7 research outputs found
Transcriptomics provides insight into Mytilus galloprovincialis (Mollusca: Bivalvia) mantle function and its role in biomineralisation
The mantle is an organ common to all molluscs and is at the forefront of the biomineralisation process. The present study used the Mediterranean mussel (Mytilus galloprovincialis) as a model species to investigate the structural and functional role of the mantle in shell formation. The transcriptomes of three regions of the mantle edge (umbo to posterior edge) were sequenced using Illumina technology which yielded a total of 61,674,325 reads after adapter trimming and filtering. The raw reads assembled into 179,879 transcripts with an N50 value of 1086 bp.A total of 1363 transcripts (321, 223 and 816 in regions 1, 2 and 3, respectively) that differed in abundance in the three mantle regions were identified and putative function was assigned to 54% using BLAST sequence similarity searches (cut-off less than 1 e(-10)). Morphological differences detected by histology of the three mantle regions was linked to functional heterogeneity by selecting the top five most abundant Pfam domains in the annotated 1363 differentially abundant transcripts across the three mantle regions. Calcium binding domains dominated region two (middle segment of the mantle edge). Candidate biomineralisation genes were mined and tested by qPCR. This revealed that Flp-like, a penicillin binding protein potentially involved in shell matrix maintenance of the Pacific oyster (Crassostrea gigas), had significantly higher expression in the posterior end of the mantle edge (region one). Our findings are intriguing as they indicate that the mantle edge appears to be a heterogeneous tissue, displaying structural and functional bias. (C) 2016 Elsevier B.V. All rights reserved
A map of human genome variation from population-scale sequencing
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research
A map of human genome variation from population-scale sequencing
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.Molecular Epidemiolog