125 research outputs found

    Beta decays and the inner structures of the neutrino in a NLHV design

    Get PDF
    A novel conceptual theory is developed for the beta decay and electron capture processes, based on the specific non-local hidden-variable (NLHV) design provided by the Cordus theory. A new mechanics is sketched out for the interactions of particules through their discrete forces, and is a deeper level representation of Feynman diagrams. The new mechanics is able to correctly predict the outcomes of the decay processes, beta minus, beta plus, electron capture. It predicts specific NLHV structures for the neutrino and antineutrino. The velocity and unique spins of the neutrino species may then be explained as a consequence of the hidden structures

    Hidden variable theory supports variability in decay rates of nuclides

    Get PDF
    PROBLEM- The orthodox expectation is for decay rates to be strictly constant for all types of decay (β+, β-, EC, ⍺). However empirical results show strong evidence for nuclides having variable decay rates, typically evident as periodicity. The volume of data available suggests this is a real phenomenon, not merely a spurious outcome of measurement errors. However the problem is complex because the data are conflicted for different decays. Furthermore, there is no coherent theory for why the phenomenon should exist in the first place. The effect is not required or predicted by quantum theory. Consequently it is a significant challenge to explain how the variability might arise, what factors could be involved, and how the underlying mechanisms of causality might operate. This lack of explanation contributes to the phenomenon often being dismissed as erroneous. PURPOSE- This paper develops a theoretical explanation of the variability of nuclide decay rates. APPROACH- The non-local hidden-variable solution provided by the Cordus theory was used, specifically its mechanics for neutrino-species interactions with nucleons. FINDINGS- It is predicted that the β-, β+ and electron capture processes are induced by pre-supply of neutrino-species, and that the effects are asymmetrical for those species. Also predicted is that different input energies are required, i.e. that a threshold effect exists. Four simple non-contentious lemmas are proposed with which it is straightforward to explain why β- and EC would be enhanced and correlate to solar neutrino flux (proximity & activity), and a emission unaffected. It is shown that the concept of a neutrino-species asymmetry makes sense of the broad patterns evident in the empirical data. IMPLICATIONS- The results support the variability of decay rates, on theoretical grounds. The type of decay (β+, β-, EC, ⍺) is found to be a key variable in this theory, as is the type of neutrino species and its energy. Past experiments have generally not recorded the variables sufficiently. Future empirical tests of nuclide decay rates need to be more specific about the identity of the external environmental, neutrino-species, both the energy and flux thereof. It is also necessary to be more specific about the decay path. The different decays have to be considered separately, not lumped together, nor classified primarily by element (e.g. U, Pb, Cl, etc.) but rather by type of decay process (β+, β-, EC, ⍺). A more radical implication is that hidden-variable theories offer profoundly new perspectives on fundamental physics, and can explain complex phenomena that are inconceivable from within the zero-dimensional point framework of quantum theory. ORIGINALITY- The novel contribution is the provision of a theoretical explanation for why decay rates would be variable. A detailed mechanism is presented for neutrino-species induced decay. Also novel is the prediction that the interaction is asymmetrical, and that the energy requirements are different for the various types of decay. The explanation is qualitatively consistent with the empirical evidence

    Intramuscular EMG-Driven Musculoskeletal Modelling: Towards Implanted Muscle Interfacing in Spinal Cord Injury Patients

    Get PDF
    Objective: Surface EMG-driven modelling has been proposed as a means to control assistive devices by estimating joint torques. Implanted EMG sensors have several advantages over wearable sensors but provide a more localized information on muscle activity, which may impact torque estimates. Here, we tested and compared the use of surface and intramuscular EMG measurements for the estimation of required assistive joint torques using EMG driven modelling. Methods: Four healthy subjects and three incomplete spinal cord injury (SCI) patients performed walking trials at varying speeds. Motion capture marker trajectories, surface and intramuscular EMG, and ground reaction forces were measured concurrently. Subject-specific musculoskeletal models were developed for all subjects, and inverse dynamics analysis was performed for all individual trials. EMG-driven modelling based joint torque estimates were obtained from surface and intramuscular EMG. Results: The correlation between the experimental and predicted joint torques was similar when using intramuscular or surface EMG as input to the EMG-driven modelling estimator in both healthy individuals and patients. Conclusion: We have provided the first comparison of non-invasive and implanted EMG sensors as input signals for torque estimates in healthy individuals and SCI patients. Significance: Implanted EMG sensors have the potential to be used as a reliable input for assistive exoskeleton joint torque actuation.The authors would like to thank Enrique Pérez Rizo, Natalia Comino Suárez and María Isabel Sinovas Alonso for their assistance on the experimental and data acquisition procedure

    Near infrared reflectance spectroscopy for the determination of free gossypol in cottonseed meal

    Get PDF
    Gossypol is a toxic polyphenolic compound produced by the pigment glands of the cotton plant. The free gossypol content of cottonseed meal (CSM) is commonly determined by the American Oil Chemists’ Society (AOCS) wet chemistry method. The AOCS method, however, laboratory-intensive, time-consuming, and therefore, not practical for quick field analyses. To determine if the free gossypol content of CSM could be predicted by near infrared reflectance spectroscopy (NIRS), CSM samples were collected from all over the world. All CSM samples were ground and a portion of each analyzed for free gossypol by the AOCS procedure (reference data) and by NIRS (reflectance data). Both reflectance and reference data were combined in calibration. The coefficient of determination (r2) and standard error of prediction (SEP) were used to assess the calibration accuracy. The r2 was 0.728, and the SEP was 0.034 for the initial calibration that included samples from all over the world. However, the r2 and SEP improved to 0.921 and 0.014, respectively, if the calibration was made using CSM samples only from the United States. These results indicate that a general prediction equation can be developed to predict the free gossypol content of CSM by NIRS. From a practical standpoint, NIRS technology provides a method for quickly assessing whether a particular batch of CSM has a free gossypol content low enough to be suitable for use in poultry diets.This research was supported in part by grant 05-635GA from the Georgian Cotton Commission, Perry, G

    PhcrTx2, a new crab-paralyzing peptide toxin from the sea anemone <i>Phymanthus crucifer</i>

    Get PDF
    Sea anemones produce proteinaceous toxins for predation and defense, including peptide toxins that act on a large variety of ion channels of pharmacological and biomedical interest. Phymanthus crucifer is commonly found in the Caribbean Sea; however, the chemical structure and biological activity of its toxins remain unknown, with the exception of PhcrTx1, an acid-sensing ion channel (ASIC) inhibitor. Therefore, in the present work, we focused on the isolation and characterization of new P. crucifer toxins by chromatographic fractionation, followed by a toxicity screening on crabs, an evaluation of ion channels, and sequence analysis. Five groups of toxic chromatographic fractions were found, and a new paralyzing toxin was purified and named PhcrTx2. The toxin inhibited glutamate-gated currents in snail neurons (maximum inhibition of 35%, IC50 4.7 µM), and displayed little or no influence on voltage-sensitive sodium/potassium channels in snail and rat dorsal root ganglion (DRG) neurons, nor on a variety of cloned voltage-gated ion channels. The toxin sequence was fully elucidated by Edman degradation. PhcrTx2 is a new β-defensin-fold peptide that shares a sequence similarity to type 3 potassium channels toxins. However, its low activity on the evaluated ion channels suggests that its molecular target remains unknown. PhcrTx2 is the first known paralyzing toxin in the family Phymanthidae

    Mass Bounds on a Very Light Neutralino

    Get PDF
    Within the Minimal Supersymmetric Standard Model (MSSM) we systematically investigate the bounds on the mass of the lightest neutralino. We allow for non-universal gaugino masses and thus even consider massless neutralinos, while assuming in general that R-parity is conserved. Our main focus are laboratory constraints. We consider collider data, precision observables, and also rare meson decays to very light neutralinos. We then discuss the astrophysical and cosmological implications. We find that a massless neutralino is allowed by all existing experimental data and astrophysical and cosmological observations.Comment: 36 pages, 13 figures, minor modification in astro-physical bounds. EPJC versio

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe
    corecore