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Abstract 

 

Naked mole-rats (NM-R; Heterocephalus glaber) live in multi-generational 

colonies with a social hierarchy, show low cancer incidence and long life-

spans. Here we asked if such extreme physiology might have an immune 

component. The spleen is the largest lymphoid organ and plays an essential 

role in response to immunological insults and may participate in combating 

cancer and slowing ageing. We investigated the anatomy, molecular 

composition and function of the NM-R spleen using RNA-sequencing and 

histological analysis in healthy animals. We found that spleen size in healthy 

NM-Rs varies considerably. We therefore classified NM-Rs according to 

spleen size as NM-Rs with small spleens or enlarged spleens. Animals with 

enlarged spleens showed potentially better anti-microbial profiles and were 

much more likely to have a high rank within the colony. Splenomegaly was 

associated with infection in sick NM-Rs, but not in NM-Rs with enlarged 

spleens. In all healthy NM-Rs splenic erythropoiesis, megakaryopoiesis and 

myelopoiesis were increased, but B lymphopoiesis was reduced and splenic 

marginal zone showed markedly altered morphology when compared to other 

rodents. However, in NM-Rs lymphocytes were found in secondary sites such 

as lymph nodes, gut lymphoid nodules and thymus. Thus, the NM-R spleen is 

a major site of adult hematopoiesis under normal physiological conditions. 

Overall, the NM-R immune system seems to rely mainly on innate immune 

responses with a more restricted adaptive immune response. We propose 

that the anatomical plasticity of the spleen might be regulated by social 

interaction and gives immunological advantage to increase the life-span of 

higher ranked animals. 

 

 

Keywords: hyperplasic spleen/splenomegaly, adaptive immune system, 

lymphopoiesis, extramedullary hematopoiesis, eusociality 
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Abbreviations: 

 

BM: body mass 

GSEA: gene set enrichment analysis 

H&E: hematoxylin and eosin 

MEP: megakaryocyte-erythroid progenitors 

MPO: myeloperoxidase 

NK cells: natural killer cells 

NM-R: naked mole-rat 

RNAseq: RNA sequencing 

ssNM-R: naked mole-rat with small spleen 

lsNM-R: naked mole-rat with enlarged spleen 

siNM-R: sick naked mole-rat 
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Introduction 

Disease susceptibility is regulated by multiple factors including environmental stress 

and genetic factors. The immune system plays a critical role in protecting animals 

from infections, cancer and optimal immune function is associated with healthy 

ageing [1,2]. In cases of pathogenic insult, the immune system protects the organism 

by engaging both innate and adaptive immune responses via either myeloid cells 

(granulocytes, macrophages and monocytes) and natural killer cells (NK) or 

lymphocytes and dendritic cells, respectively. Deregulation of the immune system is 

a critical factor in the development of cancer and ageing as immune function declines 

with age [2].  

Naked mole-rats (NM-Rs; Heterocephalus glaber) show an extraordinarily long life-

span for their small size (>30 years) [3,4] and display a low cancer incidence [5–7]. 

Many features of NM-R physiology and habitat might contribute to the low cancer 

incidence, such as unique metabolic adaptations and hypoxia tolerance [8–10]. 

Recently, it has been shown that transformed NM-R cells can form tumours in mice 

[11], suggesting that non-cell autonomous mechanisms might eliminate tumorigenic 

cells before their spread in NM-Rs. Thus, the NM-R shows promise as an animal 

model to study the role of the immune system in cancer and ageing. NM-Rs are 

eusocial mammals that live in large colonies (on average 40-70 individuals), 

dominated by the queen who is normally the only breeding female [12,13]. In our 

laboratory we have kept NM-R breeding colonies for more than 10 years. Over the 

last 4 years we have been monitoring the health status and mortality of our NM-Rs 

which only rarely die in captivity. Indeed, we observed only one major cause of death 

which was following fights with rivals during attempts to replace the breeding queen. 

Often wounded animals have unhealed infected wounds and have to be euthanized. 

In vivo experiments have shown that NM-Rs did not survive viral infections due to 

Coronavirus or Herpes simplex virus [14,15]. Single-cell-RNA sequencing analysis of 

the spleen and of the peripheral blood of young adults showed that NM-Rs have a 

high myeloid to lymphoid cell ratio, but appear to lack classic NK cells [16]. These 

observations suggest that the NM-R immune system may differ significantly from that 

of conventional laboratory rodents. 

In adulthood, secondary lymphoid organs like the spleen and lymph nodes 

participate in immune homeostasis. In humans and rodents extramedullary 

hematopoiesis takes place in the spleen to support adult bone marrow 

hematopoiesis under stress conditions [17,18]. In addition, the spleen can also 

supply cells that stimulate cancer progression in mouse tumour models [19,20]. 

Hence depending on the context, the spleen may support hematopoiesis, prevent 
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growth of cancer cells or facilitate the development of tumour in mice. In NM-R little 

is known about the structure and function of the spleen in normal physiological and 

pathological conditions. Here we investigated the role of the spleen in healthy NM-Rs 

using molecular profiling and anatomical analysis.  

We show that the size of the spleen varies markedly between healthy NM-Rs, with 

higher ranked animals displaying a larger spleen with pro-inflammatory features. NM-

Rs with enlarged spleens did not show immature myeloid cells in the peripheral blood 

as observed in sick NM-Rs with wounds. In all healthy NM-Rs splenic and peripheral 

blood cell frequency showed an increased myeloid/lymphoid ratio, low bone marrow 

cellularity and extramedullary hematopoiesis taking place in the spleen with 

increased erythropoiesis, megakaryopoiesis and myelopoiesis, but reduced B 

lymphopoiesis compared to mice. B and T lymphocytes were found in secondary 

sites such as the lymph nodes, gut lymphoid sites and in the thymus, but the latter 

showed an unexpectedly reduced size in young adults. Our data suggest that, unlike 

other rodent species, the NM-R spleen is a major site of adult hematopoiesis under 

normal physiological conditions. However, the reduction in B lymphoid lineage 

suggests that NM-R immune system relies mainly on innate immune response with a 

more restricted adaptive immune response.  
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Results  

 

Variable spleen size in NM-Rs 

In order to study the structure and function of the NM-R spleen, we collected data 

from NM-R spleens over the last 4 years from a group of randomly sampled healthy 

animals (n = 32) aged between 1 and 5 years old, excluding breeding males and 

queens. Surprisingly, we observed that spleen mass and length varied considerably 

across healthy NM-Rs (Fig 1A). Spleen size expressed as percentage of body mass 

(%BM) in C57BL/6N mice (n = 40, aged between 1 and 5 months) was on average 

0.32% versus 0.27% in NM-Rs (n = 32). However, spleen size was much more 

variable in NM-Rs with healthy animals displaying very large or very small spleens 

(Fig 1A). We divided the NM-Rs into 2 groups based on spleen size frequency 

distribution that showed dip at around 0.25% of BM (S1A Fig). We classified NM-Rs 

according to spleen size, NM-Rs with small spleens (ssNM-R: %BM ≤ 0.26%) and 

large spleens (lsNM-R: %BM > 0.26%) (Fig 1B). The mean spleen mass was 0.18% 

for ssNM-Rs and 0.35% for lsNM-Rs and the latter showed spleen masses similar to 

those of mice (Fig 1B). Since the liver and the spleen can both be sites of 

extramedullary hematopoiesis and could become enlarged during sickness in 

rodents [17,18], we also measured liver mass (expressed as %BM) in the same NM-

R cohort. Mean liver mass was not different between animals with small and large 

spleens (Fig 1C). NM-R livers (combined), ssNM-R and lsNM-R were significantly 

smaller compared to mice (Fig 1C), but the liver size frequency distribution showed a 

normal distribution in contrast to the spleen size frequency distribution (S1A and S1B 

Fig). In all NM-Rs the spleen and liver size increased with age, in contrast to the 

mouse where both organs decreased in size with age (S1C-S1F Fig). The mean age 

of ssNM-Rs was 28.6 ± 2.3 months versus 36.3 ± 5.7 months for lsNM-Rs which was 

not significantly different (unpaired t-test: p = 0.06). Spleen size was independent of 

sex in NM-Rs whereas female mice showed larger spleens compared to males (S1G 

Fig). Thus, the dynamics of spleen growth in young adult NM-Rs differed 

considerably from that of age-matched mice. The 32 NM-Rs were taken from 3 

distinct colonies (named A, B and C), mean spleen mass was not different between 

colonies (S1H Fig). 

 

Fig. 1: Variable spleen size in NM-Rs.  

(A) Representative images of NM-R small (ssNM-R) and large (lsNM-R) spleens 

compared to mouse spleens, scale bar = 1 cm. (B) Spleen weight expressed as % of 

body mass (% BM) for mice (n= 40) and NM-Rs (n= 32 combined ssNM-R and lsNM-
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R, n= 16 ssNM-R, n= 16 lsNM-R). (C) Liver weight expressed as % BM for mice (n= 

40) and NM-Rs (n= 28 combined ssNM-R and lsNM-R, n= 16 ssNM-R, n= 12 lsNM-

R). (D-E) Comparison between spleen weight (D) and liver weight (E) of lsNM-Rs 

(same data as in B-C) and siNM-Rs plotted per type of sickness (fighters n = 6 and 

unknown cause of sickness n= 1). Percent of BM (% BM) for each tissue type was 

calculated with BM and tissue weight in g. Graphs represent mean ± s.e.m. Unpaired 

t test: p value *<0.05, **<0.01, and ****<0.0001. See also S1 Fig. 

 

Splenomegaly in lsNM-Rs is not associated with signs of infection 

We next asked whether NM-Rs with enlarged spleens showed signs of ongoing 

illness or infection, as is the case for other rodents. Enlarged spleen (splenomegaly) 

may result from extramedullary hematopoiesis in the spleen and liver of individuals 

suffering from anaemia, neoplasia or myeloid hyperplasia in response to an infection 

or inflammation. Over a four-year period we collected the spleen and livers from 7 

sick NM-Rs (siNM-R). Among them six animals were wounded from fighting and 

three of these animals had macroscopically infected wounds. These six animals 

served as positive controls for splenomegaly (cohort named fight or siNM-R fighters). 

One remaining animal showed signs of sickness, but of unknown cause. The siNM-

Rs that had engaged in fights showed the largest spleens (mean = 0.69% of BM) (Fig 

1D). The spleen size of siNM-R fighters was twice the size of healthy NM-Rs 

(combined, mean = 0.27% of BM) or of the lsNM-R (mean = 0.35%) (Fig 1B and 1D), 

indicating that splenomegaly does occur in NM-Rs following infection. There was no 

indication of enlarged livers in siNM-Rs regardless of illness type (Fig 1E).  

In rodents and humans, increased numbers of immature myeloid progenitors and 

monocytes in peripheral blood are indicators of infection. Since little is known about 

the blood cells of NM-R, we first examined bone marrow cells from healthy NM-Rs, 

the primary site of hematopoiesis in which hematopoietic stem cells generate all 

immune cells including erythroid, myeloid and lymphoid lineages. NM-R femurs were 

paler in colour than mouse femurs, suggesting lower haemoglobin and erythrocyte 

numbers (Fig 2A). Cytospins of bone marrow cells that were not subjected to 

erythrocyte lysis indicated that all cell types of the erythroid lineage including mature 

erythrocytes, reticulocytes, orthochromatic erythrocytes and erythroblasts are 

present in the bone marrow of the NM-R (Fig 2B). In addition, all known 

hematopoietic cell types found in mouse bone marrow were also present in the NM-R 

including myeloid and lymphoid lineages (Fig 2B). Surprisingly, in NM-Rs the 

immature neutrophils (also called band neutrophils) are stab-cell shaped similar to 

those of humans [21] while characteristic ring-shaped neutrophils of the mouse and 
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rat were not found (Fig 2B). Furthermore, the cell number was 3 times lower in NM-R 

femur compared to mouse femur (7.3x106 in NM-R versus 25x106 in mouse, Fig 2C). 

Bone marrow hematopoietic cells differentiate and are found in the peripheral blood 

from where they can be further characterized. We therefore analysed 23 NM-R blood 

samples from healthy animals (n = 11 from ssNM-Rs and n = 12 from lsNM-Rs) 

using an automated blood counter and mouse blood as reference (S2A-S2E Fig). We 

found similar total white blood cell counts in both species (S2A Fig), but the 

frequency of the various cell populations was altered with an increased 

neutrophil/lymphoid ratio and a higher number of monocytes in the peripheral blood 

of NM-Rs (S2B-S2D Fig). The eosinophil count was only modestly increased (S2E 

Fig). These blood counts were similar in NM-Rs with small and large spleens, with 

ssNM-Rs showing slightly lower white blood cell counts (S2A Fig). Thus, our data 

indicate that the bone marrow of NM-Rs can give rise to all cell types described in 

mice and humans, but the distribution of the hematopoietic cells in peripheral blood 

was more similar to that of humans with increased circulating myeloid cells at the 

expense of circulating lymphocytes.  

 

Fig. 2: Wounded NM-Rs show high immature neutrophil count in peripheral 

blood unlike lsNM-Rs. 

(A) Representative images of femur from mouse and NM-R, (B) May-Grünwald 

staining of bone marrow cell cytospin without red blood cell lysis. Arrowhead: 

erythroblast; *orthochromatic erythroblast; **reticulocytes; arrow: mature 

erythrocytes; 1: monocytes; 2: eosinophils; 3: lymphocytes; 4: neutrophils; 5: band 

neutrophils. (C) Number of blood cells per femur, n = 6 mice, n = 9 NM-Rs. (D) 

Representative images of May-Grünwald staining of white blood cells in peripheral 

blood smears of NM-R and mice: lymphocytes, neutrophils, monocytes and 

eosinophils. (E-H) Percentage of lymphocytes (E), neutrophils (F), monocytes (G) 

and eosinophils (H) in the peripheral blood of NM-Rs using May-Grünwald staining of 

blood smears: n = 8 ssNM-R, n= 11 lsNM-R and n = 5 siNM-R fighters. (I) Left panel: 

percentage of immature and mature neutrophils counted in blood smear of n = 8 

ssNM-R, n= 11 lsNM-R and n = 5 siNM-R fighters. Right panel: representative 

images of May-Grünwald staining of NM-R immature and mature neutrophils. All 

scale bars = 10 µm. Graphs represent mean ± s.e.m. Unpaired t test: p value *<0.05, 

**<0.01, ***<0.001 and ****<0.0001. See also S2 Fig. 

 

These data suggested that lsNM-Rs with enlarged spleens are healthy. To verify this, 

we examined in detail monocytes and immature neutrophil populations in the 
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peripheral blood of animals with infection or inflammation (siNM-R fighters) and 

compared them to those from lsNM-Rs. Analysis of May-Grünwald stained blood 

smears from 19 NM-R healthy animals (n = 8 ssNM-Rs and n = 11 lsNM-Rs) 

confirmed blood counter data (Fig 2D-2H compared to Fig 2E-2H, S2B-S2E Fig). 

Interestingly, blood smears from siNM-R fighters (n = 5) showed dramatic increases 

in the monocyte population and a reduction in lymphocytes compared to all NM-R 

cohorts (Fig 2G and 2E). In addition, 53% of the white blood cells were immature 

neutrophils (band neutrophils) and 13% were segmented neutrophils (mature stage) 

in the peripheral blood of the siNM-R fighters, indicating an active immune response 

against infection or inflammation. In contrast, almost exclusively mature neutrophils 

(segmented neutrophils: 33 to 41% of white blood cells versus ≤ 1% of immature 

neutrophils) were found in healthy NM-Rs (ssNM-R and lsNM-R) (Fig 2I). Our results 

clearly demonstrate that NM-Rs with an apparent splenomegaly do not show myeloid 

hyperplasia like sick NM-Rs.  

 

Increased myeloid and reduced lymphoid lineages in NM-R spleen 

The differences in spleen size found in healthy NM-R cohorts might reflect specific 

cell type hyperplasia between both cohorts. To address this, we applied global gene 

expression profiling to investigate molecular differences between small and large 

NM-R spleens compared to the mouse. We also compared RNAseq data from 

mouse spleens with NM-R in order to reveal whether NM-R and mouse spleen share 

molecular signatures. Global comparison of transcriptomes (including transcripts 

from 12946 genes) indicated major differences between the two species and high 

similarity between ssNM-R and lsNM-R (Fig 3A). Principal component analysis and 

Venn diagram analysis also showed clear species differences and only loose 

clustering of large and small NM-R spleens (S3A and S3B Fig). Differential gene 

expression analyses of the 3 groups showed 4869 and 4873 up-regulated genes and 

4737 and 4713 down-regulated genes in ssNM-R and lsNM-R, respectively, 

compared to mice (Fig 3B and 3C). In ssNM-R spleens just 16 genes were 

differentially up-regulated and 41 were down-regulated compared to lsNM-R spleens 

(Fig 3B). Comparing NM-R with mouse spleen the RNAseq data revealed a dramatic 

reduction in the expression of B cell markers (such as Cd19, Cd79a and Cd79b), and 

of dendritic cell markers such as Itgax (coding for CD11c), but there was a dramatic 

increase in the expression of myeloid markers such as Itgam (coding for CD11b) and 

a modest increase in monocytic/macrophage gene expression (Cd14) (S3C and S3D 

Fig, S1 Table). To infer immune cell type abundance in the spleen from the bulk 

RNAseq data digital cytometry using CIBERSORT analysis was performed [22]. 
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Since no pre-defined signatures exist for immune cell subsets of NM-Rs, mouse 

gene expression signatures for the cell subsets were used [22,23]. The analysis 

predicted that 53 ± 3% of myeloid cells (31.8 ± 4.6 % granulocytes, 10 ± 1% 

monocytes and 11 ± 4 % macrophages), 48 ± 3 % of lymphoid cells (10 ± 4% B cells, 

2 ± 1 % plasma cells, 7 ± 2% activated NK cells and 29 ± 3 % T cells) are present in 

NM-R spleens regardless of size (Fig 3D, S3E Fig). This shift towards myeloid cells 

was highly consistent with recently published single cell RNAseq profiling data from 

the NM-R [16]. In addition, our functional analysis using gene set enrichment 

analysis (GSEA) highlighted a significant underrepresentation of gene sets 

implicated in B cells homeostasis, regulation and proliferation (S2 and S3 Tables). Of 

note, the percentage of total T-cells was similar in both species, but in NM-Rs the T-

cell subset distribution differed from that of mice, including the presence of gamma-

delta T-cells and Th1 cells (S3E Fig, left panel). A significant change in the 

expression of T cell-associated gene sets by GSEA was found (S2 and S4 Tables). 

Thus, the data suggested that lymphopoiesis and myelopoiesis are differently 

regulated in adult NM-Rs compared to mice, predicting a special role for the spleen 

in this species.  

 

Fig. 3: Transcriptomic analysis of NM-R and mouse spleen. 

(A) Heatmap visualization of the Euclidean distance between spleen samples based 

on global transcriptomic data (RNAseq). (B) Number of differentially regulated genes 

(upregulated in green, downregulated in red) in the spleens of ssNM-R, lsNM-R 

compared to mouse (MM, left panel) or compared to each other (right panel). (C) 

Heatmap of all differentially expressed genes in the spleen of ssNM-Rs and lsNM-Rs 

in comparison to mouse. Samples are hierarchically clustered based on Pearson 

correlation. (D) Fractions of major splenic cell types based on in silico cytometric 

analysis of transcriptomic data (CIBERSORT). ssNM-R: NM-R with small spleen, 

lsNM-R: NM-R with large spleen, DC: dendritic cells, NK: natural killer cells, MM: 

mouse (Mus musculus); n = 3 per group. See also S3 Fig. 

 

The NM-R spleen has unique structural features 

The spleen is composed of two functionally and morphologically distinct 

compartments, the white pulp and the red pulp. The white pulp contains most of the 

lymphocytes and initiates the immune responses to blood-born antigens while the 

red pulp is a blood filter that removes foreign material and damaged or senescent 

erythrocytes, and is a storage site for iron, erythrocytes and platelets [24]. We 

predicted that, the loss of 30-40% of splenic lymphocytes and the 50% increase in 
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myeloid cells would impact the structure and function of the spleen. Indeed, 

histological analysis of NM-R spleens showed a strongly reduced white pulp volume 

and an increase in trabeculae abundance that was independent of spleen size (Fig 

4A-4C). We wondered whether these structural peculiarities were observed in other 

African mole-rat species. We had access to spleens from two other Bathyergidae 

species the Natal and Highveld mole-rats (Cryptomys hottentotus natalensis and 

Cryptomys hottentotus pretoriae) [25,26] that are related to NM-Rs, but are not 

eusocial mammals (S4A Fig). The structure of the NM-R spleen did not resemble 

that of spleens from Natal and Highveld mole-rats, which were both very similar to 

the mouse and rat (Fig 4A, S4B-S4D Fig). The increased trabeculae density in NM-R 

spleens was accompanied by a small increase in the expression of the Col3a1 gene 

(coding for Type III collagen) a reticulin fibrin component and by a 5-fold increase in 

the RNA level of α-SMA (encoded by Acta2 gene) (Fig 4D and 4E). These two genes 

may be associated with the fibrous trabeculae that act as a pump to filter blood.  

 

Fig. 4: NM-R spleen shows a reduced white pulp compartment and a thin 

marginal zone.  

(A-C) H&E staining of the spleen of ssNM-R (B) and lsNM-R (C) in comparison to 

mouse (A). Note the increase in red pulp/white pulp ratio with reduced number and 

size of follicles (F) and increased number of trabeculae (T, arrow) in NM-R spleens. 

(D-E) Increase in normalized RNA expression levels of Col3a1 (D) and of Acta2 (E) 

in NM-R spleens compared to mouse. (F-G) H&E staining of mouse (F) and NM-R 

(G) spleen showing the presence of follicles (F) with a thinner marginal zone (MZ) in 

NM-R compared to mouse. (H-I) Iron staining of mouse (H) and NM-R (I) spleen 

showing stained macrophages (blue iron staining, arrowhead) close to the follicle in 

NM-R but not in mouse marginal zone. MZ: marginal zone (black or white line), RP: 

red pulp, marginal sinus (arrow in F-I). (J) Schematic representation of the mouse 

marginal zone and its cell types with their expression markers. (K-O) Normalized 

RNA expression levels of (K) Marco (MZ macrophage marker), (L) of Siglec1 (MZ 

metallophilic macrophage marker), (M) of Madcam1 (sinus lining cells marker), (N) of 

markers of MZ B cells (S1pr1, S1pr3) and (O) of chemokine-chemokine receptors 

involved in the lymphocytes migration into the white pulp (Cxcl13, Cxcr5 and Ccr7). 

One-way ANOVA with Tukey’s post-hoc test for multiple comparisons: p value 

*<0.05, **<0.01 and ****<0.0001. Data is based on RNAseq and bars represent mean 

± s.e.m. Scale bar = 100 μm (A-C) and 20 μm (F-I). See also S4 Fig. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.15.456351doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.15.456351
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

The white pulp consists of three sub-compartments: the periarteriolar lymphoid 

sheath (the T cell zone), the follicles and the marginal zone [24]. In NM-R spleens 

the follicles were very small and reduced in number compared to mouse spleen (Fig 

4A-4C) and were surrounded by a very thin marginal zone (Fig 4F and 4G). The 

marginal zone is where the blood is filtered from pathogens and is organized in 

layers with the marginal zone macrophages, the reticular fibroblasts and marginal 

zone B cells all facing the red pulp. The marginal sinus with its sinus lining 

endothelial cells and an inner ring of marginal zone metallophilic macrophages 

separate the marginal zone from the periarteriolar lymphoid sheath and follicles (Fig 

4J) [27]. Iron staining labelled red pulp macrophages in mice that are localized to the 

red pulp (Fig 4H). In NM-Rs iron-stained macrophages were found not only in the red 

pulp, but also close to the follicles (Fig 4I), suggesting a microarchitectural change of 

the marginal zone. These anatomical changes were reflected in our RNAseq data 

that showed decreased Marco expression (10-fold compared to mouse), a marker of 

marginal zone macrophages (Fig 4K), suggesting reduced abundance or loss of 

marginal zone macrophages. In contrast, there was a 3-fold increase in the 

expression of marginal zone metallophilic macrophage and sinus lining markers 

(Siglec1 and Madcam1, respectively) compared to mice (Fig 4L and 4M). The 

expression of marginal zone B cell receptors (S1pr1, S1pr3, Cxcr5) involved in 

marginal zone B cell migration to the follicles were also decreased probably due to 

the reduced abundance of marginal zone B-cells (Fig 4N and 4O). Taken together, 

the low number of marginal zone B cells and marginal zone macrophages could 

explain the altered morphology of the NM-R marginal zone. This microarchitectural 

change of the marginal zone might contribute to the impaired adaptive immunity, in 

particular the proper binding and clearance of blood-borne pathogens. In addition, we 

found that enlarged spleens of lsNM-Rs did not show signs of pathology associated 

splenomegaly (Fig 4C). 

 

Increased splenic granulocytes at the expense of the lymphoid compartment  

The formation and maintenance of follicles in lymphoid tissues such as the spleen 

are regulated by chemokines and their cognate receptors expressed by stromal cells 

to generate a microenvironment necessary for B and T cell homing to the follicles 

[28]. The expression levels of chemokine genes (Cxcl13 and Ccl19) and their 

respective receptors (Cxcr5 and Ccr7) were decreased in NM-R spleen compared to 

mice (Fig 4O, S1 Table). Using the T cell marker CD3e we could show that in NM-Rs 

T-cells were mainly present in the red pulp, but in much smaller numbers than in 

mice (Fig 5A and 5B). In both species Western blot analysis showed higher 
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expression of CD3e in thymus (site of T lymphopoiesis) compared to spleen, while 

no expression was found in the liver, a non-hematopoietic organ (Fig 5E). 

Furthermore, CD3e expression was lower in NM-R spleens regardless of their size 

compared to mouse (Fig 5F). Unfortunately, we could not confirm the decrease in B 

cells in NM-R spleens using immunostaining because of the lack of NM-R specific 

reagents, but H&E staining rarely showed the presence of follicles and germinal 

centres, both structures harbouring B cells. These data suggest that splenic adaptive 

immune responses may rely mainly on T cells in the NM-R. 

 

Fig. 5: The granulocyte population is increased in NM-R spleen. 

(A-B) Immunostaining of the splenic T-cells with CD3e antibody and of the splenic 

granulocytes with myeloperoxidase (MPO) antibody (C-D) in NM-R and mouse. (E) 

Protein expression of CD3e in various tissues of NM-R and mouse: Sp: spleen, Th: 

thymus, Li: liver. (F) CD3e (T-cells marker) protein expression in 3 mouse spleens, 

lsNM-Rs and ssNM-Rs. (G) MPO (granulocyte marker) protein expression in 3 

mouse spleens, lsNM-Rs and ssNM-Rs. (H) Increase in normalized RNA expression 

levels of granulocyte markers (Mpo, Ltf, Mmp9 and Cebpe) and (I) myeloid marker 

(Itgam) in NM-R spleens in comparison to mouse spleens.  β-actin expression was 

used as loading control in E, F and G. F: follicles, PALS: periarteriolar lymphoid 

sheath, RP: red pulp. Data in H and I are based on RNAseq and bars represent 

mean ± s.e.m. One-way ANOVA with Tukey’s post-hoc test for multiple comparisons: 

p value *<0.05, **<0.01, ***<0.001 and ****<0.0001. Scale bars = 50 µm. 

 

 

Our CIBERSORT and GSEA analyses also predicted increased myeloid populations 

in particular of granulocytes in NM-R compared to mouse (31.8 ± 4.6% vs 1.8 ± 0.5% 

total granulocytes including 29.2 ± 4.6% vs 1.4 ± 0.4% neutrophils, and 2.3 ± 1.3% vs 

0.4 ± 0.3% eosinophils in NM-R (n=6) vs mouse (n=3), respectively). This was 

supported by immunohistochemistry and Western blot analyses using an antibody 

directed against myeloperoxidase (MPO) a marker of pre-and mature granulocytes. 

We also found higher protein levels of MPO in the splenic red pulp of NM-Rs 

compared to mice (Fig 5C-5D and 5G). The expression levels of Mpo and 3 other 

markers of granulocytes, Ltf (granules of neutrophil granulocytes), Mmp9 and Cebpe 

(major transcription factor of neutrophil lineage) were increased in NM-R spleens, 

demonstrating that NM-Rs have more splenic granulocytes than mice independent of 

size (Fig 5H). Of note, the RNA level of the common marker of myeloid cells, Itgam 

(coding for CD11b) was also increased (Fig 5I). In summary, our data suggest that 
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NM-Rs have enhanced antimicrobial innate immunity, but their adaptive immunity 

might be less efficient compared to mice. 

 

 

 

Lymphocytes locate to peripheral blood and lymphoid tissues in NM-Rs.  

Gene expression profiling and histological analysis consistently showed that NM-Rs 

have almost 50% fewer splenic resident lymphocytes compared to other rodents. 

This unique immunological feature might have major consequences for adaptive 

immunity unless compensatory lymphopoiesis occurs in the bone marrow or other 

secondary lymphoid organs. Lymphocytes were found in bone marrow cytospin and 

in peripheral blood, but at much lower frequencies than in mice (Fig 2). In contrast to 

other bone marrow hematopoietic progenitors that undergo several differentiation 

stages before egression and maturation, T-lymphocyte progenitors migrate to the 

thymus to differentiate into naïve T-cells that can migrate to the blood and secondary 

lymphoid organs. Intriguingly, in young adult NM-Rs (1 to 3 years old) the thoracic 

thymus was often embedded in brown adipose tissue (S5A and S5B bottom Fig) and 

the thoracic thymus/body mass ratio was considerably lower in NM-Rs compared to 

young C57BL/6N mice that do not yet show thymus involution (S5B top Fig). 

Histology of the thoracic thymus revealed a clear cortex and medulla (S5C Fig) in 

which the naïve T lymphocyte marker CD3e was highly expressed in both mice and 

NM-Rs (S5D Fig). The NM-R thoracic thymus contains CD3e+ T cells, but its small 

size prompted us to search for other sites of lymphopoiesis. 

Lymphocytes (T and B cells) are also found in lymph nodes. We next analysed NM-R 

axillary lymph nodes that are 2-4 millimetres in length, similar to those of mice (S6A 

top panel Fig). Lymph nodes are structurally organized in B and T cell areas, a 

process regulated by cytokine signalling (S6A, bottom panel Fig). Histologically, B 

cell and T cell areas were easily identified in axillary and mesenteric lymph nodes of 

NM-Rs and B cell areas possessed germinal centres (S6B Fig). T cell areas showed 

high expression of CD3e (S6C Fig).  

Since half of the lymphocytes are located in the mucosa-associated lymphoid tissue 

in mice, we next focused on lymphoid nodules of the small intestine including among 

others Peyer’s patches [29]. Peyer’s patches are visible to the naked eye in mouse 

small intestine, but were rarely apparent in NM-R gut (S6D and S6E Fig). In addition, 

the small intestine of NM-Rs was only a third of the length of that in the mouse, 

however the length of the colon was similar (S6D and S6F-S6G Fig). Histological 

analysis of the NM-R small intestine showed lymphoid nodules with a morphology 
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atypical for Peyer’s patches, but these follicles displayed B cell areas with germinal 

centres containing apoptotic cells and T cell areas expressing CD3e in both NM-Rs 

and mice (S6H and S6I Fig). In general, we found that NM-Rs and mice have similar 

lymph nodes with well-structured B and T cell areas, but unlike in mice the NM-R 

small intestine did not appear to have typical Peyer’s patches, even in sick animals 

(S6E Fig). 

 

Increased extramedullary erythropoiesis is likely not a cause of splenomegaly 

The unique structural features of the NM-R spleen could not account for the 

hyperplasic phenotype of the spleen found in the lsNM-R cohort. In mice 

splenomegaly can be observed under erythropoietic stress such as hypoxia [30,31]. 

Since hypoxia is a normal environmental condition for NM-Rs we hypothesized that 

extramedullary erythropoiesis might occur naturally in NM-R spleen, but more 

actively in lsNM-Rs spleens. RNAseq analysis and GSEA highlighted a significant 

enrichment in erythroid gene subsets (S7A and S7B Fig), including markers of early 

erythroid progenitors such as Tal1 (erythroid differentiation factor), Tfrc (coding for 

CD71), Hoxa9 (a marker of pro-erythroblast and basophilic erythroblast) and markers 

of erythroid precursor proliferation or survival such as EpoR (the Epo receptor), 

Gata1 and Bcl2l1 (coding for Bcl-XL) [32–35] (Fig 6A). Thus, early erythroid 

progenitors appeared more abundant in NM-R spleen compared to mice, regardless 

of spleen size. Histological analysis revealed erythroid cells in mouse and NM-R 

spleens often organized in erythroid blood islands (Fig 6B). Immature erythrocytes 

(enucleated red blood cells also called orthochromatic erythroblasts, see the 

schematic representation of the erythroid lineage in Fig 6C, top panel) were present 

in the peripheral blood of NM-Rs (Fig 6C, bottom panel), but not in healthy mice. In 

addition, mature erythrocytes (RBC) were larger in NM-Rs as indicated by a higher 

mean corpuscular volume (MCV), but contained less haemoglobin (HGB) and were 

less abundant in peripheral blood compared to mice (Fig 6D). However, the 

haematocrit (HCT) was not different between mouse and NM-R (Fig 6D). Together 

our results showed that extramedullary erythropoiesis occurs in the spleen of both 

ssNM-Rs and lsNM-Rs, but cannot account for splenomegaly in lsNM-Rs.  

 

Fig 6: Extramedullary erythropoiesis and iron homeostasis do not explain the 

hyperplasic spleen of lsNM-Rs. 

(A) Normalized RNA expression levels of early erythroid progenitors (Tal1, Tfrc, 

Hoxa9) and of erythroid precursor proliferation and survival (EpoR, Gata1, Bcl2l1) 

markers in mice and NM-Rs spleens. (B) Representative micrographs of H&E 
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staining of erythroid cells (arrowheads) in the spleen of mouse, ssNM-R and lsNM-R. 

(C) Schematic representation of late erythroid lineage (top panel). Representative 

May-Grünwald staining of orthochromatic erythroblast (arrow) in peripheral blood of 

NM-R, howell-jolly bodies in reticulocytes (arrowhead) in bottom panel. (D) 

Peripheral blood erythroid parameters in mice (n = 8), ssNM-R (n = 13) and lsNM-R 

(n = 13). MCV: mean corpuscular volume, RBC: red blood cells, HGB: haemoglobin, 

HCT: haematocrit. (E) Perl’s Prussian blue staining of ferric iron (arrowhead) in the 

spleen of NM-Rs and mice. Macrophages close to follicles (F) and in red pulp (RP) 

contain ferric ion in NM-Rs while in mice only RPM contained ferric ion. Marginal 

zone: asterisk. (F) Heatmap of genes associated with iron and haem homeostasis in 

NM-R and mouse spleen. Samples are hierarchically clustered based on Pearson 

correlation. One-way ANOVA with Tukey’s post-hoc test for multiple comparisons (A) 

and unpaired t test (D): p value *<0.05, **<0.01, ***<0.001 and ****<0.0001. 

Transcriptomic data is based on RNAseq, MM: mouse (Mus musculus). Data 

represent mean ± s.e.m, scale bar = 10 μm (B, C), 20 μm (E bottom panels) and 40 

μm (E top panels). See also S7 Fig. 

 

Iron homeostasis is not a cause of splenomegaly in lsNM-R 

Thus, NM-Rs probably adapted erythropoiesis to their unusual environmental 

conditions. The expression levels of several known hypoxia-induced genes (EpoR, 

Tfrc, Tfr2, Furin) were increased compared to the mouse (Fig 6A, S7A Fig, S1 

Table), but GSEA analysis did not highlight significant changes in hypoxia-regulated 

gene subsets (S2 and S3 Tables). In humans and mice erythropoiesis is not only 

regulated by oxygen availability, but also depends on intracellular iron levels. Indeed, 

genetic defects in iron or haemoglobin metabolism can lead to splenomegaly in mice 

[36,37]. Iron staining was found as expected in red pulp macrophages, cells 

responsible for efficient phagocytosis of red blood cells and storage of iron [38]. The 

overall iron accumulation was similar in NM-R spleens independent of their size and 

compared to mouse (Fig 6E). Intriguingly, we found that the overall GSEA red pup 

macrophage gene subset was significantly increased in NM-R compared to the 

mouse (S7C Fig, S4 Table), but RNA levels of SpiC, Adgre1 (coding for F4/80) and 

Cd68, classical phenotypic markers of mouse red pulp macrophages [39], were 

strongly decreased in both small and large NM-R spleens (S7D Fig). Lastly our 

GSEA analyses showed no significant changes in gene subsets implicated in iron 

and haem homeostasis (Fig 6F, S1-S3 Tables). As a consequence, our data suggest 

that naturally occurring splenomegaly was not due to defective iron homeostasis. 
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Extramedullary megakaryopoiesis does not account for splenomegaly 

The erythroid lineage shares a common progenitor with megakaryocytes, the so-

called megakaryocyte-erythroid progenitors (MEP) which give rise to erythroid and 

megakaryocyte lineages in bone marrow (S8A Fig). We hypothesized that 

extramedullary megakaryopoiesis might also occur in the NM-R spleen. RNAseq 

analysis indicated that expression of many megakaryocyte and platelet genes are 

upregulated in NM-Rs compared to mice independent of spleen size (S8B Fig). 

Megakaryocyte differentiation occurs in several steps from MEP to activated 

megakaryocytes that release platelets into the peripheral blood [40] (S8A Fig). The 

RNA levels of marker genes of MEP and early megakaryocytes (Cd34, Gfi1b, Fli1, 

Itga2b), terminal differentiation genes (Nfe2, Tubb1) and platelets (Gp1bb, Itgb3, 

Cd63) were all elevated in NM-R spleens compared to that of mice (S8B Fig). 

Histological analysis also showed a significant increase in the number of 

megakaryocytes per unit area in lsNM-Rs compared to the rat spleen and a slight 

increase in megakaryocyte number in NM-R (combined) compared to those of the 

mouse and rat (S8C and S8D Fig). Surprisingly, blood counts indicated that platelets 

were less abundant in the peripheral blood of all NM-R cohorts compared to mice 

(S8E Fig), but NM-R platelet size was larger as shown by mean platelet volume (S8F 

Fig). Blood smear analysis showed the presence of immature and mature platelets in 

NM-R peripheral blood, whereas only mature platelets were observed in mice (S8G 

Fig). Intriguingly, the expression levels of regulatory genes of megakaryocyte 

terminal differentiation (Ccl5, Il1a and Igf1) were reduced compared to the mouse 

(S8H Fig). Taken together our data suggest that megakaryocytic differentiation 

occurs efficiently in NM-Rs, but the terminal differentiation step(s) might be regulated 

differently. The presence of immature platelets in peripheral blood of NM-Rs might 

reflect a thrombocytopenia-like phenotype as observed in thrombocytopenia or 

inherited diseases in humans [41].  

 

Hyperplasic spleens are associated with higher rank 

We detected a small set of differentially expressed genes between NM-Rs with large 

and small spleens (41 upregulated genes and 16 downregulated) (Fig 3B, S9 Fig). 

Prediction of immune cell distribution using CIBERSORT analysis showed a specific 

difference in the apparent incidence of the M0 macrophage subtype (2.8 ± 1.5% in 

ssNM-R versus 10.4 ± 3.4 % in lsNM-R) (Fig 7A). Furthermore, GSEA highlighted 

significant increases in hallmark gene subsets such as inflammatory response, 

granulocytes, naïve T- and B-cells pathways and the Ltf-high-neutrophil subset in 

lsNM-R compared to ssNM-R (Fig 7B and 7C). These findings suggested that NM-Rs 
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with larger spleens are better equipped for defence against pathogens. Indeed, 

larger spleen size might confer a survival advantage for NM-Rs. NM-Rs are eusocial 

mammals with a structural hierarchy with the queen and her consorts occupying the 

highest rank [12]. We modified a ranking index of animals in a colony with the highest 

ranking set to 1 for the queen and the lowest to 0 for subordinate [13,42]. The 

ranking index of 20 healthy NM-Rs (ssNM-R, lsNM-R) used in this study had been 

determined (Fig 7D). Strikingly most of the animals (62.5%) with a small spleen were 

found to have the lowest rank (Fig. 7D). In contrast, many more of the animals with 

large spleens belonged to the higher ranks (Fig 7D). We found a significant positive 

correlation between ranking index and spleen mass (%BM) when combining all 

healthy cohorts (ssNM-R, lsNM-R) (Fig 7E). In contrast, the liver mass (%BM) was 

poorly correlated with the ranking index in both cohorts (Fig 7F). There was a 

significant correlation between rank and BM (Fig 7G), but the age of the animals was 

a poor predictor of ranking or BM (Fig 7H and 7I). Our data identify rank as being 

predictive of spleen size in healthy animals with large spleens conferring an 

immunological advantage over lower ranked animals. 

 

Fig 7: Hyperplasic spleens in lsNM-R are associated with higher rank. 

(A) Relative fraction of immune cells predicted by CIBERSORT in ssNM-R and lsNM-

R spleens (n = 3 per cohort). NK: natural killer cell. (B) Heatmap representation of 

leading edge inflammatory response genes for ssNM-R and lsNM-R spleens 

identified by hallmark GSEA analysis. (C) GSEA of transcriptomic data from ssNM-R 

and lsNM-R spleens (n = 3 per cohort). NES, normalized enrichment score; pval, p 

value; padj, adjusted p value. Significantly enriched pathways using NM-R cell type 

signatures from Hilton and colleagues (“H”) and Emmrich and colleagues (“E”) 

[16,43] and established hallmark pathways (“HM”). GC: granulocytes. (D) Percentage 

of animal per rank and per cohort. Note that only 25 % of the lsNM-R has the lowest 

ranking index (rank 5) compared to more than 60% in ssNM-R. (E-F) Correlation 

between rank of NM-R in their colony (ranking index) and either spleen size (%BM) 

(E), liver size (%BM) (F), body mass (BM) (G) or age (H) showing that the ranking 

index of NM-Rs positively correlated with their spleen size and BM but not with their 

liver size and age. Body mass and age of NM-Rs poorly correlated (I). Simple linear 

regression analysis was used to test goodness of fit: the calculated r square (r2) and 

p value are given for each line. NM-Rs n = 20 including n = 8 ssNM-R, n = 12 lsNM-

R. See also S9 Fig. 

Discussion 
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An enlarged spleen may indicate that the immune system is reacting to infection in 

rodents [17,18]. In our survey of the immune system of NM-Rs we found an unusual 

variation in spleen size in apparently healthy individuals. We found that healthy 

animals with enlarged spleens showed similar white blood cell composition and 

splenic structural features to animals with small spleens. In contrast, NM-Rs suffering 

from wound infection displayed enlarged spleens with accompanying signs of 

immune activation like increased blood monocytes and increased numbers of 

immature neutrophils (Fig 2G and 2I). Interestingly, the spleens of sick animals were 

on average larger than those of lsNM-Rs, but this was not statistically different (Fig 

1D). We could show that in healthy animals both small and enlarged spleens were 

associated with enhanced erythropoiesis, megakaryopoiesis, and with myeloid 

hyperplasia when compared to mice (Fig 5-6, S8 Fig). However, we detected 

significant molecular differences between small and enlarged spleens of healthy NM-

Rs, with large spleens harbouring larger numbers of an LPS-responsive granulocyte 

population (also called Ltf-high-neutrophil), recently described in NM-Rs [16]. 

Intriguingly, the molecular profile of larger spleens suggested a pre-activated state 

that might prepare the animal better for fighting infection. One unusual feature of NM-

R colonies is that they display a hierarchical structure with the highest ranked 

members most likely to be or become breeders [12]. Indeed, it has also been shown 

that higher ranked NM-Rs such as breeders show longer lifespans compared to 

lower ranked individuals [4] as well as better survival rates following viral infection 

compared to non-breeders [14] (V. B unpublished data). Furthermore, higher-ranked 

individuals are often tasked with colony defence, hence these individuals have a 

higher risk of coming into contact with intruders which may carry pathogens [12]. 

Body mass is positively correlated with rank in NM-Rs [13,42], and here we extend 

this finding by showing that spleen size also positively correlates with the rank of 

animals. Interestingly, the size of other organs like the liver showed no correlation 

with the animal’s rank. Our data suggest that when an animal attains a high rank 

within the colony this is associated with a change in spleen size and its molecular 

make-up. We propose that NM-Rs with enlarged spleens may have a survival 

advantage over lower ranked animals. The immunological repertoire of animals with 

large spleens may help them to better fight infection, or could even confer cancer 

resistance. Thus, we have shown a remarkable plasticity in the immune system of 

NM-Rs that may be regulated through social interaction. When members of the 

colony get sick social distancing as practised by some species [44] may not be 

feasible. Thus, tuning of immune competence in higher ranked NM-Rs may be a 
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novel strategy in the animal kingdom to deal with the challenge of infection in a tightly 

knit colony. The factors that drive spleen plasticity remain to be determined.  

We also compared the anatomical and molecular properties of the NM-R spleen to 

those of other rodents including mice, rats and two other social members of the 

Bathyergidae family to which NM-Rs belong [26]. Our analysis showed that the NM-R 

spleen has several unique features compared to other rodents. In agreement with 

recent studies we showed a dramatic reduction in B lymphoid lineage in the spleen 

resulting in a decreased white pulp/red pulp ratio [16,45]. Splenic B lymphocyte 

content was low in all NM-Rs used in this study, including sick NM-Rs. Furthermore, 

we found that NM-R spleens exhibit a unique microarchitecture of the marginal zone 

(reduced marginal zone B cells and marginal zone macrophage populations) which 

might indicate that the clearance of blood-borne pathogens may be altered compared 

to other species. This observation is consistent with data from the literature indicating 

that NM-Rs readily succumb to herpes or coronavirus virus infections [14,15]. We 

also show that lymphopoiesis in NM-Rs is maintained since lymphocytes were found 

in peripheral blood, lymph nodes, mucosa-associated lymphoid tissues in the gut and 

the thymus. The thoracic thymus of NM-Rs was much smaller than those of mice at 

different ages. However, CD3+ T cells were found in all lymphoid organs, suggesting 

that T cell lymphopoiesis takes place in the thoracic thymus. Cervical thymus has 

been described in NM-Rs and other mammals, including mice and marsupials 

[15,46], where T cell lymphopoeisis can occur, however we did not analyse cervical 

thymus in the NM-Rs examined here. It is well known that intrinsic and extrinsic 

factors such as cytokines and chemokines are involved in T and B cell migration and 

homing [28,47]. Our present data show that RNA levels of such factors (S1pr1, 

S1pr3, Cxcl13, Cxcr5, Ccr7, Lta, Nkx2-3 and Ctsb) were reduced in NM-R spleens 

(S1 Table). The mechanisms of tissue homing specificity observed in NM-R and the 

factors involved in this process remain to be determined. 

 

We did not find reports describing viral or bacterial infections of NM-Rs in the wild 

[48–51], unlike their close relatives of the genus Cryptomys and Bathyergus that 

harbour Bartonella [52]. However, in captivity NM-Rs have been reported to be 

susceptible to coronavirus infection [14] and in our own laboratory we lost more than 

55% of 2 colony members (in colony 1: 20 out of 35 NM-Rs and in colony 2: 5 out of 

8 NM-Rs) within a few months because of an unknown viral infection (data not 

shown). Interestingly, in both laboratories after these mass die-off events almost all 

queens survived. The relative susceptibility of NM-Rs to viral infection may be due to 

a narrower immune cell spectrum available to eliminate pathogens with reductions in 
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B cell lineages, dendritic cells, marginal zone macrophages and canonical NK [16] 

(and our present work). This is in contrast to observations of viral tolerance in some 

long-lived bat species [53]. However, we found among NM-R splenic immune cell 

repertoire interesting cells such as gamma-Delta T cells, a special T lymphocyte 

subset known to be at the border between evolutionary primitive innate system and 

the adaptive immune system (S3E Fig). Gamma-delta T cells play a role in the “first 

line of immune defence” against viruses, bacteria and fungi [54,55]. The presence of 

more neutrophils and an LPS-responsive granulocyte population also support the 

idea of enhanced anti-bacterial defences in NM-Rs. Intriguingly, in sick NM-Rs 

despite increased numbers of immature neutrophils in peripheral blood indicating 

emergency myelopoiesis in response to injury [56], the animals did not recover, 

some even developed abscesses, suggesting increased vulnerability to secondary 

infection probably partially due to lymphopenia. 

We also show that adult hematopoiesis takes place in NM-R spleen in addition to 

adult bone marrow hematopoiesis under normal physiological conditions, and 

regardless of spleen size. In rodents extramedullary erythropoiesis is observed in 

response to hypoxia [30,57]. Thus, the active hematopoiesis in the spleen might 

reflect an adaptation of the NM-R to compensate for hypoxic environments. 

Surprisingly, despite the increase in splenic megakaryopoiesis a thrombocytopenia-

like phenotype is observed in the peripheral blood of NM-Rs with low platelet counts 

and the presence of immature platelets. This could also be due to the hypoxic habitat 

of NM-Rs since in mice hypoxia induces thrombocytopenia [58]. 

 

Interestingly, the NM-R immune system displays more similarities to humans than to 

that of other rodents with a larger myeloid compartment in peripheral blood and 

spleen and insignificant splenic lymphopoiesis with gamma-delta T-cells. Indeed, 

NM-R immature (stab-shaped neutrophils) and mature neutrophils found in bone 

marrow and in peripheral blood resemble those of humans [59]. Food, body size and 

physiology are factors known to influence spleen development [60]. We also found 

that thoracic thymus development was quite distinct in the NM-R compared to 

mouse. Hormonal and endocrine status can influence the development of the 

immune system [61] and it should be noted in this context that all NM-Rs used in this 

study were non-breeders and therefore reproductively suppressed [42]. We, like 

others have found low RNA levels of NK markers (Ncr1, Nkg7 and Gzma). 

Furthermore, Adgre1 expression (coding for F4/80), a known rapidly-evolving gene in 

monocytic/macrophage lineages [62] and a marker of liver resident-macrophages 

and red pulp macrophages in mice, was almost absent in the spleen and liver of NM-
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Rs (S7D Fig and data not shown). This suggested that evolutionary pressure 

selected against the expression of such genes in the NM-R. Indeed, differences in 

phenotypic marker expression of immune cells between NM-R and mice should be 

treated with caution. Bone marrow macrophages of NM-R express the NK1.1 

receptor of NK cells and are activated by NK1-1 antibodies in vitro [63]. We found 

low RNA levels of mouse classical red pulp macrophages markers (F4/80, SpiC, 

Cd68) (S7D Fig), however, GSEA and histological analyses showed that 

macrophages are present in the red pulp and they store iron (Fig 4E and 6I, S4 

Table). Whether these macrophages resemble mouse red pulp macrophages 

remains to be determined. Interestingly, development and survival factors 

characteristic of the murine red pulp macrophages (Irf8, Irf4, Bach1) [39] were 

inversely expressed in NM-Rs compared to mice (S7D Fig, S1 Table). Unfortunately, 

we could not validate our data obtained on B cells, dendrite cells and macrophages 

due to a lack of specific reagents recognizing these immune cells in the NM-R. 

 

Age-related changes of the immune system in humans and mice are thought to be 

caused by reduced thymus activity and chronic low-grade inflammation caused by 

increased activity of the innate immune system [64]. Interestingly, the composition of 

the NM-R spleen in healthy young animals is reminiscent of that of aged mice, 

including reduced abundance marginal zone macrophages [65]. It remains to be 

seen whether the NM-R immune system is better equipped to prevent oncogenic 

events. Our observations of molecular and anatomical plasticity of the spleen in 

healthy higher ranked animals raise the intriguing possibility that social success in 

this species may recruit the immune system to promote longevity.  
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Materials and methods 

 

Animals 

Healthy naked mole-rats (aged between 1 and 5 years, e.g., adolescent and young 

adults) and sick NM-Rs (aged between 1,7 and 7 years) were housed at the Max-

Delbrück Center (MDC) in Berlin, Germany, in cages connected by tunnels, which 

were contained within a humidified incubator (50-60% humidity, 28-30°C), and 

heated cables ran under at least one cage per colony to allow for behavioral 

thermoregulation. Food (sweet potato, banana, apple, and carrot) was available ad 

libitum [66]. NM-Rs were sacrificed by decapitation. 

Adult non-reproductive Natal mole-rats (Cryptomys hottentotus natalensis) and 

Highveld mole-rats (Cryptomys hottentotus pretoriae) were housed at the 

Department of Zoology and Entomology, University of Pretoria, South Africa in 

temperature-controlled rooms set at 25oC and a photoperiod of 12L:12D. The 

humidity in the rooms was around 40-50%. Mole-rats were fed on chopped 

vegetables and fruit daily and cleaned weekly with fresh wood shavings and paper 

towelling. All animals were humanly euthanized by decapitation under EC014-17. 

Mice (aged between 4 weeks to 5 months, e.g., young and adults) were fed ad 

libitum with standard diet and water on a 12-hr light-dark cycle at 22°C ± 2°C under 

55% ± 10% humidity. Mice were housed in a pathogen-free facility at the MDC, 

Berlin, Germany. All procedures and animals experiments were conducted in 

compliance with protocols approved by the institutional Animal Care and Use 

Committee Landesamt für Gesundheit und Soziales Berlin (LAGeSo). Mice were 

sacrificed by cervical dislocation. All efforts were made to minimize animal suffering. 

 

Blood count, blood smear and bone marrow cell cytospin staining 

Blood was collected after decapitation of NM-Rs directly into EDTA-containing tubes. 

Blood from mice was drawn via cardiac puncture and immediately transferred into 

EDTA-containing tubes. Blood cell counts were measured with an automated 

veterinary hematological counter Scil Vet abc (SCIL GmbH, Viernheim, Germany) or 

IDEXX ProCyte Dx hematology analyzer (IDEXX, Germany) with software optimized 

for mouse blood parameters. May-Grünwald staining of blood smears was performed 

according to the manufacturer protocol (Sigma, Germany) and the cell type counts of 

the white blood cells were determined using a Leica DM 5000 B with a x100 oil 

objective. At least 200 white blood cells were analysed per animal. 

For performing cytospin and determining femur cellularity, bone marrow cells were 

flushed out from the femur, mechanically dissociated and counted using a TC20 
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automated cell counter (BioRad). For cytospin, 100.000 cells were centrifuged onto 

slides using a centrifuge slide stainer (Wescor) and stained manually with May-

Grünwald staining.  

 

H&E, Iron staining and immunostaining 

Spleen, thymus, lymph nodes and small intestine Swiss rolls were rapidly collected, 

fixed overnight in 4% paraformaldehyde, embedded in paraffin, sectioned at 4 μm, 

and stained with hematoxylin & eosin histological stain according to the standard 

protocol. The histological detection of ferric iron in the spleen was performed using 

an iron staining kit (ab 150674, Abcam).  

For immunostaining, sections were deparaffinized and submitted to antigen retrieval 

(Citrate buffer pH 6) using a microwave. After 2 washes with TBS-T (TBS with 0.05% 

Tween 20), sections were blocked with TBS-T + 5% goat serum for 30 min at room 

temperature, and then incubated with rabbit primary antibodies overnight at 4°C. 

Primary antibodies were diluted in TBS-T + 1% goat serum. Sections were then 

washed 3 times with TBS-T, subsequently incubated with goat anti-rabbit-HRP (111-

035-003, Jackson Immuno-research) for 1 h at room temperature. The rabbit primary 

antibodies CD3e (1:200, ab 5690, Abcam) and MPO (1:500, A0398, Dako) were 

used. Dako-EnVision+System-HRP (K4002, Dako) was used for immunodetection. 

Hematoxylin counter staining was performed before mounting. All images were 

acquired using a Leica DM 5000 B. To quantify the number of splenic 

megakaryocytes, four randomly chosen fields in red pulp were photographed at 40X 

magnification for each animal and analyzed using Item 5 software program (Version 

5). 

 

RNA preparation and RNA sequencing 

Total RNA was isolated from three biological replicates per species and per group 

using RNeasy extraction kit (Qiagen). RNA-seq libraries were prepared using the 

Truseq Stranded total RNA kit (Illumina) and sequenced on the Illumina 

HiSeq2500/4000 platform according to the manufacturer’s instruction at Macrogen 

(Macrogen, Korea). Reads were aligned to mm9 and hetGla2/hetGla Female_1.0, 

respectively, using STAR aligner version 2.5.3a. The aligned reads were then 

transformed to raw count tables using htseq-count version 0.10.0. The raw and 

normalized data are deposited at Gene Expression Omnibus (GEO, accession 

number GSE179350). 
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Transcriptomic analysis 

Pre-processed RNA-seq data were imported in R (v3.5.1) for downstream analysis. 

NM-R genes were annotated to Mus musculus homolog associated gene names 

using the biomaRt package (v2.38.0) to allow merging of the mouse and NM-R data 

sets. Genes were pre-filtered to remove those transcripts not corresponding to gene 

symbols or not reaching read sums higher than 10 across all samples. The DESeq2 

package (v1.22.2) served for normalization and differential expression analysis. 

Differentially expressed genes were called using a threshold of an adjusted p value 

(padj) < 0.05 after multiple-testing correction (Benjamini-Hochberg). For global 

expression analysis principal component analysis was done using pcaExplorer 

(v2.8.1) based on the top 3000 variable genes and a global distance matrix was 

generated using the Euclidean distance. Expression of gene sets was visualized 

using the pheatmap package (v1.0.12), gene wise scaling and Pearson correlation 

as distance measure for hierarchical clustering where applicable. To perform gene 

set enrichment analysis the fgsea package (v.1.8) was used and pre-built, 

established gene sets were applied (http://www.go2msig.org/cgi-bin/prebuilt.cgi) or 

custom gene sets were generated from published data derived from NM-R 

transcriptomes [16,43]. To assess the cellular composition within the spleens based 

on the bulk transcripome data, CIBERSORT analysis was performed using the web 

interface as described by Newman and colleagues [22]. For this, mouse immune 

gene expression signatures were used as presented by Chen and colleagues [23]. 

 

Immunoblotting 

Tissues were lysed with 8 M urea and protein analyzed by SDS/PAGE/protein 

blotting using rabbit antibody against CD3e (ab 5690, Abcam), rabbit antibody 

against anti-human MPO (A0398, Dako), mouse β-actin (A1978, Sigma), and 

horseradish peroxidase-conjugated secondary antibodies (111-035-003, Jackson 

Immuno-research), and chemiluminescence detection (Thermo Fischer). 

 

Hierarchy assessment and ranking index 

Methods as described in [13] and modified from [42]. In brief, two NM-Rs were 

allowed to approach each other head on in an artificial plastic tunnel. During these 

interactions the more dominant individual will reliably climb over the subordinate 

individual. Using a single elimination strategy, with a minimum of three trials for each 

pseudo-randomly selected pairing of NM-Rs from a single colony, a ranking index 

(R.I.) was calculated for each colony. R.I = (number of wins) divided by (the total 

number of behavioural trials). R.I. values were normalized to the maximum value for 
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each colony and the following rankings were assigned based on R.I.: rank 1, R.I. > 

0.8, rank 2, R.I.  > 0.6, rank 3, R.I. > 0.4, rank 4, R.I. > 0.2, rank 5, R.I. < 0.2. The 

queen was assigned a rank of 1. 

 

Statistical analysis 

All data are expressed as mean ± s.e.m. Data were first tested for normal 

distribution. For CIBERSORT analysis variation is reported as ± standard deviation. 

Statistical tests performed can be found in the figure legends. Statistical analyses 

were carried out using (Prism 8, GraphPad Software) unless otherwise stated. P 

value<0.05 was considered to be statistically significant. 
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Supplementary Figure captions 

 

S1 Fig: Related to Fig.1. Variable spleen size in NM-Rs. 

(A-B) Frequency distribution of spleen mass (A) and liver mass (B) in NM-Rs and 

mice. Red arrow shows a dip around 0.25% BM. (C-D) Age effect on spleen size in 

NM-R (C) and in mouse (D): n = 32 NM-Rs (combined ssNM-R and lsNM-R) and n = 

40 mice. (E-F) Age effect on liver size in NM-R (E) and in mouse (F): n = 28 NM-Rs 

(combined ssNM-R and lsNM-R) and n = 40 mice; BM: body mass. Spleen mass and 

liver mass were expressed as %BM. (G) Sex effect on spleen mass in NM-R and in 

mouse; NM-Rs: n = 13 males (M) and n = 14 females (F); mice n = 22 males (M) and 

n = 18 females (F). (H) Influence of the colony on spleen mass: NM-Rs from 3 

colonies were used in this part of the study (n = 11 for A, n = 9 for B and n = 7 for C). 

Linear regression analysis: calculated r square (r2) is given for each line. Graphs 

represent mean ± s.e.m. Unpaired t test: p value **<0.01. 

 

S2 Fig: Related to Fig. 2. Peripheral blood count of NM-Rs and mice using a 

blood cell counter. 

(A) White blood cell (WBC) count and percentage of (B) lymphocytes, (C) 

neutrophils, (D) monocytes and (E) eosinophils in the peripheral blood of NM-R and 

mouse measured using a blood cell counter: n = 11 ssNM-R, n= 12 lsNM-R, n = 23 

NM-R (combined ssNM-R and lsNM-R) and n = 7 mice except in (E) n = 11 ssNM-R, 

n = 10 lsNM-R, n = 21 NM-R (combined ssNM-R and lsNM-R) and n = 5 mice. 

Graphs represent mean ± s.e.m. Unpaired t test: p value *<0.05, **<0.01, ***<0.001 

and ****<0.0001. 

 

S3 Fig: Related to Fig. 3. Transcriptomic analysis of NM-R and mouse spleen. 

(A) Principal component analysis (PCA) based on the top 3000 most variably 

expressed genes. Principal component (PC): 1 versus 2 (left panel) and 1 versus 3 

(right panel) are displayed. (B) Venn diagram of differentially regulated genes in the 

spleen of ssNM-R, lsNM-R compared to mouse or to each other. (C) Heatmap of 

peripheral BC1/BC2 gene sets associated with B cells from [43] (left panel) and of 

lymphoid gene sets from [16] (right panel) for the spleen of mouse, ssNM-R and 

lsNM-R. (D) Heatmap of peripheral granulocyte genes from [43] for the spleen of 

mouse, ssNM-R and lsNM-R. (E) CIBERSORT prediction of fraction of T cell types, 

macrophage types (M1, M2 and M0) and other cell types (DC: dendritic cells, mast 

cells and NK: natural killer cells) found in the spleen of ssNM-R, lsNM-R in 
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comparison to mouse. n = 3 per group. Data is based on RNAseq and bars represent 

fraction in %. MM: mouse (Mus musculus). 

 

S4 Fig: Related to Fig. 4. Spleen morphology of rat, Natal and Highveld mole-

rats. 

(A) Phylogenic tree of known African mole-rats modified from [26]. (B-D) H&E 

staining of the spleen of rat (B), Natal (C) and Highveld (D) mole-rats showing the 

presence of follicles (F) and a classical red pulp/white pulp ratio for rodents. MZ: 

marginal zone, RP: red pulp, T: trabeculae. Scale bar = 100 µm. 

 

S5 Fig: NM-Rs have small thoracic thymus. 

 (A) Representative images of NM-R and mouse thoracic thymus, and (B) their size 

comparison across mice of different ages and NM-R (top panel): mice n = 15 (4-6 

weeks), n = 8 (>8 weeks), n = 4 (>20 weeks) and n = 7 NM-R. Bottom panel: in NM-

R the thoracic thymus (white dashed line) is small, and often surrounded by BAT but 

not in mouse. (C) H&E staining of the thoracic thymus of NM-R and mouse. (D) 

Immunostaining of the thymic T-cells with CD3e antibody in NM-R and mouse. Data 

represent mean ± s.e.m. Unpaired t test: p value ***<0.001 and ****<0.0001. Scale 

bars = 100 µm (C), 30 µm (D). T: thoracic thymus, H: heart, BAT: brown adipose 

tissue, L: lung, c: thymic cortex, m: thymic medulla. BM: body mass in g, thoracic 

thymus weight in mg. 

 

S6 Fig: NM-R lymphoid nodules show typical B and T cell areas. 

 (A) Representative image of axillary lymph node (aLN) from NM-R and mouse (top 

panel) and schematic representation of a lymph node showing the B cells follicles, 

the T-cell zone, high endothelial venules (HEV) and the migration of lymphocytes 

(dashed lines) directed by cytokines (bottom panel). (B) H&E staining of aLN and 

mesenteric lymph node (mesLN) of NM-R and mouse. (C) Immunostaining of T cells 

in LN with CD3e antibody (brown labelled-cells) in NM-R and mouse. (D) 

Representative images of the colon and small intestine (SI) of NM-R and mouse 

showing Peyer’s patches (arrows and inset) in the mouse SI but not in the NM-R SI. 

(E) Number of Peyer’s patches/cm of small intestine in NM-Rs (n= 8), siNM-Rs (n = 

6) and mice (n= 17). (F-G) Length of small intestine (F) and colon (G) in NM-Rs (n = 

9) and mice (n = 17). (H) H&E staining of small intestine lymphoid nodule from NM-R 

and mouse. (I) Immunostaining of T cells with CD3e antibody (brown labelled cells) 

in the small intestine lymphoid nodule from NM-R and mouse. Note that CD3e+ T 

cells are found in T cell and B cell zones of aLN, mesLN and small intestine lymphoid 
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nodule from NM-R and mouse (C and I). Follicles: F, germinal center (GC or arrows), 

P: paracortex. Graphs represent mean ± s.e.m. One-way ANOVA with Tukey’s post-

hoc test for multiple comparisons in E; Unpaired t test in F and G: p value ***<0.001 

and ****<0.0001. Scale bars = 5 mm (A), 50 µm (B, H and I), 30 µm (C) and 1cm (D). 

 

S7 Fig: Related to Fig. 6. Extramedullary erythropoiesis occurs in the spleen of 

ssNM-R and lsNM-Rs. 

(A) Heatmap of erythroid genes in the spleen of mouse, ssNM-R and lsNM-R. (B) 

GSEA of erythroid gene sets from [16] and (C) of splenic red pulp macrophage 

(RPM) gene sets for ssNM-R spleen compared to mouse. (D) Heatmap of classical 

genes of mouse RPM that are mostly downregulated in NM-R. For all RNA 

expression, heatmap and GSEA: n =3 mice, n =3 ssNM-Rs and n =3 lsNM-Rs; MM: 

mouse (Mus musculus), NES: normalized enrichment score; p value is adjusted p 

value.  

 

S8 Fig: Extramedullary megakaryopoiesis does not contribute to the 

hyperplasic spleen of lsNM-Rs. 

(A) Schematic representation of megakaryocytic differentiation. Ery: erythrocyte, 

MEP: megakaryocyte-erythroid progenitor, iMK: immature MK, mMK: mature MK, 

PLT: platelets. (B) Heatmap of genes associated with megakaryopoiesis (top) and 

platelets (bottom) in mouse and NM-R spleen. Samples are hierarchically clustered 

based on Pearson correlation. (C) H&E staining of megakaryocytes (white 

arrowheads) in the spleen of mouse, ssNM-R and lsNM-R. (D) Quantification of 

megakaryocytes (MK) found in mice (n = 12), NM-R (combined ssNM-R and lsNM-R, 

n = 23), ssNM-R (n = 10), lsNM-R (n = 13) and rat (n = 7). (E) Platelet count in the 

PB of mice (n = 8), ssNM-R (n = 12) and lsNM-R (n = 13). (F) Mean platelet volume 

(MPV) in PB of mice (n = 13) and NM-Rs (n = 12). (G) Representative May-Grünwald 

staining of platelets found in PB smears of mouse and NM-R: mature platelets 

(arrowhead); immature platelets (arrow). (H) Normalized RNA expression levels of 3 

regulatory genes of MK terminal differentiation. Unpaired t test in D-F and one-way 

ANOVA with Tukey’s post-hoc test for multiple comparisons in H: p value *<0.05, 

**<0.01, ***<0.001 and ****<0.0001. Transcriptomic data is based on RNAseq, MM: 

mouse (Mus musculus). Data represent mean ± s.e.m, scale bars = 20 μm (C) and 

10 μm (G). 

 

S9 Fig: Related to Fig. 7. Comparison of differentially expressed genes 

between ssNM-R and lsNM-R spleens. 
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Heatmap of all differentially expressed genes in the spleen of lsNM-R in comparison 

to ssNM-R. Samples are hierarchically clustered based on Pearson correlation. n = 3 

per group. 

 

S1 Table: Differential gene expression analysis of NM-R and MM spleen 

transcriptomes 

DESeq2 output tables for differential gene expression analysis comparing spleen 

samples from lsNM-R versus MM ("lsNM-R_vs_MM"), ssNM-R versus MM ("ssNM-

R_vs_MM") and ssNM-R versus lsNM-R ("ssNM-R_vs_lsNM-R"), respectively. 

baseMean, average of the normalised count values; lfcSE, standard error estimate 

for log2FoldChange; stat, Wald statistic; padj, adjusted p value. For more details, see 

methods section. 

 

S2 Table: Gene set enrichment analysis  

GSEA results comparing ssNM-R versus MM spleen transcriptomic data sets. padj, 

adjusted p value; ES, enrichment score; NES, normalised enrichment score; 

nMoreExtreme, number of more significant random gene pathways. Pathway size: 

number of tested genes in the pathway. For more details, see methods section. 

 

S3 Table: Hallmark gene set enrichment analysis 

GSEA results comparing ssNM-R versus MM spleen transcriptomic data sets 

focusing on hallmark pathways. padj, adjusted p value; ES, enrichment score; NES, 

normalised enrichment score; nMoreExtreme, number of more significant random 

gene pathways. For more details, see methods section. 

 

S4 Table: Enrichment analysis of NM-R immune cell gene signatures 

GSEA results with custom pathway signature defined by the immune cell signatures 

from single cell transcriptomic data as described in [16]. Transcriptome data from 

spleens of ssNM-R versus MM were compared. NES, normalised enrichment score; 

pval, p value; padj, adjusted p value. For more details, see methods section. 
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