170 research outputs found

    Climate change refugia for the flora and fauna of England

    Get PDF
    A variety of evidence suggests that species have, in the past, been able to withstand the effects of climatic change in localised environments known as refugia, where specific environmental conditions acted as a buffer against broader-scale climatic changes. Therefore, an important question for conservation is whether refugia might exist under current and future anthropogenic climate change. If there are areas that are likely to remain relatively climatically stable and so enable species to persist despite climate change making surrounding areas unsuitable, identifying and protecting these places will be an important part of future conservation strategies. This report is part of a project that is investigating this question. The report was commissioned to identify the characteristics of potential refugia, to investigate evidence for the existence of contemporary refugia by analysing patterns of local persistence and disappearance of over 1000 species across a range of taxa, and to identify sites in England with the potential to function as refugia for different taxonomic groups at a range of spatial scales

    A Review of Controlling Motivational Strategies from a Self-Determination Theory Perspective: Implications for Sports Coaches

    Get PDF
    The aim of this paper is to present a preliminary taxonomy of six controlling strategies, primarily based on the parental and educational literatures, which we believe are employed by coaches in sport contexts. Research in the sport and physical education literature has primarily focused on coaches’ autonomysupportive behaviours. Surprisingly, there has been very little research on the use of controlling strategies. A brief overview of the research which delineates each proposed strategy is presented, as are examples of the potential manifestation of the behaviours associated with each strategy in the context of sports coaching. In line with self-determination theory (Deci & Ryan, 1985; Ryan & Deci, 2002), we propose that coach behaviours employed to pressure or control athletes have the potential to thwart athletes’ feelings of autonomy, competence,and relatedness, which, in turn, undermine athletes’ self-determined motivation and contribute to the development of controlled motives. When athletes feel pressured to behave in a certain way, a variety of negative consequences are expected to ensue which are to the detriment of the athletes’ well-being. The purpose of this paper is to raise awareness and interest in the darker side of sport participation and to offer suggestions for future research in this area

    Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms

    Get PDF
    Clonal proliferation in myeloproliferative neoplasms (MPN) is driven by somatic mutations in JAK2, CALR or MPL, but the contribution of inherited factors is poorly characterized. Using a three-stage genome-wide association study of 3,437 MPN cases and 10,083 controls, we identify two SNPs with genome-wide significance in JAK2V617F-negative MPN: rs12339666 (JAK2; meta-analysis P=1.27 × 10−10) and rs2201862 (MECOM; meta-analysis P=1.96 × 10−9). Two additional SNPs, rs2736100 (TERT) and rs9376092 (HBS1L/MYB), achieve genome-wide significance when including JAK2V617F-positive cases. rs9376092 has a stronger effect in JAK2V617F-negative cases with CALR and/or MPL mutations (Breslow–Day P=4.5 × 10−7), whereas in JAK2V617F-positive cases rs9376092 associates with essential thrombocythemia (ET) rather than polycythemia vera (allelic χ2 P=7.3 × 10−7). Reduced MYB expression, previously linked to development of an ET-like disease in model systems, associates with rs9376092 in normal myeloid cells. These findings demonstrate that multiple germline variants predispose to MPN and link constitutional differences in MYB expression to disease phenotype

    Investigation of excited 0+ states in 160Er populated via the (p, t) two-neutron transfer reaction

    Get PDF
    Many efforts have been made in nuclear structure physics to interpret the nature of low-lying excited 0+ states in well-deformed rare-earth nuclei. However, one of the difficulties in resolving the nature of these states is that there is a paucity of data. In this work, excited 0+ states in the N = 92 nucleus 160Er were studied via the 162Er(p, t)160Er two-neutron transfer reaction, which is ideal for probing 0+ → 0+ transitions, at the Maier-Leibnitz-Laboratorium in Garching, Germany. Reaction products were momentum-analyzed with a Quadrupole-3-Dipole magnetic spectrograph. The 0+2 state was observed to be strongly populated with 18% of the ground state strength

    Petrogenesis and geochemical halos of the amphibolite facies, Lower Proterozoic, Kerry Road volcanogenic massive sulfide deposit, Loch Maree Group, Gairloch, NW Scotland

    Get PDF
    The Palaeoproterozoic Kerry Road deposit is one of the oldest examples of volcanogenic massive sulfide (VMS) mineralization. This small VMS deposit (~500,000 tons grading at 1.2% Cu, 3.5% Zn) is hosted in amphibolite facies mafic-siliciclastic units of the c. 2.0 Ga Loch Maree Group, Scotland. Sulfide mineralization consists of pyrite and pyrrhotite with subordinate chalcopyrite and sphalerite, occurring in disseminated, vein and semi-massive to massive textures. The deposit was highly deformed and metamorphosed during the c. 1.8–1.7 Ga Laxfordian Orogeny. Textural relationships of deformed sulfide minerals, related to early Laxfordian deformation (D1/D2), indicate initial high pressure-low temperature (100 MPa, 150 °C) conditions before reaching peak amphibolite facies metamorphism, as evident from pyrrhotite crossing the brittle/ductile transition prior to chalcopyrite. Late Laxfordian deformation (D3/D4) is marked by local retrograde greenschist facies at low pressure and temperature (<1.2 MPa, <200 °C), recorded by late red sphalerite remobilization. δ34S values from all sulfide minerals have a homogeneous mean of 0.8 ± 0.7‰ (n = 21), consistent with interaction of hydrothermal fluids in the host oceanic basalt-island arc setting envisaged for deposition of the Loch Maree Group. Microprobe analyses of amphiboles record evidence of the original alteration halo associated with the Kerry Road deposit, with a systematic Mg- and Si- enrichment from ferrotschermakite (~150 m) to Mg-hornblende (~90 m) to actinolite (0 m) on approach to the VMS deposit. Furthermore, whole rock geochemistry records a progressive enrichment in Si, Cu, Co, and S, and depletion in Al, Ti, V, Cr, Y and Zr with proximity to the VMS system. These elemental trends, together with amphibole geochemistry, are potentially useful exploration vectors to VMS mineralization in the Loch Maree Group, and in similar highly deformed and metamorphosed terranes elsewhere

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    Delayed mucosal antiviral responses despite robust peripheral inflammation in fatal COVID-19

    Get PDF
    Background While inflammatory and immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished coronavirus disease 2019 (COVID-19) severity categories, and relate these to disease progression and peripheral inflammation. Methods We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalized with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0–5 days after symptom onset) or late (6–20 days after symptom onset) phase. Results Patients that survived severe COVID-19 showed interferon (IFN)-dominated mucosal immune responses (IFN-γ, CXCL10, and CXCL13) early in infection. These early mucosal responses were absent in patients who would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by interleukin 2 (IL-2), IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. Conclusions Defective early mucosal antiviral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19
    corecore