47 research outputs found

    The upgrade of the ALICE TPC with GEMs and continuous readout

    Get PDF
    The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, which are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020.publishedVersio

    The DUNE far detector vertical drift technology. Technical design report

    Get PDF
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Water activity and osmotic coefficients in solutions of glycine, glutamic acid, histidine and their salts at 298.15 K and 310.15 K

    No full text
    From vapor pressure osmometry data, the activity of water, osmotic coeffs. and mean ionic activity coeffs. of glycine (m = 0.006-3.2 mol/kg-1), L-histidine (m = 0.005-0.23 mol/kg-1), L-histidine monohydrochloride (m = 0.008-0.63 mol/kg-1), glutamic acid (m = 0.004-0.05 mol/kg-1), sodium L-glutamate (m = 0.007-0.6 mol/kg-1), and calcium L-glutamate (m = 0.008-0.6 mol/kg-1) have been obtained in aq. solns. at 298.15 and 310.15 K. The Pitzer equations and the mean spherical approxn. (MSA) are used for theor. modeling

    The upgrade of the ALICE TPC with GEMs and continuous readout

    No full text
    The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, which are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020

    The upgrade of the ALICE TPC with GEMs and continuous readout

    No full text
    The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, which are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020

    Correction to: Is diet partly responsible for differences in COVID-19 death rates between and within countries? (Clinical and Translational Allergy, (2020), 10, 1, (16), 10.1186/s13601-020-00323-0)

    No full text
    Following publication of the original article [1], the authors identified an error in the affiliation list. The affiliation of author G. Walter Canonica should have been split up into two affiliations: • Personalized Medicine, Asthma and Allergy – Humanitas Clinical and Research Center – IRCCS, Rozzano (MI), Italy • Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy The corrected affiliation list is reflected in this Correction. © 2020, The Author(s)

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic

    No full text
    Abstract: The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world. Protocol registration: The stage 1 protocol for this Registered Report was accepted in principle on 12 May 2020. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.c.4878591.v1 © 2021, The Author(s), under exclusive licence to Springer Nature Limited
    corecore