1,070 research outputs found

    How does geological heterogeneity control floodplain groundwater dynamics?

    Get PDF
    Upland floodplains provide an important function in regulating river flows and controlling the coupling of hillslope runoff with rivers. A floodplain in an upland area of the River Tweed catchment, Scotland, was characterised using geophysics, 3D geological mapping, hydrogeological testing and geochemical sampling, and monitored from September 2011 to February 2013 for variations in groundwater levels, river stage, soil moisture and meteorological parameters, including a period of nine months of exceptionally high rainfall. The floodplain contains an unconsolidated, permeable alluvial and glaciofluvial aquifer 8 to 15 m thick, with transmissivity 50 to 1000 m2/d, which is coupled to the hillslope by permeable solifluction deposits. The floodplain aquifer is a significant store of, and conduit for, catchment water. It gains recharge from the river and the adjacent hillslope, transmitting groundwater downstream and acting as a buffer to restrict water flowing from the hillslope from directly entering the river. Floodplain groundwater level fluctuations are driven primarily by changes in river level and the propagation of pressure waves through the floodplain aquifer. There is significant lateral variation in floodplain groundwater response. Most of the floodplain aquifer is hydraulically connected to the river, but groundwater at the edge of the floodplain is strongly controlled by hillslope sub-surface flow. The geological structure and lithology of the hillslope-floodplain transition is an important hydrological control. It can enhance the influence of subsurface hillslope runoff to the floodplain, which has implications for runoff modelling, flood prevention interventions on hillslopes aimed at reducing runoff, and development at floodplain edges. Vertical heterogeneity in hydrological properties within the floodplain aquifer alters hydrological response, causing different depths of the floodplain to respond differently to hillslope and river inputs. These vertical variations need to be better taken into account in floodplain and hillslope-floodplain studies. This research demonstrates the importance of understanding the 3D geology and hydrogeology of floodplains in order to advance catchment research and effective flood management measures

    Groundwater : meltwater interaction in a proglacial aquifer

    Get PDF
    Groundwater plays a significant role in the hydrology of active glacial catchments, with evidence that it may buffer changes in meltwater river flow and partially compensate for glacial loss. However, to date there has been little direct research into the hydrogeology and groundwater dynamics of proglacial aquifers. Here we directly investigate the three dimensional nature of a proglacial sandur (floodplain) aquifer in SE Iceland, using hydrogeological, geophysical, hydrological and stable isotopic techniques, and provide evidence of groundwater-melt water dynamics over three years. We show that the proglacial sandur forms a thick (at least 50-100 m), high permeability (transmissivity up to 2500 m2/day) aquifer, extending over an area of approximately 6 km2. At least 35 million m3 of groundwater is stored in the aquifer, equivalent to ~23-28% of total annual river flow through the catchment. The volume of mean annual groundwater flow through the aquifer is at least 0.1-1 m3/sec, equivalent to ~10-20% of mean annual river flow. Groundwater across the aquifer is actively recharged from local precipitation and strongly influenced by individual rainfall events and seasonal precipitation. Glacial meltwater influence on groundwater also occurs in a zone extending from 20-500 m away from the meltwater river, for at least 3km down-sandur, and to at least 15 m deep. Within this zone summer recharge from the river to groundwater occurs when meltwater river flows are high, maintaining high summer groundwater levels compared to winter levels; and groundwater temperature and chemistry are strongly influenced by meltwater. Beyond this zone there is no substantial meltwater influence on groundwater. From ~2 km down-sandur there is extensive groundwater discharge via springs, supporting semi-perennial streams that form distinct local ecosystems, and providing baseflow to the main meltwater river. This research indicates that predicted continued climate change-related reductions in glacier coverage and increases in precipitation are likely to increase the significance of groundwater storage as a water resource, and of groundwater discharges in maintaining environmental river flows in glacier catchments

    Teachers' classroom feedback: still trying to get it right

    Get PDF
    This article examines feedback traditionally given by teachers in schools. Such feedback tends to focus on children's acquisition and retrieval of externally prescribed knowledge which is then assessed against mandated tests. It suggests that, from a sociocultural learning perspective, feedback directed towards such objectives may limit children's social development. In this article, I draw on observation and interview data gathered from a group of 27 9- to 10-year olds in a UK primary school. These data illustrate the children's perceived need to conform to, rather than negotiate, the teacher's feedback comments. They highlight the children's sense that the teacher's feedback relates to school learning but not to their own interests. The article also includes alternative examples of feedback which draw on children's own inquiries and which relate to the social contexts within which, and for whom, they act. It concludes by suggesting that instead of looking for the right answer to the question of what makes teachers' feedback effective in our current classrooms, a more productive question might be how a negotiation can be opened up among teachers and learners themselves, about how teachers' feedback could support children's learning most appropriately

    Disordered Hubbard Model with Attraction: Coupling Energy of Cooper Pairs in Small Clusters

    Full text link
    We generalize the Cooper problem to the case of many interacting particles in the vicinity of the Fermi level in the presence of disorder. On the basis of this approach we study numerically the variation of the pair coupling energy in small clusters as a function of disorder. We show that the Cooper pair energy is strongly enhanced by disorder, which at the same time leads to the localization of pairs.Comment: revtex, 5 pages, 6 figure

    The Giscombe Superwoman Schema Questionnaire: Psychometric Properties and Associations with Mental Health and Health Behaviors in African American Women

    Get PDF
    The purpose of this research was to examine the psychometric properties of the Giscombe Superwoman Schema Questionnaire. Three separate studies conducted with 739 African American women provided preliminary evidence that the Questionnaire’s factor structure aligns with the Superwoman Schema Conceptual Framework and has good reliability. In addition, it is positively associated with perceived stress, depressive symptoms, using food to cope with stress, poor sleep quality, and physical inactivity. This study provides preliminary evidence to suggest that the Giscombe Superwoman Schema Questionnaire is psychometrically sound; Superwoman Schema is associated with health behaviors and psychological states that may increase risk for illness

    Reversed anisotropies and thermal contraction of FCC (110) surfaces

    Full text link
    The observed anisotropies of surface vibrations for unreconstructed FCC metal (110) surfaces are often reversed from the "common sense" expectation. The source of these reversals is investigated by performing ab initio density functional theory calculations to obtain the surface force constant tensors for Ag(110), Cu(110) and Al(110). The most striking result is a large enhancement in the coupling between the first and third layers of the relaxed surface, which strongly reduces the amplitude of out-of-plane vibrations of atoms in the first layer. This also provides a simple explanation for the thermal contraction of interlayer distances. Both the anisotropies and the thermal contraction arise primarily as a result of the bond topology, with all three (110) surfaces showing similar behavior.Comment: 13 pages, in revtex format, plus 1 postscript figur

    Mesoscopic interplay of superconductivity and ferromagnetism in ultra-small metallic grains

    Full text link
    We review the effects of electron-electron interactions on the ground-state spin and the transport properties of ultra-small chaotic metallic grains. Our studies are based on an effective Hamiltonian that combines a superconducting BCS-like term and a ferromagnetic Stoner-like term. Such terms originate in pairing and spin exchange correlations, respectively. This description is valid in the limit of a large dimensionless Thouless conductance. We present the ground-state phase diagram in the fluctuation-dominated regime where the single-particle mean level spacing is comparable to the bulk BCS pairing gap. This phase diagram contains a regime in which pairing and spin exchange correlations coexist in the ground-state wave function. We discuss the calculation of the tunneling conductance for an almost-isolated grain in the Coulomb-blockade regime, and present measurable signatures of the competition between superconductivity and ferromagnetism in the mesoscopic fluctuations of the conductance.Comment: 6 pages, 3 figures, To be published in the proceedings of the NATO Advance Research Workshop "Recent Advances in Nonlinear Dynamics and Complex System Physics.

    Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

    Full text link
    We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.Comment: 7 pages, 7 figure

    Pairing symmetry of superconducting graphene

    Full text link
    The possibility of intrinsic superconductivity in alkali-coated graphene monolayers has been recently suggested theoretically. Here, we derive the possible pairing symmetries of a carbon honeycomb lattice and discuss their phase diagram. We also evaluate the superconducting local density of states (LDOS) around an isolated impurity. This is directly related to scanning tunneling microscopy experiments, and may evidence the occurrence of unconventional superconductivity in graphene.Comment: Eur. Phys. J. B, to appea

    Clastic Polygonal Networks Around Lyot Crater, Mars: Possible Formation Mechanisms From Morphometric Analysis

    Get PDF
    Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (> 100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became compressed and/or cemented resulting in a resistant fill. Erosion then leads to preservation of these polygons in positive relief, while later weathering results in the fracturing of the fill material to form angular clasts. These results suggest that there was an extensive area of ice-rich terrain, the extent of which is linked to ejecta from Lyot crater
    • …
    corecore