15 research outputs found

    Keystroke-based User Identification on Smart Phones

    No full text
    Abstract. Smart phones are now being used to store users ’ identities and sensitive information/data. Therefore, it is important to authenticate legitimate users of a smart phone and to block imposters. In this paper, we demonstrate that keystroke dynamics of a smart phone user can be translated into a viable feature set for accurate user identification. To this end, we collect and analyze keystroke data of 25 diverse smart phone users. Based on this analysis, we select six distinguishing keystroke features that can be used for user identification. We show that these keystroke features for different users are diffused and therefore a fuzzy classifier is well-suited to cluster and classify them. We then optimize the front-end fuzzy classifier using Particle Swarm Optimizer (PSO) and Genetic Algorithm (GA) as back-end dynamic optimizers to adapt to variations in usage patterns. Finally, we provide a novel keystroke dynamics based PIN verification mode to ensure information security on smart phones. The results of our experiments show that the proposed user identification system has an average error rate of 2 % after the detection mode and the error rate of rejecting legitimate users is dropped to zero after the PIN verification mode. We also compare error rates (in terms of detecting both legitimate users and imposters) of our proposed classifier with 5 existing state-of-the-art techniques for user identification on desktop computers. Our results show that the proposed technique consistently and considerably outperforms existing schemes.

    Marine ecosystems' responses to climatic and athropogenic forcings in the Mediterranean

    No full text
    The semi-enclosed nature of the Mediterranean Sea, together with its smaller inertia due to the relative short residence time of its water masses, make it highly reactive to external forcings, in particular variations of water, energy and matter fluxes at the interfaces. This region, which has been identified as a 'hotspot' for climate change, is therefore expected to experience environmental impacts that are considerably greater than those in many other places around the world. These natural pressures interact with the increasing demographic and economic developments occurring heterogeneously in the coastal zone, making the Mediterranean even more sensitive. This review paper aims to provide a review of the state of current functioning and responses of Mediterranean marine biogeochemical cycles and ecosystems with respect to key natural and anthropogenic drivers and to consider the ecosystemsÂż responses to likely changes in physical, chemical and socio-economical forcings induced by global change and by growing anthropogenic pressure at the regional scale. The current knowledge on and expected changes due to single forcing (hydrodynamics, solar radiation, temperature and acidification, chemical contaminants) and combined forcing (nutrient sources and stoichiometry, extreme events) affecting the biogeochemical fluxes and ecosystem functioning are explored. Expected changes in biodiversity resulting from the combined action of the different forcings are proposed. Finally, modeling capabilities and necessity for modeling are presented. Modeling acts as an integrative tool to investigate the question of how climate change and anthropogenic activities impact the cycle of biogenic elements and marine ecosystems. A synthesis of our current knowledge of expected changes is proposed, highlighting relevant questions for the future of the Mediterranean ecosystems that are current research priorities for the scientific community. Finally, we discuss how these priorities can be approached by national and international multi-disciplinary research, which should be implemented on several levels, including observational studies and modeling at different temporal and spatial scales.JRC.H.5-Land Resources Managemen

    Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean

    No full text
    Corrigendum : https://doi.org/10.1016/j.pocean.2011.08.003International audienceThe semi-enclosed nature of the Mediterranean Sea, together with its smaller inertia due to the relative short residence time of its water masses, make it highly reactive to external forcings, in particular variations of water, energy and matter fluxes at the interfaces. This region, which has been identified as a “hotspot” for climate change, is therefore expected to experience environmental impacts that are considerably greater than those in many other places around the world. These natural pressures interact with the increasing demographic and economic developments occurring heterogeneously in the coastal zone, making the Mediterranean even more sensitive. This review paper aims to provide a review of the state of current functioning and responses of Mediterranean marine biogeochemical cycles and ecosystems with respect to key natural and anthropogenic drivers and to consider the ecosystems’ responses to likely changes in physical, chemical and socio-economical forcings induced by global change and by growing anthropogenic pressure at the regional scale. The current knowledge on and expected changes due to single forcing (hydrodynamics, solar radiation, temperature and acidification, chemical contaminants) and combined forcing (nutrient sources and stoichiometry, extreme events) affecting the biogeochemical fluxes and ecosystem functioning are explored. Expected changes in biodiversity resulting from the combined action of the different forcings are proposed. Finally, modeling capabilities and necessity for modeling are presented. A synthesis of our current knowledge of expected changes is proposed, highlighting relevant questions for the future of the Mediterranean ecosystems that are current research priorities for the scientific community. Finally, we discuss how these priorities can be approached by national and international multi-disciplinary research, which should be implemented on several levels, including observational studies and modeling at different temporal and spatial scales

    Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean

    No full text
    Corrigendum : https://doi.org/10.1016/j.pocean.2011.08.003International audienceThe semi-enclosed nature of the Mediterranean Sea, together with its smaller inertia due to the relative short residence time of its water masses, make it highly reactive to external forcings, in particular variations of water, energy and matter fluxes at the interfaces. This region, which has been identified as a “hotspot” for climate change, is therefore expected to experience environmental impacts that are considerably greater than those in many other places around the world. These natural pressures interact with the increasing demographic and economic developments occurring heterogeneously in the coastal zone, making the Mediterranean even more sensitive. This review paper aims to provide a review of the state of current functioning and responses of Mediterranean marine biogeochemical cycles and ecosystems with respect to key natural and anthropogenic drivers and to consider the ecosystems’ responses to likely changes in physical, chemical and socio-economical forcings induced by global change and by growing anthropogenic pressure at the regional scale. The current knowledge on and expected changes due to single forcing (hydrodynamics, solar radiation, temperature and acidification, chemical contaminants) and combined forcing (nutrient sources and stoichiometry, extreme events) affecting the biogeochemical fluxes and ecosystem functioning are explored. Expected changes in biodiversity resulting from the combined action of the different forcings are proposed. Finally, modeling capabilities and necessity for modeling are presented. A synthesis of our current knowledge of expected changes is proposed, highlighting relevant questions for the future of the Mediterranean ecosystems that are current research priorities for the scientific community. Finally, we discuss how these priorities can be approached by national and international multi-disciplinary research, which should be implemented on several levels, including observational studies and modeling at different temporal and spatial scales
    corecore