins

and a total annotated set of 378 peptides, in many instances including multiple variants of similar peptides. For instance, apelin is

represented in four versions including apelin-13, apelin-28, apelin-31 and apelin-36. In an orthogonal approach, we extracted all

endogenous ligand entries including peptides and metabolites from the International Union of Basic and Clinical Pharmacology/

British Pharmacological Society (IUPHAR/BPS) Guide to Pharmacology database (version 2018.1; released 05/03/2018) (Harding

et al., 2018) using custom Python scripts. Endogenous peptides were defined as ligands originating fromwithin the studied organism

shown to have activity at the receptor. Small molecules were defined by IUPHAR (‘‘Metabolites’’) as low molecular weight, non-pep-

tide, biogenic compounds produced by life processes and their close analogs. Of the 341 endogenous human peptides, 230 target

GPCRs (67.4%) and 185 are primary peptides annotated as ‘‘principal’’ endogenous ligands for the target (e.g., including angiotensin

II and III for the angiotensin II type-1 receptor (AT1), but not angiotensin A and IV). Of the 174 endogenous humanmetabolites, 112 are

known to target GPCRs (64.4%) and 76 are primary metabolites that are annotated as main endogenous activators. For each

endogenous ligand, molecular weight was calculated using Molmass. Affinity and potency (pKi, pKd, pEC50 and pIC50) values

were obtained from the Guide To Pharmacology database. When multiple potency/affinity values were provided, we used the

maximum reported.

Evolutionary analysis of peptide receptor and peptide ligand repertoires
Determination of receptor and ligand repertoires

The set of 42 known human annotated peptide GPCR/ligand-precursor families (across classes) consisting of 120 receptors and 130

ligand precursors, was obtained from the IUPHAR/BPS Guide to Pharmacology database (version 2018.1; released 05/03/2018)

(Harding et al., 2018). To determinate sequence relationships of receptor-ligand families across different organisms, we collected

phylogenetic relationships and orthologous sequences through the REST API from the Orthologous MAtrix (OMA) database (version

December 2017) (Altenhoff et al., 2015) using R and Python scripts written in-house. UniProtKB/Swiss-Prot identifiers were used for

cross-platform IDmapping (UniProt Consortium, 2018). Given these identifiers, OMA, which uses the human genome from Ensembl,

had ortholog data for 114/115 human peptide GPCRs and for 118/120 peptide precursors. For missing proteins, the closest homo-

logs of identical gene names were used (a list of missing receptors and alternative IDs are given as Table S2). Ortholog data was

retrieved from all 313 available eukaryotic organisms (Taxon ID: 2759). To determine the true size of each receptor-ligand family sys-

tem (and to cover possible gene duplication events) in a given species, we investigated all in-paralogs for every ortholog in a given

species. For this analysis, all pairwise protein relationships were extracted for proteins within a species and to the human reference.

This led to a total 23,606,407 pairwise protein relationships across 313 eukaryotic organisms. We calculated the Jaccard similarity

index to determine the similarity of a given receptor-ligand family repertoire between a species and human. The Jaccard similarity
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index (range 0–1), was defined as the number of conserved genes (overlapping) divided by the total number of genes that code for

receptors or ligands in a specific family, respectively. To identify the overlap of the receptor and ligand repertoires in different organ-

isms, genes in different organismswere annotated as having an overlapping phylogenetic relationship if they had aOMA reported 1:1

or 1:n relationship (OMA definition: ‘‘The entry has more than one ortholog in the other species but all orthologous entries have only

one ortholog in this species. This implies that the gene was duplicated in an ancestor of the other species, but after the speciation

event’’). Hence, species unique proteins were identified by all in-paralogswithout any 1:1 or 1:n relationship to human. A high Jaccard

index (closer to 1) means that the two organisms largely share the receptor-ligand repertoire for this family. A lower value (closer to 0)

means that the repertoires are more distinct. A large number of distinct genes in the organism for which orthologs do not exist in

humans suggests that this lineage has undergone independent expansion of the receptor or ligand repertoire through gene duplica-

tion events. To investigate receptor ligand repertoire similarity coevolution, we calculated the Pearson product-moment correlation

coefficient as a statistical measure of the correlation (linear association) between the ligand and receptor Jaccard similarity indices.

The gene numbers provided here offer an update to previous estimates of the receptor-ligand repertoire in some of these organisms.

Calculation of receptor-ligand fingerprints

Wemade use of the large number of available complete DNA genome sequences and employed phylogenetic profiling for all recep-

tor/ligand families by exploring the joint presence or joint absence of two genes (Pellegrini et al., 1999). An evolutionary fingerprint

was generated for each protein by searching for its 1:1 ortholog among all OMA available eukaryotic organisms (n = 313). The finger-

print was recorded as a binary code in which the presence or absence of an ortholog is registered as ‘‘1’’ (positive bit) or ‘‘0’’ (negative

bit), respectively. Based on the assumption that receptor and ligands co-evolve and therefore should have orthologs in closely related

species, we expected more similar fingerprints for receptor-ligand pairs than for random protein-protein pairs. In order to probe this

assumption, we calculated fingerprint similarities for known receptor-ligand pairs. The similarity was calculated as the ratio of

fingerprint bit mismatches to the length of the total fingerprint:

similarityð%Þ = identical fingerprint bits

total fingerprint bits
3100
Enrichment of all 238 known unique receptor/ligand-precursor p
airs was assessed with permutation tests by performing 10,000

randomization trials. In each randomization, each ligand was replaced with a random gene of several categories and the fingerprint

similarity was noted. From the random distribution, we computed the Z-score, which captures the distance of the actual fingerprint

similarity (e.g., the known receptor-ligand pair) to the mean of random expectation in terms of the number of standard deviations. We

estimated the p value as the ratio of the number of simulations where the random observations were greater than or equal to the

number of observed values to the total number of randomizations (10,000). Random selection was performed for the full proteome

(n = 20,234 proteins), secreted proteins as annotated in UniProt (n = 2,753), or essential cell genes (deemed essential in multiple

cultured cell lines based on shRNA screen data) (Hart et al., 2014). A random selection among the 16 G proteins was performed

as a positive control.

To deconvolute the strongest signal of fingerprint correlations, different merging strategies of receptor and/or ligand fingerprints

were investigated. Briefly, we merged the fingerprints of different sets by summation of all positive bits (‘1 s’) in an aligned fingerprint.

For instance, when merging receptor fingerprints, we measure the presence of an ortholog for a given species if an ortholog was

reported in at least one of the to-be-merged receptors. Likewise, we merged fingerprints of ligands within the same receptor family

(e.g., chemokine receptors; ligand family merge) and fingerprints of ligands binding to the same receptor (ligand binding merge).

Peptide receptor analysis
Analysis of loop lengths

All GPCR receptor sequences were obtained using the Web-services of GPCRdb (Pándy-Szekeres et al., 2018) including structure-

based GPCRdb numbering as an adaption of the sequence-based Ballesteros-Weinstein scheme with corrections for helix bulges

and constrictions (Isberg et al., 2015). Length comparisons were made between the most conserved transmembrane (TM) residues,

as well as for the extracellular loop 2 (ECL2) between 4x50 and 5x50 and for ECL3 between 5x50 and 6x50 according to the GPCRdb

numbering scheme. ECL2 was further separated into the region before and after the conserved cysteine (C45x50; conserved in 87%

of all class A and 83% of all GPCRs). For each (class A) non-orphan receptor, the length of that region was calculated and normalized

according to the different receptor families to avoid the over representation of large families (family sizes range from 1 – 23members).

For each receptor family, the median segment length was obtained. We estimated statistical significance of differences in the dis-

tribution of receptor loop lengths of GPCRs using the non-parametric Wilcoxon rank sum test.

Analysis of b sheets in crystal structures

All available peptide and protein receptor structures were retrieved from the PDB and visualized using PyMOL (The PyMOLMolecular

Graphics System, version 2.0 Schrödinger, LLC.) comprising of 17 and 5 unique crystallized receptors for peptide and protein binding

GPCRs, respectively. Structural superpositioning was performedwith Theseus (Theobald and Steindel, 2012). All peptide and protein

structures with resolved ECL2 contain a b sheet, whereas no b sheet was observed for other crystal structures. To further investigate

potential characteristic structural features, we compared the sequence alignments of the ECL2 region comprising the b sheet. As no

generic structure based-alignment positions exist for most of the ECL2, we constructed an alignment anchored on the conserved
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CYS45x50. The residue number for every GPCRs 45x50 position was recalled and all consecutive residues were aligned without gaps.

A difference matrix of frequencies of each amino acid for these positions was created for the peptide/protein receptors and other

class A receptor sets.

Principal component analysis of protein structures

Biostructural analysis of Class A GPCR structures was conducted using Bio3D (Skjærven et al., 2016). A representative set of 28

unique inactive receptor structures (13 peptide/protein; 15 aminergic, nucleotide, sensory and lipid receptors) was compiled, using

the highest resolution structure for each available receptor structure. Peptide/protein structures and chains were:PDB: 4N6H_A,

PDB: 5WQC_A, PDB: 5UIW_A, PDB: 5X93_A, PDB: 3ODU_A, PDB: 5VBL_B, PDB: 4ZJ8_A, PDB: 4BUO_A, PDB: 5LWE_B, PDB:

4ZUD_A, PDB: 4DKL_A, PDB: 4DJH_A, PDB: 5DHH_A. Non-peptide/protein structures in Class A and associated chains were:

PDB: 5NM4_A, PDB: 5WIU_A, PDB: 4BVN_A, PDB: 1U19_A, PDB: 2RH1_A, PDB: 5DSG_B, PDB: 5U09_A, PDB: 5CXV_A, PDB:

3V2Y_A, PDB: 4U15_B, PDB: 3PBL_A, PDB: 4Z36_A, PDB: 3UON_A, PDB: 3RZE_A, PDB: 5UEN_B. Structures were superposed

on 38 invariant core positions. Principal component analysis (PCA) was used to provide a two-dimensional representation of the su-

perposed structure set to summarize inter-conformer relationships (Skjærven et al., 2014). PCA revealed that 45.5% of the total co-

ordinate variance could be captured in the first three dimensions (PC1-3). The first two principal components have been projected

onto the principal planes in a conformer plot. PC1 and PC2 have been clustered with the ward.D2 method in a cluster dendrogram

that can be partitioned into 3 cluster groups. Peptide/protein structures separate into distinct and prominent clusters that are distant

from other structures. Displacement trajectories of PC1 and PC2 showedmost residue displacement from the mean structure for the

upper TM regions of TM1 to TM5 including ECL1 and ECL2, which accounts for the majority of the difference between the cluster

groups.

Comparison of binding site cavities

The representative list of highest resolution structure for each available class A receptor (as described above - Principal component

analysis of protein structures) was selected and prepared with the protein preparation wizard in Maestro (SiteMap, Schrödinger

Release 2017-4) using default settings after removal of all ligands in the orthosteric binding site. Buried ligand-binding pocket areas

and volumes have been calculated and inspected using theComputed Atlas of Surface Topography of proteins (CASTp) with a probe

sphere of 1.4 Å (Tian et al., 2018).

Multi-dimensional scaling of sequence signatures

To investigate sequence signatures of class A receptors, we performed Multi-Dimensional Scaling (MDS) using the bio2mds

package in R (Pelé et al., 2012). Metric MDS is a statistical analysis technique aimed at analyzing a matrix of distances between

‘active’ elements. First, a multiple sequence alignment (MSA) of all ligand-interacting class A generic residue positions (n = 68)

was constructed. Given the MSA as an input, a distance matrix of pairwise distances between sequences based on sequence

dissimilarity was computed. The amino acid substitution matrix was set to Jones, Taylor and Thornton mutation data matrix for

transmembrane proteins (JTT_TM) – a transmembrane protein exchange matrix (Jones et al., 1994). The MDS coordinates were

then mapped onto a low dimensional (2D) space. Most peptide/protein receptors cluster apart from other ligand type families.

Aminergic receptors cluster most prominently from other clusters for the first two principal components (�17% of the total

coordinate variance).

Selection of putative peptide orphan receptors

The selection of orphan receptor targets in this study was focused on putative peptide receptors, as peptide ligands could be iden-

tified from evolutionary analysis using bioinformatics. All approaches were based on the assumption that peptide receptors have

distinct structural features reflected in their protein sequences, which accommodate the binding of peptide ligands that are generally

more complex than small molecules, due to greater size and conformational freedom.

Comprehensive analysis of known class A peptide receptors revealed that there are common sequence and structural character-

istics, making distinct classifications from non-peptide GPCRs possible. These peptide receptor-specific features include a

prolonged ECL2, a conserved b sheet structure in ECL2 with a b turn-inducing sequence motif and a distinct sequence signature,

which presumably combine to enlarge the upper TM binding pocket and to promote peptide ligand recognition.

More specifically, consensus peptide receptor family sequences were compared to non-peptide receptor families for every

generic position based on the GPCRdb numbering scheme. Comparisons of every single position revealed 17 generic residue

positions with at least 40% difference in one of the physico-chemical properties between peptide and non-peptide GPCRs.

These over-represented residue positions tended to be mostly in the upper half of the TM region that is involved in ligand binding.

The 17 residue positions were used to build a logistic regression model, which was then utilized to predict the likelihood of a given

orphan receptor amino acid sequence being closer to peptide or non-peptide receptors, respectively. A retrospective analysis

using this model enabled highly significant differentiation between peptide and non-peptide receptor families (logistic regression;

p value < 0.0001).

These data indicated that although peptide families lack a shared phylogenetic relationship, peptide binding receptors can be iden-

tified based on intrinsic structural and functional sequence characteristics. However, not all peptide receptors share all of the inves-

tigated features (see a full ranking of all class A oGPCRs provided in Table S4). Therefore, a combined predictionmodel and individual

selection was used to classify orphan receptors as peptide binding of which 21 receptors have been selected to assay and screen for

endogenous peptide ligands.
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Peptide ligand analysis and library design
Peptide lengths, positions and cleavage sites

Peptide sequences were obtained from IUPHAR and queried within the precursor protein sequence obtained from UniProtKB to

identify starting positions and flanking regions. Most peptides could be readily mapped, although there were several exceptional

caseswith additional, alternative or unknownmaturation processes. For instance, prokineticin-2b is a variant peptide that is 21 amino

acids shorter than the parent peptide that is believed to arise as the result of post-processing protein cleavage events. Some peptide

ligands (n = 18; �5%) such as the glycoprotein hormones (consisting of two chains that assemble to the biologically active hetero-

dimeric hormone), the relaxin ligands (heterodimers linked by two disulfide bonds) and proteinase-activated receptors require more

complex maturation. Surprisingly, the gene that encodes the precursor of endomorphin-1 has still not been identified (Terskiy et al.,

2007). These exceptions indicate that our library design approach cannot cover all potentially encoded peptides.

The flanking regions of mapped peptide sequence have been identified for 184 peptides. Of these, 92 out of the 124 ‘‘principal’’

mature peptides of single chain ligands start immediately following the signal peptide and end at the final residue of the prepropro-

tein. Of the remaining peptides, approximately 80% are C-terminally flanked by a cleavage motif consisting of any combination of

dibasic amino acids (KR, RR, RK, KK plus GR or GK) and 66% are N-terminally flanked by a dibasic amino acid cleavage motif.

The majority of the cleaved peptides have larger ‘‘pre-’’ processing versions or known alternative cleavage mechanisms, such as

kallidin cleavage by kallikrein or C3 by C3 convertase. Cleavage motifs were shown as % difference by IceLogo, which is the

increased frequency of the amino acid at the indicated relative position compared to a background comparison. The average length

of peptide ligand precursors was shown to be 179 amino acids compared to the median human protein length of 375 amino acids.

The average/median length of peptide ligands was observed to be 56.9 and 32.0 amino acids, respectively.

Filtering the human proteome for candidate precursors

Potential peptide ligand precursors were identified from the Swiss-Prot reviewed human proteome as those that were annotated

as secreted or possessed a signal peptide. We specifically excluded precursors based on Gene Ontology (GO) terms such as

‘‘antioxidant activity,’’ ‘‘catalytic activity’’ and others based on GO annotations observed from known peptide precursors to focus

on proteins with unknown molecular function (see Table S4). Additionally, we filtered precursors of more than 750 amino acid

length. This led to a total set of 1,422 potential precursors for which we performed an evolutionary trace analysis and cleavage

site mapping.

Ortholog identification

A widely used method for the detection of putative orthologous genes is that of Reciprocal Best Hits (RBH), where two genes from

two different genomes are considered orthologs if their protein products find each other as the best hit in the opposite genome

(Rivera et al., 1998). Briefly, the input sequence is matched to the human Swiss-Prot proteome using blastp, which compares a pro-

tein sequence to a protein database. The best hit is regarded as the human protein used to query against the target organism’s pro-

teome by blastp. The top hit protein sequence is then in return queried back to the human proteome using blastp. If the resulting top

hit human protein is the same protein as the initially identified human protein, the genes are considered orthologs. RBH was imple-

mented using custom Python scripts. For candidate 1,422 potential precursors were subjected to ortholog queries in 74 organisms.

Evolutionary trace analysis

Multiple sequence alignment (MSA) of the orthologs for each precursor was performed using MUSCLE with default settings (Edgar,

2004). The relative amino acid substitution evolutionary rate of each position was calculated using Rate4Site (R4S) version 3.0.0.2

(Pupko et al., 2002). Rate4Site assigns a per-site variability score that indicates how rapidly each residue evolves relative to the

mean protein rate for each position in the MSA using an empirical Bayesian inference. Evolutionary trace profiles were generated

for 1,392 precursor genes. Analysis and visualizations were performed using custom Python scripts using pandas and matplotlib

packages.

Generation of peptide library

For each potential precursor gene with evolutionary trace information (n = 1,392) all potential peptides after the signal peptide of 3-45

amino acids length between conserved cleavage sites (see Peptide lengths, positions and cleavage sites) or the C terminus were

retrieved leading to a set of 1,227 unique peptide candidates (Table S4). Cleavage sites had to be conserved in the MSA by at least

50% among all 74 organisms. For each candidate peptide, we extracted the peptide and precursor length and various evolutionary

conservation scores based on rate4site calculations. Seven features were selected for a random forest classifier including: peptide

length, precursor length, peptide mean, sum and standard deviation rate4site score and the mean score of the highest conserved

stretch of 20 amino acids in the precursor and its ratio to the peptide mean score. A 5-fold cross validated model was trained on

known human GPCR peptide ligands. For each run, a random split of 75% to 25% into training and test set was performed. The pep-

tide classifier was based on the Random Forest algorithm (Breiman, 2001) implemented in Python scikit-learn. Peptides with a mean

score ofR 0.45 were selected. Themean score (30%) and precursor length (27%) contributedmost to the peptide selection. Peptide

sequences with 1 or more than 2 cysteines were removed to prevent dimerization. The 131 predicted candidates were further clus-

tered in CD-HIT to filter out similar peptides (> 0.85 sequence identity cut-off) (Huang et al., 2010). In total 120 peptide sequences

were selected for synthesis from the machine learning approach. These peptides, together with a selection of 55 known class A

peptide ligands and 43 (1 could not be synthesized) recently proposed peptides from mass spectrometry-based peptidomics on

rat hypothalamus (Secher et al., 2016), formed a library of 218 peptide ligands for pharmacological assaying of orphan receptors

(Table S4). The final library consisted of 49 known GPCR peptide ligands, 14 known peptide ligands with no previously shown
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GPCR activity, 35 variants of known peptides (i.e., containing parts of or overlap with known peptides) and 120 new peptides, which

have not previously been described or associated with GPCR activity. Disulfide bridges were incorporated into 26 peptides contain-

ing two cysteines. 77 peptides containing an amidation consensus sequence motif (consisting of a glycine residue directly adjacent

to the cleavage site after the peptide) were C-terminally amidated. No additional post-translational modifications such as bromina-

tion, glycosylation, sulfation and octanoylation were introduced.

Selection of peptide variants
Peptide variants were selected after visual inspection based on validated hits and alternative cleavage patterns with overlapping hit

peptide regions. Variants had to be reasonably conserved in the precursor sequence evolutionary trace profile.

Generation of expression datasets
Gene expression for all 21 assayed orphan receptors was quantified through RNA sequencing (RNA-seq) data obtained from

ARCHS4 RestAPI (Lachmann et al., 2018), which aggregates the majority of published RNA-seq data from human and mouse

available at the gene and transcript levels with in total 187,946 samples. Human tissue expression levels were obtained for 53 distinct

tissues grouped by system. Data were presented as median log2.

Peptide library preparation and quality control
Peptides were purchased as a custom designed peptide library from Genscript, with > 95% purity cutoff and delivered as lyophilized

acetate salts. In total, the library included 219 peptides varying in length from 3 – 50 amino acids, (full details and quality control data

are found in Table S4). Peptides were resuspended to a stock concentration of 4 mM in 10% (v/v) DMSO/water and were diluted to

100 mM in water for in-house quality control. Peptides were analyzed by LC-MS (Agilent 6410 Triple Quadrupole LC/MS instrument

using electron spray ionization (ESI) and coupled to an Agilent 1200 HPLC system) and UPLC (Waters Acquity H-class). One further

peptide was excluded as it was insoluble in 10% (v/v) DMSO/water, leaving 218 peptides to assay.

Peptide stocks were diluted to 400 mM in Hank’s Balanced Salt Solution (HBSS) (GIBCO) containing 1% (v/v) DMSO and 0.01%

(v/v) pluronic acid F68 (Thermo Fisher Scientific) and were plated duplicate wells of low-binding 384-well polypropylene daughter

plates for storage at �20�C prior to screening.

Generation of orphan GPCR cell lines
Design and cloning of SNAP-tagged orphan GPCR constructs

pcDNA5/FRT/TO FLAG SNAP GPCR constructs were generated as described previously (Pedersen et al., 2019). In brief, an

expression cassette containing the human interleukin 2 receptor alpha (hIL-2Ra) signal peptide, FLAG-tag and 19.3 kDa

SNAP-tag in frame with unique 30 MluI and 50 NotI restriction sites for receptor insertion was introduced into the pcDNA5/

FRT/TO vector (Thermo Fisher Scientific) using BamHI and NotI. The vector was modified by site-directed mutagenesis to

remove an endogenous MluI site. Human orphan receptor coding sequences were modified to remove predicted signal

peptides (Petersen et al., 2011), methionine start codons and any internal MluI and NotI restriction sites, and were purchased

from Genscript. Orphan receptor sequences were subcloned into the MluI and NotI sites of the pcDNA5/FRT/TO FLAG SNAP

vector. An expression construct expressing SNAP-tagged human glucagon-like peptide 1 (GLP-1) receptor was generated as a

control cell-line for internalization assays (Foster and Bräuner-Osborne, 2018). All receptor constructs were confirmed by

sequencing and can be found in Table S4.

Preparation of stable cell lines for orphan GPCR experiments

Low passage (less than P6) Flp-In T-REx 293 cells were grown to 80% confluency in 10 cm dishes in complete medium without

zeocin and transfected using Lipofectamine 2000 (Thermo Fisher Scientific). Plasmids encoding SNAP-tagged oGPCR constructs

were co-transfected with pOG44 Flp-Recombinase expression vector (Thermo Fisher Scientific) as per the manufacturer’s recom-

mendations. After 24 hr, transfected cells were trypsinized and replated at low density into 10 cm dishes. 48 hr after transfection,

stable transfectants were selected with 200 mg/mL hygromycin B. After �3 weeks of selection, stable cell lines were expanded to

make stocks for storage at �150�C.
Cell-surface receptor expression using ELISA

To measure cell-surface receptor expression levels for oGPCRs during screening and functional assays, stable cell lines were

plated at 30,000 cells/well in poly-D-lysine coated 96-well plates and induced with 0.1 mg/mL doxycycline for 48 hr at 37�C
and 5% CO2 (Foster and Bräuner-Osborne, 2018). Immunodetection of amino-terminal FLAG epitope was performed as described

previously (Jacobsen et al., 2013) with some modifications. Cells were fixed in 4% paraformaldehyde in PBS, washed and

blocked, and then incubated with anti-FLAG M2 primary antibody (Sigma Aldrich) at room temperature for 45 min. HRP labeled

anti-mouse secondary antibody (Vector Laboratories) was added for 45 min at room temperature and then cells were washed

thoroughly prior to luminescence detection (SuperSignal ELISA Femto Substrate, Thermo Fisher Scientific). Detection solution

was added (1:9 dilution in PBS) and chemiluminescence was measured immediately using an EnSpire multimode plate reader

(PerkinElmer).
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Functional assays to measure orphan GPCR activation
Peptide library screen

In order to assess the peptide-dependent orphan receptor responses, the peptides were tested in parallel DMR and real-time inter-

nalization assays. Peptide library daughter plates were thawed at room temperature and diluted to 40 mM (4x final for DMR assays)

and 20 mM (2x final for internalization assays) in HBSS with 0.1% (v/v) DMSO and 0.01% (v/v) pluronic F68.

48 hr prior to parallel assaying, SNAP-tagged oGPCR cells were plated (10,000 cells/well) in fibronectin-coated 384-well Epic

biosensor microplates (Corning) and poly-D-lysine coated white 384-well plates (for internalization assays). SNAP- GLP-1 receptor

was plated alongside orphan receptor cells as an internal assay control for internalization assays. Receptor-expression was induced

with 0.1 mg/ml doxycycline.

Dynamic mass redistribution assays

DMR assays provide a single integrated readout of ligand-dependent cellular response, utilizing an optical biosensor in specialized

microplates to detect wavelength shifts of reflected light as it passes through the biosensor and the lower portion of the cell

(�150-200 nm). As a signal pathway agnostic approach, DMR assays are well-suited to the study of GPCRs (Fang et al., 2008;

Schröder et al., 2011). The mass redistribution response (D picometer (pm)) likely reflects a number of intracellular events, including

cytoskeletal rearrangement, protein trafficking and receptor internalization. Orphan receptor-expressing cells were gently washed

twice with assay buffer (HBSS with 1 mM CaCl2, 1 mM MgCl2, 20 mM HEPES, 0.01% pluronic F-68, pH 7.4) containing 0.1%

DMSO and cells were equilibrated for 90 min at 22�C in the EPIC Benchtop (BT) System (Corning) to establish a stable DMR signal.

After 3-5 min baseline recordings, peptides (10 mM) were added in duplicate wells using an electronic 384-channel Viaflo pipette

(Integra Biosciences, Switzerland) and DMR responses were measured for 60 min at 22�C. 100 nM norepinephrine was included

as an internal assay control to assess the cellular DMR response via endogenously-expressed adrenoceptors in the TREx 293 cells.

Real-time data were processed using the BT to column converter MS-Excel macro (Corning) and analyzed in GraphPad Prism 7.0.

DMR recordings in peptide screening experiments were buffer and solvent corrected and the area under the curve (AUC) was quan-

tified. For subsequent validation experiments, peptides were diluted in assay buffer containing 0.1% DMSO and DMR assays were

performed as above. Concentration-response curves for DMR responses were generated using buffer and solvent-corrected AUC or

the maximum value between 0-10 min where peptides elicited clear peak signals, as appropriate. Data represent mean ± standard

error of the mean (SEM) from at least 3 biologically independent experiments.

Real-time internalization assay

A TR-FRET real-time internalization assay was used to examine peptide-dependent changes in orphan receptor localization as

described previously (Foster and Bräuner-Osborne, 2018). Surface-expressed SNAP-tagged receptors were labeled with a cell-

impermeable luminescent terbium cryptate (100 nM SNAP Lumi4-Tb; Cisbio, France) for 1 hr at 37�C. Cells were washed to remove

excess terbium and incubated with fluorescein-O-acetic acid (100 mM; Sigma Aldrich) for 5 min at 37�C. Peptides were added as for

DMR assays, and internalization responses were recorded for 60 min at 37�C using an EnVision 2104 Multimode plate reader

(PerkinElmer). 100 nM GLP-1 was used as a positive control for SNAP-GLP1R internalization. Real-time internalization responses

were calculated based on TR-FRET (excitation 340 nm; emission 520 nm and 615 nm), and were expressed as the ratio between

donor (terbium) and acceptor (fluorescein) emission. For peptide screening analysis (both DMR and internalization assays), we calcu-

lated the area under the curve from the real-time traces. As the magnitude of the responses was variable between orphan receptor

targets, particularly for the SNAP-tag based internalization assay where the signal is dependent on receptor surface expression, the

AUC values were normalized to their respective plate averages and expressed as fold change. Validation experiments for receptor

internalization were performed as above. Internalization data was processed in MS-Excel and area under the curve was used to

generate concentration-response curves using GraphPad Prism 7.0. Data represent mean ± standard error of the mean (SEM)

from at least 3 biologically independent experiments.

b-arrestin recruitment (Tango) assay

The peptide library was additionally screened against 120 GPCR targets in parallel, including all available orphan receptors and 27

known class A peptide receptors using the Tango assay platform (Kroeze et al., 2015). Briefly, HTLA cells (a HEK293 cell line stably

expressing a tTA-dependent luciferase reporter and a b-arrestin2-TEV fusion gene) were plated 10,000 cells/well in poly-L-lysine–

coated clear-bottom white 384-well plates in DMEM supplemented with 10% FBS, 100 U/ml penicillin and 100 mg/ml streptomycin,

2 mg/ml puromycin and 100 mg/ml hygromycin B. 24 hr later, cells were transfected with Tango GPCR constructs using the calcium

phosphate method (Jordan et al., 1996). The next day, culture mediumwas changed to DMEM + 1%dFBS and 10 mMpeptides were

added for overnight stimulation. Bright-Glo solution (Promega) was incubated for 15–20min at room temperature, and luminescence

was counted using a Trilux luminescence counter (Wallac).

For subsequent peptide validation experiments using Tango assays, HTLA cells were transiently transfected in 10 cm dishes with

the receptor of interest using polyethylenimine (PEI) (Longo et al., 2013). After 24 hr, 25,000 cells/well were plated in clear bottom,

white-walled 384-well plates. Assays were performed as described above, with luminescence measured using an EnSpire 2300

Multimode plate reader (PerkinElmer). Luminescence counts were exported into Excel and were analyzed using GraphPad Prism 7.

b-arrestin recruitment (PathHunter�) assay
PathHunter eXpress Assays (DiscoverX) were performed in 384-well format according to the manufacturer’s recommendations.

GPR1 cells were incubated with peptides for 90 min and luminescence measured using an EnSpire 2300 Multimode plate reader

(PerkinElmer).
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IP1 and cAMP accumulation assays

Peptide-dependent second messenger responses were measured using commercially available HTRF-based IP1 and cAMP kits

(Cisbio) as described previously (Nørskov-Lauritsen et al., 2014). Receptor expression was induced for 48 hr with 0.1 mg/ml doxycy-

cline in 10 cm dishes. For IP1 measurements (to measure Gq/11), 2,500 cells/well were mixed with ligands in triplicate wells in

low volume white 384-well plates at 37�C for 30 min. For cAMP assays, 2,500 cells/well were added in triplicate wells in white

384-well plates in the absence or presence of 3 mM forskolin (to measure Gs and Gi/o activation respectively). 100 mM IBMX was

included to prevent cAMP degradation during 30 min stimulation on a plate shaker at room temperature. For both assays, HTRF

was measured using an EnVision 2104 Multimode plate reader (PerkinElmer). FRET ratios (665/615 nm) were interpolated to

IP1/cAMP concentrations using a standard curve according to manufacturer’s recommendations.

Ca2+mobilization assays

Peptide-dependent Ca2+ mobilization responses were measured in HEK293 stable cell lines (HA-OGR1 (GPR68) and vector pcDNA)

(Saxena et al., 2012) that were seeded in 96-well plates (1 3 105 cells/well) and cultured at 37�C with 5% CO2 to near confluence in

DMEM with 10% FBS (Corning). Six hours prior to assay, medium was changed to pH 8.0 or pH 7.4 HAM’s F12 Nutrient Mixture

(GIBCO) without FBS and transferred to a 37�C incubator without CO2. One hour prior to stimulation, cells were incubated in pH

8.0 or pH 7.4 HBSS with Ca2+ and Mg2+ (GIBCO), supplemented with 15 mM HEPES, 2 mM Fluo-4 AM (Invitrogen) and 1.5 mM

probenecid (organic anion transporter to prevent Fluo-4 efflux) as described previously (Pera et al., 2018). Indicated peptides

were pipetted using an automated system and emission signal was recorded at 525 nm after excitation at 485 nm using Flex Station

III (Molecular Devices). Ca2+mobilization responseswere determined by subtracting basal fluorescence from the net peak of agonist-

induced fluorescence. Ionomycin (1 mM) was used to calculate the maximum Ca2+ signal to normalize peptide-mediated responses.

No peptide-induced calcium mobilization response was observed in control (vector-expressing) cells.

GloSensor cAMP assays

GPR68-mediated cAMP signaling was measured using GloSensor cAMP assays as published previously (Huang et al., 2015; Yu

et al., 2019) with modifications as indicated below. Calcium- and magnesium-free HBSS was supplemented with different organic

buffer reagents for different pH solutions, 20 mM 2-(N-morpholino)ethanesulfonic acid (MES, Alfa Aesar) for pH 6.00 – 6.70,

20 mM4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, Fisher) for pH 6.80 – 8.20, and 20mM (tris(hydroxymethyl)meth-

ylamino)propanesulfonic acid (TAPS) for pH 8.30 – 8.60. The phosphodiesterase (PDE) inhibitor Ro 20-1724 (10 mM final, Cayman

Chemical) was included in pH buffers to eliminate potential effect of PDE inhibition. HEK293T cells were transfected with a modified

polyethylenimine (PEI, Polysciences) transfection method (Longo et al., 2013). For a 15-cm dish of HEK293T cells with 25 mL growth

medium, 8 mg receptor DNA and 8 mg GloSensor DNA (Promega) were mixed in 1 mL of Opti-MEM medium followed by addition of

80 mL PEI reagents. The mixture was added to cells after 20 min incubation at room temperature. Overnight transfected cells were

plated in poly-L-lysine (Sigma) coated 384-well white clear bottom plates (Greiner Bio-One, #781098) using DMEM (Corning) + 1%

dialyzed FBS (Omega Scientific) for at least 6 h (up to 24 h). Cells were removed of medium before receiving 20 mL/well of 3.5 mM

luciferin (Goldbio) prepared in assay buffer (HBSS, 20 mM TAPS, pH 8.40, 10 mM Ro 20-1724) for 1 h at 37�C. Luciferin loading so-

lutions were removed and premixed drug solutions at desired pH conditions were added to cells (25 mL/well). Luminescence was

measured 25-30 min after drug application. Results were normalized (basal and maximum responses in the absence of modulator

were set to be 0 and 100%) and pooled for analysis using GraphPad Prism.

To extract allosteric parameters, normalized results were fitted to the allosteric operational model (Ehlert, 2005; Kenakin, 2005;

Price et al., 2005) with the following constraints: orthosteric agonist binding affinity (KA for protons) was set as equal to the potency

(which is pH 6.80) in the absence of modulator; basal was set to 0 after normalization; allosteric efficacy cooperativity (b) was set to 1

since modulators had little effect on proton efficacy; allosteric ligand efficacy tB was set to be 0 as they do not have agonist activity

alone. All of the other parameters, including allosteric affinity cooperativity (a), allosteric modulator binding affinity KB, orthosteric

agonist (protons) efficacy tA, system maximal response, and slope factor n were all globally shared for all datasets for each modu-

lator. Since the orthosteric agonist (protons in this case) is always present in the receptor compartment, the allosteric ligand binding

affinity (KB), defined as the dissociation equilibrium constant of allosteric modulator in the absence of orthosteric agonist (i.e., H+),

does not have corresponding biological meaning and cannot be determined in binding assays. We therefore used an allosteric index,

log(ab/KB) (Kenakin, 2017a), which contains both allosteric binding affinity and cooperativity, to quantify the overall allosteric activity.

QUANTIFICATION AND STATISTICAL ANALYSIS

For all orphan receptor functional assays, results are presented as mean ± standard error of the mean (SEM) based on at least 3 bio-

logically independent experiments. Curve fitting and analysis of statistical significance was performed using Prism (7.0, GraphPad).

Statistical parameters are reported in figure legends where appropriate.

DATA AND CODE AVAILABILITY

All data that support the findings of this study have been provided in Tables S1, S2, S3, S4, S5, S6, and S7. Scripts are available from

the corresponding authors on request.
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Supplemental Figures

Figure S1. Peptide-Receptor Pairing Approach, Related to Figures 2, 3, 4, and 5
21 orphan receptor targets were selected based on shared characteristics of known peptide-activated GPCRs. A library of 218 peptides was generated using a

proteome-wide machine-learning approach. Peptides were screened using three complementary functional assays. Putative peptide-oGPCRs pairings were

validated using additional assays. Predicted cleavage variants of discovered peptide agonists were tested to gain insights into determinants of peptide potency.



Figure S2. The Peptidergic Signaling System Has Been Shaped by Co-evolution of Ligands and Their Receptor Targets, Related to Figure 1

(A) Receptors and their ligands are ubiquitously expressed in human organs and tissues. The data is ordered by mean level of peptide receptor expression.

Peptide receptors consistently had lower median expression levels than non-peptide GPCRs. Similar peptide receptor-ligand expression levels were observed

for liver and smooth muscle, whereas granulocytes and lung tissue had higher expression of receptors than ligand precursors (Wilcoxon rank sum test;

P values: < 1x10�5 (granulocytes) and 0.02 (lung)).

(B) Evolutionary fingerprints indicated conservation (gray) or absence (white) of receptor and peptide precursor gene orthologs in 313 species (representatives

shown). The fingerprint identity (%) reflects the evolutionary relationship of peptide-receptor pairs. Photos from Ensembl genome database project.

(C) The average percentage identity of evolutionary receptor-ligand pairs for all endogenous receptor-ligand pairs is increased when fingerprints of ligands for

the same receptor are merged and is greater than for a random protein pair (permutation tests by performing 10,000 randomizations, Wilcoxon rank sum test

P value < 1x10�5).

(D) Jaccard index similarity of human peptide receptor and ligand precursor repertoires (n = 131 and 130, respectively) to selected species ordered by

evolutionary distance. Data in Tables S1 and S2.



 B

A

c

D

E

/o

/11

Gs

Gi/o

Gq/11

G12/13

Constitutive
coupling

Guide to Pharmacology This study This study & Guide To Pharmacology/literature

Yes YesYes YesYes NoNon.d. NoYes YesYes NoNoNo NoYes NoNo YesYes

(legend on next page)



Figure S3. Receptor Expression and G Protein Coupling in Orphan GPCR Cell Lines, Related to Figure 4

(A) Cell-surface expression of induced oGPCRs measured by ELISA. Data shown as mean ± SEM from n = 3-7 independent experiments performed in triplicate.

(B-D) Constitutive cAMP and IP1 production (i.e., in the absence of ligand) upon orphan receptor induction provide insights into G protein-coupling. Data shown

as mean ± SEM from n = 3-5 independent experiments, except for BRS3/BB3 (n = 2 in (B) and (C)), GPR32 (n = 2 in (B)) and GPR3 (n = 2 in (C)).

(E) For three receptors, we discovered constitutive G protein-coupling unreported in Guide to Pharmacology or literature (Doi et al., 2016; Harding et al., 2018;

Inoue et al., 2012; Martin et al., 2015; Muppidi et al., 2014; Pera et al., 2018; Suply et al., 2017), and for GPR15 robust Gi/o signaling in cAMP accumulation assays.



(legend on next page)



Figure S4. Peptide-GPCR Pairings across Multiple Assay Formats, Related to Figures 4 and 5

(A) Concentration-response measurements of BB3, GPR1, GPR15, GPR55 and GPR68 peptide ligands with activity in at least two assays. Assays used were

ligand-dependent dynamic mass redistribution, receptor internalization (TR-FRET), Gq/11 (IP1), Gs (GloSensor cAMP) and b-arrestin recruitment (Tango and

PathHunter).

(B) Indicative pairings from a single assay (Tango) for additional receptor targets. All data represent mean ± SEM for n = 3-4 independent experiments performed

in triplicate, except for BB3/peptide 158 in IP1 accumulation (n = 2) and GPR55/peptide 156 (n = 1). Pharmacological parameters are provided in Table S7.



(legend on next page)



Figure S5. Peptide Ligand Variants Elicit Differential oGPCR Signaling Responses, Related to Figure 5

(A) BB3 responses for neuromedin B (NMB) and gastrin-releasing peptide (GRP) cleavage variants.

(B) GPR1 responses for gastrin-releasing peptide, osteocrin (OSTN) and cholecystokinin (CCK-33) cleavage variants.

(C) GPR55 responses for PACAP cleavage variants. Mass redistribution data show an apparently biphasic response for PACAP peptides, which could

indicate an additional intracellular signaling pathway mediated via GPR55. Numbers in parenthesis indicate positions in the full-length protein.All data

represent mean ± SEM for n = 3-4 independent experiments performed in triplicate.



Figure S6. mRNA Expression Profiles of Paired Peptide Ligand Precursors and Receptors, Related to Figure 4

Human tissue expression profile of peptide-receptor pairs. Some receptors or precursors have low abundance (e.g., FMRF amide-related peptide) or restricted

expression patterns (e.g., BB3, gastrin-releasing peptide), whereas themajority are ubiquitously expressed (source data frommassivemining of publicly available

RNA-seq data for 52 tissues provided by ARCHS4). Peptides are cleaved and secreted from their tissue of origin and may act at distant tissues.



(legend on next page)



Figure S7. Confirmation of Proposed Pairings and Secondary Ligands for Known Peptide Receptors, Related to Figure 7

(A) Of the 14 pairings proposed in literature, half were reproduced in mass redistribution and/or internalization assays (Table S5). Note: P2RY10–lysophos-

phatidylserine (LPS) activity was marginal. *We tested cleavage variants of cortistatin (CST-14) and somatostatin (SRIF-28).

(B-C), Nine known peptide receptors were activated by their cognate agonists (internal controls) and, unexpectedly, 22 additional peptides. These indicate as yet

unappreciated cross-pharmacology (Table S7). All data represent mean ± SEM for n = 3 independent experiments performed in triplicate.
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