194 research outputs found

    Immune competence and spleen size scale with colony status in the naked mole-rat

    Get PDF
    Naked mole-rats (NM-R; Heterocephalus glaber) live in multi-generational colonies with a social hierarchy, show low cancer incidence and long life-spans. Here we asked if such extreme physiology might have an immune component. The spleen is the largest lymphoid organ and plays an essential role in response to immunological insults and may participate in combating cancer and slowing ageing. We investigated the anatomy, molecular composition and function of the NM-R spleen using RNA-sequencing and histological analysis in healthy animals. We found that spleen size in healthy NM-Rs varies considerably. We therefore classified NM-Rs according to spleen size as NM-Rs with small spleens or enlarged spleens. Animals with enlarged spleens showed potentially better anti-microbial profiles and were much more likely to have a high rank within the colony. Splenomegaly was associated with infection in sick NM-Rs, but not in NM-Rs with enlarged spleens. In all healthy NM-Rs splenic erythropoiesis, megakaryopoiesis and myelopoiesis were increased, but B lymphopoiesis was reduced and splenic marginal zone showed markedly altered morphology when compared to other rodents. However, in NM-Rs lymphocytes were found in secondary sites such as lymph nodes, gut lymphoid nodules and thymus. Thus, the NM-R spleen is a major site of adult hematopoiesis under normal physiological conditions. Overall, the NM-R immune system seems to rely mainly on innate immune responses with a more restricted adaptive immune response. We propose that the anatomical plasticity of the spleen might be regulated by social interaction and gives immunological advantage to increase the life-span of higher ranked animals

    Immune competence and spleen size scale with colony status in the naked mole-rat

    Get PDF
    Naked mole-rats (NM-R; Heterocephalus glaber) live in multi-generational colonies with a social hierarchy, show low cancer incidence and long life-spans. Here we asked if an immune component might underlie such extreme physiology. The largest lymphoid organ is the spleen which plays an essential role in responding to immunological insults and may participate in combating cancer and slowing ageing. We investigated the anatomy, molecular composition and function of the NM-R spleen using RNA-sequencing and histological analysis in healthy NM-Rs. Spleen size in healthy NM-Rs showed considerable inter-individual variability, with some animals displaying enlarged spleens. In all healthy NM-Rs the spleen is a major site of adult hematopoiesis under normal physiological conditions. However, myeloid to lymphoid cell ratio is increased and splenic marginal zone showed markedly altered morphology when compared to other rodents. Healthy NM-Rs with enlarged spleens showed potentially better anti-microbial profiles and were much more likely to have a high rank within the colony. We propose that the anatomical plasticity of the spleen might be regulated by social interaction and gives immunological advantage to increase the life-span of higher ranked animals

    Gauge invariant derivative expansion of the effective action at finite temperature and density and the scalar field in 2+1 dimensions

    Get PDF
    A method is presented for the computation of the one-loop effective action at finite temperature and density. The method is based on an expansion in the number of spatial covariant derivatives. It applies to general background field configurations with arbitrary internal symmetry group and space-time dependence. Full invariance under small and large gauge transformations is preserved without assuming stationary or Abelian fields nor fixing the gauge. The method is applied to the computation of the effective action of spin zero particles in 2+1 dimensions at finite temperature and density and in presence of background gauge fields. The calculation is carried out through second order in the number of spatial covariant derivatives. Some limiting cases are worked out.Comment: 34 pages, REVTEX, no figures. Further comments adde

    Scratching the scale labyrinth

    Get PDF
    In this paper, we introduce a new approach to computer-aided microtonal improvisation by combining methods for (1) interactive scale navigation, (2) real-time manipulation of musical patterns and (3) dynamical timbre adaption in solidarity with the respective scales. On the basis of the theory of well-formed scales we offer a visualization of the underlying combinatorial ramifications in terms of a scale labyrinth. This involves the selection of generic well-formed scales on a binary tree (based on the Stern-Brocot tree) as well as the choice of specific tunings through the specification of the sizes of a period (pseudo-octave) and a generator (pseudo-fifth), whose limits are constrained by the actual position on the tree. We also introduce a method to enable transformations among the modes of a chosen scale (generalized and refined “diatonic” and “chromatic” transpositions). To actually explore the scales and modes through the shaping and transformation of rhythmically and melodically interesting tone patterns, we propose a playing technique called Fourier Scratching. It is based on the manipulation of the “spectra” (DFT) of playing gestures on a sphere. The coordinates of these gestures affect score and performance parameters such as scale degree, loudness, and timbre. Finally, we discuss a technique to dynamically match the timbre to the selected scale tuning

    Constraints on Low-Mass WIMP Interactions on 19F from PICASSO

    Get PDF
    Recent results from the PICASSO dark matter search experiment at SNOLAB are reported. These results were obtained using a subset of 10 detectors with a total target mass of 0.72 kg of 19F and an exposure of 114 kgd. The low backgrounds in PICASSO allow recoil energy thresholds as low as 1.7 keV to be obtained which results in an increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below 10 GeV/c^2. No dark matter signal was found. Best exclusion limits in the spin dependent sector were obtained for WIMP masses of 20 GeV/c^2 with a cross section on protons of sigma_p^SD = 0.032 pb (90% C.L.). In the spin independent sector close to the low mass region of 7 GeV/c2 favoured by CoGeNT and DAMA/LIBRA, cross sections larger than sigma_p^SI = 1.41x10^-4 pb (90% C.L.) are excluded.Comment: 23 pages, 7 figures, to be published in Phys. Lett.

    Two-Loop O(αsGFmt2){\cal O}(\alpha_sG_Fm_t^2) Corrections to the Fermionic Decay Rates of the Standard-Model Higgs Boson

    Full text link
    Low- and intermediate mass Higgs bosons decay preferably into fermion pairs. The one-loop electroweak corrections to the respective decay rates are dominated by a flavour-independent term of O(GFmt2){\cal O}(G_Fm_t^2). We calculate the two-loop gluon correction to this term. It turns out that this correction screens the leading high-mtm_t behaviour of the one-loop result by roughly 10\%. We also present the two-loop QCD correction to the contribution induced by a pair of fourth-generation quarks with arbitrary masses. As expected, the inclusion of the QCD correction considerably reduces the renormalization-scheme dependence of the prediction.Comment: 14 pages, latex, figures 2-5 appended, DESY 94-08

    D-cycloserine augmentation of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders: a systematic review and meta-analysis of individual participant data

    Full text link
    Importance: Whether and under which conditions D-cycloserine (DCS) augments the effects of exposure-based cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders is unclear. Objective: To clarify whether DCS is superior to placebo in augmenting the effects of cognitive behavior therapy for anxiety, obsessive-compulsive, and posttraumatic stress disorders and to evaluate whether antidepressants interact with DCS and the effect of potential moderating variables. Data Sources: PubMed, EMBASE, and PsycINFO were searched from inception to February 10, 2016. Reference lists of previous reviews and meta-analyses and reports of randomized clinical trials were also checked. Study Selection: Studies were eligible for inclusion if they were (1) double-blind randomized clinical trials of DCS as an augmentation strategy for exposure-based cognitive behavior therapy and (2) conducted in humans diagnosed as having specific phobia, social anxiety disorder, panic disorder with or without agoraphobia, obsessive-compulsive disorder, or posttraumatic stress disorder. Data Extraction and Synthesis: Raw data were obtained from the authors and quality controlled. Data were ranked to ensure a consistent metric across studies (score range, 0-100). We used a 3-level multilevel model nesting repeated measures of outcomes within participants, who were nested within studies. Results: Individual participant data were obtained for 21 of 22 eligible trials, representing 1047 of 1073 eligible participants. When controlling for antidepressant use, participants receiving DCS showed greater improvement from pretreatment to posttreatment (mean difference, -3.62; 95% CI, -0.81 to -6.43; P = .01; d = -0.25) but not from pretreatment to midtreatment (mean difference, -1.66; 95% CI, -4.92 to 1.60; P = .32; d = -0.14) or from pretreatment to follow-up (mean difference, -2.98, 95% CI, -5.99 to 0.03; P = .05; d = -0.19). Additional analyses showed that participants assigned to DCS were associated with lower symptom severity than those assigned to placebo at posttreatment and at follow-up. Antidepressants did not moderate the effects of DCS. None of the prespecified patient-level or study-level moderators was associated with outcomes. Conclusions and Relevance: D-cycloserine is associated with a small augmentation effect on exposure-based therapy. This effect is not moderated by the concurrent use of antidepressants. Further research is needed to identify patient and/or therapy characteristics associated with DCS response.2018-05-0

    Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

    Get PDF
    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination (PSD) down to an electron-equivalent energy of 20 keV. In the surface dataset using a triple-coincidence tag we found the fraction of beta events that are misidentified as nuclear recoils to be <1.4×107<1.4\times 10^{-7} (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement with only a double-coincidence tag. The combined data set contains 1.23×1081.23\times10^8 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the electronic recoil contamination is <2.7×108<2.7\times10^{-8} (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe PSD parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approx. 101010^{-10} for an electron-equivalent energy threshold of 15 keV for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 104610^{-46} cm2^2, assuming negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic

    Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2(-/-)) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2(-/-) mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability

    Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations

    Get PDF
    In this paper we motivate, formulate and analyze the Multi-Configuration Time-Dependent Hartree-Fock (MCTDHF) equations for molecular systems under Coulomb interaction. They consist in approximating the N-particle Schrodinger wavefunction by a (time-dependent) linear combination of (time-dependent) Slater determinants. The equations of motion express as a system of ordinary differential equations for the expansion coefficients coupled to nonlinear Schrodinger-type equations for mono-electronic wavefunctions. The invertibility of the one-body density matrix (full-rank hypothesis) plays a crucial role in the analysis. Under the full-rank assumption a fiber bundle structure shows up and produces unitary equivalence between convenient representations of the equations. We discuss and establish existence and uniqueness of maximal solutions to the Cauchy problem in the energy space as long as the density matrix is not singular. A sufficient condition in terms of the energy of the initial data ensuring the global-in-time invertibility is provided (first result in this direction). Regularizing the density matrix breaks down energy conservation, however a global well-posedness for this system in L^2 is obtained with Strichartz estimates. Eventually solutions to this regularized system are shown to converge to the original one on the time interval when the density matrix is invertible.Comment: 48 pages, 1 figur
    corecore