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Abstract. In this paper, we introduce a new approach to computer-
aided microtonal improvisation by combining methods for (1) interactive
scale navigation, (2) real-time manipulation of musical patterns and (3)
dynamical timbre adaption in solidarity with the respective scales. On
the basis of the theory of well-formed scales we offer a visualization of
the underlying combinatorial ramifications in terms of a scale labyrinth.
This involves the selection of generic well-formed scales on a binary tree
(based on the Stern-Brocot tree) as well as the choice of specific tunings
through the specification of the sizes of a period (pseudo-octave) and
a generator (pseudo-fifth), whose limits are constrained by the actual
position on the tree. We also introduce a method to enable transforma-
tions among the modes of a chosen scale (generalized and refined “di-
atonic” and “chromatic” transpositions). To actually explore the scales
and modes through the shaping and transformation of rhythmically and
melodically interesting tone patterns, we propose a playing technique
called Fourier Scratching. It is based on the manipulation of the “spec-
tra” (DFT) of playing gestures on a sphere. The coordinates of these
gestures affect score and performance parameters such as scale degree,
loudness, and timbre. Finally, we discuss a technique to dynamically
match the timbre to the selected scale tuning.

Keywords: MOS Scales, Well-Formed Scales, Diatonic, Chromatic, Stern-
Brocot Tree, Farey Sequence, Fourier Scratching

1 Introduction

The scale labyrinth is a visualization of a widely studied class of musical scales,
which form a deeply structured and interconnected scale universe. The termi-
nology applied in this paper originates from two separate strands of music-
theoretical discourse. The term moment of symmetry scale (MOS) is rooted
in the field of investigations into musical tunings, while the term well-formed
(WF) scales is common in algebraic scale theory. The present paper attempts to
merge these two traditions within an experimental paradigm. For now, however,
the terms are used interchangeably.

Well-formed scales are generated by a single interval and contain exactly two
different step sizes (large and small) that are maximally evenly distributed. The
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case where these step sizes coincide is included as a degenerate instance. Each
scale has a valid tuning range over which it maintains a structural identity but
over which the sizes of the two steps co-vary. At any given tuning, each scale is
embedded within a unique family of scales with successively larger numbers of
tones (and successively smaller valid tuning ranges). Carey [1] denotes the class
of all well-formed N -note scales as WF (N, g) where g is the factor that converts
generator order into scale step order (mod N). For example, the diatonic scale
and its inverse belong to WF (7, 2) while the chromatic scale and its inverse
belong to WF (12, 7). These relationships are represented visually in Sect. 4.

Visualizing the structure of these scales is useful from an analytic point of
view, and it can also function as a graphical user interface (GUI) object for
use in musical applications. An example of an analytical application is given in
Figure 5 in [2], where a scale labyrinth is used to indicate MOS scale tunings
that provide good approximations of just intonation. A concrete example of use
in a GUI is given in Sec. 5, where the scale labyrinth allows a musician to choose,
simultaneously, a scale structure (number of small and large steps) and its tuning
(the sizes of its period and generator).

Fig. 1. This scale labyrinth, generated interactively in Mathematica, can be adjusted
in several ways to emphasize certain aspects of the tunings as described in Sect. 4.
The program can be downloaded from http://homepages.cae.wisc.edu/~sethares/

MOSLabyrinth.nbp.

The scale labyrinth is related to a Stern-Brocot tree (Fig. 4), which is a
systematic enumeration of the rational numbers. In the case of the labyrinth,
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Fig. 2. This scale labyrinth can be used directly to control the tuning of
an interactive algorithmic music application, as described in Sect. 5. See also
http://www.youtube.com/watch?v=OBUUcjLbCIk for a short movie.

Fig. 3. The scale labyrinths of Figures 1 and 2 have a remarkable symmetry and are
reminiscent of labyrinths of Gothic architecture, such as the famous Chartres cathedral
labyrinth shown here (original photograph by Mich De Mey http://www.flickr.com/

photos/dumbo/2555996059/).
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the tree has been bent into a circular shape so that 0/1 and 1/1 lie at the same
location. In the scale labyrinth, each nested circle corresponds to a fraction with
denominator equal to the radius of the circle; in the Stern-Brocot tree, each
row contains fractions with different denominators. The Stern-Brocot tree has
been used by Erv Wilson to illustrate the structure of MOS scales using scale
tree diagrams [3]. More recently, Holmes [4] produced a version, rotated by 90
degrees, where the left-right position of each fraction was determined by its
denominator. Inspired by this diagram, Milne [2] produced a circular version
to visually emphasize the period (octave) equivalence so that rotation by 360
degrees corresponds to the period.
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Fig. 4. The Stern-Brocot tree.

2 Some Properties of MOS/Well-formed Scales

There are several alternative but equivalent definitions: an MOS/well-formed
scale is a generated scale containing exactly two step sizes that are distributed
with maximal evenness.5 A generated scale is produced by repeatedly adding a
generator interval (typically a perfect fifth) and then reducing all such intervals
by repeatedly subtracting a period interval (typically the octave) so all intervals
are smaller than the period. The number of times the generator can be stacked
so as to produce just two evenly distributed step sizes depends on the ratio of
the generator and period. For example, if the generator is 702 cents and the
period is 1200 cents (a generator/period ratio of 0.585), the two-note scale C-G
belongs to scale class WF (2, 1), the 3-tone scale C-D-G belongs to WF (3, 2),
the 5-tone scale C-D-E-G-A belongs to WF (5, 2), the 7-tone scale C-D-E-F]-
G-A-B belongs to WF (7, 2), the 12-tone chromatic scale belongs to WF (12, 7),
WF (17, 12) is a 17-tone scale, and so forth [5]. Different generator/period ratios

5 That is, the distribution of the two steps forms a Christoffel word.
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require different numbers of tones to produce well-formed scales. For example,
when the generator is 316 cents (a just intonation “minor third”) and the period
is 1200 cents, the following numbers of tones produce well-formed scales: 2, 3,
4, 7, 11, 15, 19, and so forth. Whenever the size of the period is not explicitly
mentioned, it is assumed to be 1200 cents.

Each MOS scale can be characterized by its number of large (L) and small
(s) steps, so the familiar (anhemitonic) pentatonic scale can be characterized
with the signature 2L, 3s, the familiar diatonic scale by the signature 5L, 2s.
For any given generator/period ratio, the number of tones required to form an
MOS scale and the range of tunings over which any such scale maintains its
identity (i.e., its number of large and small steps is invariant), is given by the
Stern-Brocot tree (as discussed in the next section).

Well-formed scales have a number of properties that are thought to give them
aesthetic value. For example: every scale span (generic interval size) occurs in
exactly two interval sizes (Myhill’s property [6]). The two scale step sizes are
evenly distributed throughout the period. Within the period, every scale degree
has a unique pattern of intervals surrounding it [7], which helps support tonal
functionality. When transposed by the generator, the resulting scale shares all
but one tone, facilitating modulation [7]. Collectively, these features suggest a
good compromise between the excessive simplicity of equal step scales and the
complexity of completely irregular scales [8].

Western theory recognizes the first five fifth-generated well-formed scales: au-
thentic division of the octave, tetractys, the pentatonic, diatonic and chromatic.6

But there are a number of MOS scales that, due to their microtonal intervals,
are unfamiliar and may be difficult to play on standard instruments. Interest-
ingly, a number of such well-formed scales contain numerous intervals and chords
that approximate consonant just intonation intervals and chords as effectively
as the familiar diatonic scale [9]. And, as discussed in Sect. 6, it is possible to
use synthesizers capable of spectral retuning to minimize sensory dissonance for
any MOS scale at any tuning [10]. It seems, therefore, that with novel musical
controllers and synthesizers, the musical possibilities of MOS structures may
become more accessible to musicians and composers. This paper discusses one
such application.

Some intriguing features of scales with the MOS/well-formed structure are:
Co-prime step numbers: In every MOS, the number of small steps and number
of large steps (in each period) is always co-prime. For example, the pentatonic
scale is 2L, 3s; the diatonic is 5L, 2s. There is no MOS scale with, for example,
2 large steps and 4 small steps (within the period).

Inverse scales: Every MOS scale has an “inverse” form, where the number of
large and small steps swaps. For example, the diatonic scale (5L, 2s) has an
inverse, the anti-diatonic scale, which is 2L, 5s.

Landmark equal tunings: As the tuning of generator changes, the sizes of the
small and large steps co-vary. For example, when the generator is 700 cents, the

6 Strictly speaking, the chromatic scale in 12-tet is a degenerate well-formed scale
because its two step sizes are identical [5].
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diatonic scale’s large steps (major seconds) are 200 cents, its small steps (minor
seconds) are 100 cents; when the generator is 710 cents, the large steps are 220
cents, the small are 50 cents (in all cases, 5 × large step size + 2 × small step
size = period size).

The co-varying step sizes produce three “landmark” tunings: a) the tuning
where the small and large steps become the same size (this tuning marks the
transition between an MOS scale and its inverse), b) the tuning at which the
small steps of the MOS shrink to zero, c) the tuning at which the small steps
of the inverse MOS scale shrink to zero. All three landmark tunings are equal
temperaments: the cardinality of a) is the number of L steps plus the number
of s steps, the cardinality of b) is the number of L steps, and the cardinality
of c) is the number of s steps. For example, the diatonic 5L, 2s scale meets its
inverse (the anti-diatonic scale) at 7-tet (685.714 cents), where the large and
small steps become identically sized; the diatonic is also bounded at 5-tet (720
cents), where its two small steps shrink to zero size; the anti-diatonic is also
bounded at 2-tet (600 cents), where its five small steps shrink to zero.
Embeddings: Every MOS scale with signature pL, qs is embedded in a family
of MOS scales. The lowest cardinality embedding scale has 2p + q steps. For
example, the lowest cardinality MOS scale that embeds the 5L, 2s diatonic scale
has 2 × 5 + 2 = 12 tones; the lowest cardinality scale that embeds the 2L, 5s
anti-diatonic has 2× 2 + 5 = 9 tones. A method to determine the tuning of this
embedding scale using the Stern-Brocot tree is given in Sect. 3.
Coherence within a well-defined tuning range: A scale is coherent [11] or proper
[12] if there is a monotonic relationship between that scale’s generic interval sizes
and its specific interval sizes. This requires, for example, that every fifth be larger
than every fourth, which are larger than every third, which are larger than every
second, which in turn are larger than the unison. Well-formed scales are coherent
over the tuning range within which the ratio of L to s (Blackwood’s R [13]) is less
than 2. This is precisely the tuning at which the lowest cardinality embedding
scale is equally tuned. For instance, the 5L, 2s diatonic scale is coherent between
4/7 and 7/12. The anti-diatonic scale 2L, 5s is coherent between 5/9 and 4/7.

3 The Stern-Brocot Tree

The Stern-Brocot tree [14] [15] is a systematic enumeration of the rational
numbers independently discovered in the 19th century by the mathematician
Moritz Stern and the watchmaker Achille Brocot. Stern’s focus was mathemat-
ical whereas Brocot’s focus was the specification of gear ratios for clock design.
The tree provides a method to iteratively generate all rational numbers, in re-
duced form, exactly once. In Fig. 4, note that the top row consists of the three
rationals 0/1, 1/1, and 1/0; the next row down consists of the mediants of each
adjacent pair of the above row, which gives the rationals 1/2 and 2/1 (the me-
diant of a/b and c/d is (a + c)/(b + d), where all fractions are reduced). The
iterative process of populating each new row with the mediants of the adjacent
pairs above produces the Stern-Brocot tree, and all fractions are ordered, by size,
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from left to right. The following paragraphs show the correspondences between
the Stern-Brocot tree and the scale properties described in the previous section.

In the Stern-Brocot tree, each fraction can be thought of as representing
a generator/period tuning ratio. Because these are co-prime ratios n/d, they
generate an equal division of the period of cardinality d. For instance, 4/7 can
represent a generator of 685.714 cents and a period of 1200 cents, and thus
generates 7-tet. With this in mind, the tree can be used to provide the precise
landmark tunings, range of coherence, and embeddings of any well-formed scale.
Fig. 5 provides an illustration of the methods described below.

a

b

c

d
a + c

b + d
2a + c

2b + d

a + 2c

b + 2d

bL, ds dL, bs
WF (b + d, d) WF (b + d, b)

coherence

Fig. 5. A well-formed scale’s landmark tunings, its range of tuning coherence, and its
lowest cardinality embedding can be read directly off the Stern-Brocot tree.

Consider two fractions in the same row of the tree, a
b and c

d , and their mediant
a+c
b+d . The interval between a

b and a+c
b+d corresponds to the valid (generator/period)

tuning range of an MOS scale with b large steps and d small. There must be d
small steps because the boundary tuning at a

b has b tones, which implies that d
small steps have shrunk to zero size. Conversely, the interval between a+c

b+d and
c
d corresponds to the valid tuning range of the inverse MOS scale, which has d
large steps and b small—the boundary tuning at c

d has d tones, so b small steps
have shrunk to zero size. The tuning at precisely a+c

b+d is (b + d)-tet, so this is
the tuning at which the “large” and “small” steps become equivalent in size and
the MOS meets its inverse.

For example, the fractions 1
2 and 3

5 have a mediant 4
7 , so the interval between

1
2 and 4

7 is the valid tuning range of an MOS with 2 large and 5 small tones (the
anti-diatonic), while the interval between 4

7 and 3
5 is the valid tuning range of its

inverse—the diatonic 5L, 2s. At precisely 4
7 , the large and small steps are equally

sized and the two scales meet. Each triple of fractions made from two adjacent
fractions and the fraction between them on the row below corresponds, therefore,
to the three landmark tunings: The central value gives the generator/period ratio
where the MOS scale meets its inverse, the outer values give the tunings at which
the small steps of the MOS, or its inverse shrink to zero.

The lowest cardinality scales within which any MOS is embedded can be
identified by the mediant of its two boundary tunings. As above, the boundary
tunings of bL, ds are a

b and a+c
b+d , and their mediant is 2a+c

2b+d . This means the
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embedding scale contains 2b+ d tones, with either b+ d large steps and b small,
or b large and b + d small, depending on the tuning. For example, the diatonic
scale (whose boundaries are 4/7 and 3/5) is embedded within their mediant,
which is 7/12 (which represents the scale 7L, 5s or its inverse 5L, 7s). Similarly
the anti-diatonic whose boundary tunings are 1/2 and 4/7 is embedded within
their mediant, which is 5/9 (7L, 2s, or 2L, 7s).

The tuning range over which bL, ds, and its inverse dL, bs, are coherent is
bounded by the tunings at which their respective lowest cardinality embedding
scales are equally tuned. That is, at 2a+c

2b+d and a+2c
b+2d . For instance, the diatonic has

boundary tunings of 4/7 and 3/5, and their mediant (embedding scale) is 7/12,
so the range over which the diatonic scale is coherent is 4/7 to 7/12; similarly, the
anti-diatonic has boundary tunings at 1/2 and 4/7 with a mediant (embedding
scale) of 5/9, so the range over which it is coherent is 5/9 to 4/7, which can be
gleaned from [5].

4 Reading the Interactive Labyrinths

Depending on its purpose, different visualizations of the scale labyrinth may
be preferred. Figure 1 displays several kinds of information that may be useful
in a detailed analysis while the simpler Fig. 2 may be more appropriate as an
interface element for the purpose of choosing a scale and tuning. In Fig. 1, the
angle indicates the ratio between the generator and the period—the top of the
circle represents a generator/period ratio of zero, the bottom of the circle a
ratio of 1/2, the 11 o’clock position, a ratio of 11/12. For example, the familiar
12-tone equal tempered diatonic scale, which requires a generator of 700 cents
(7 semitones) and a period of 1200 cents (12 semitones), can be found at the
location 700/1200 = 7/12 = 0.583. Figure 1 is labeled in cents (assuming a period
of 1200) but, in the interactive version, fractions can be displayed instead.

Note that the structure is left-right symmetric, because a scale created us-
ing any generator is identical to the scale generated by the complement of the
generator within the period (e.g., precisely the same scale is produced by gener-
ators of 697 cents and 1200− 697 = 503 cents). Each ring corresponds to the set
of MOS scales that contain the numbers of notes indicated by its integer label
(the dot at the center of the circle is ring 1). Each radial line (spoke) extend-
ing inwards from the edge of the circle represents an equal temperament scale.
For each spoke, there is some circle that the spoke touches but does not cross.
This circle gives the number of notes in the corresponding equal step scale. The
angle of the spoke gives the tuning of its generator relative to the period. For
instance, at 700 cents, there is a spoke that extends from the edge of the circle
to the 12th ring, which indicates that this tuning produces 12-tet. Similarly, at
685.714 cents (685.714/1200 = 4/7) there is a spoke extending to the 7th ring,
illustrating that this tuning produces 7-tet.

As described in Sect. 2, as the generator/period tuning ratio changes, the
small and large steps co-vary across three landmark tunings, which are visually
prominent in the labyrinth. Using the 7-note diatonic and anti-diatonic scales as
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an example, focus on the seventh ring as in Fig. 6, which zooms in about the 700
cent region. There are two lines which cross (rather than merely touch) this part
of the 7-ring, those at 600 and 720 cents. These delimit an arc which corresponds
to the possible tunings of a 7-note MOS scale, (in this case the diatonic) and
its inverse (in this case the anti-diatonic). The 7-tet spoke at 685.7 cents is the
only spoke which meets (but does not cross) this arc. This spoke represents the
point at which the sizes of the small and large steps equalize before reversing
roles, and so marks the tuning at which the diatonic and anti-diatonic meet.

Fig. 6. This is a zoom into the scale labyrinth of Figure 1. Extra annotations have
been added to help clarify the discussion in this section.

At 720 cents, the spoke marking the left edge of the arc extends inwards to
touch the 5th ring. This tuning marks 5-tet, the point at which the 2 small
scale steps shrink to zero. Similarly, the spoke at the right edge of the arc (at
600 cents) extends inwards to the 2nd ring. This marks 2-tet, the point at
which 5 small scale steps shrink to zero. Thus, this MOS scale has 5 large and
2 small steps (5L, 2s), with the numbers reversed for the inverse scale. This
simple procedure of following the spokes inward gives the structure of the MOS
sale and its inverse. Conversely, following outward the spokes that delimit the
scale and its inverse shows which MOS scales 7-tet is embedded inside. In this
case, 7-tet is embedded in MOS scales of size 9 and 12. Similarly, any arc and
its associated three spokes correspond to a MOS scale and its three landmarks.
Thus the labyrinth can be used to investigate visually the structure, inverse,
embedding scales, associated equal tunings, and valid tuning range of any MOS
scale.

Figure 2 uses a slightly different visualization. In this version, each scale’s
valid tuning range is indicated with a thick colored band; this enables the scales
to be quickly spotted and easily clicked upon when used in a GUI. The landmark
tunings are now indicated by the boundaries of each scale arc (as before), and
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by the radial segment inside it, which marks the location at which the inverses
meet. The thicker arcs also allow for the tuning range of coherence to be clearly
indicated with a darker shading.

The scale labyrinth in Fig. 1 is drawn interactively in a Mathematica program
that allows the user to control how the information is presented. The basic size
of the labyrinth (how many concentric circles it contains) is controlled by the
top slider, while the second slider moves the golden ring to highlight scales of
the specified size. The circumference of the circle can be labelled in cents or
fractions, and in absolute terms or with respect to the chosen scale size. While
Fig. 1 shows scales up to 18 tones, the interactive application can display scales
of any size.

A large variety of tunings that provide approximations to (temperaments
of) just intonation—such as meantone, srutal, magic, hanson, etc.—are built in
and detailed information about them is shown by clicking on the names. When
displaying individual temperaments, red lines are superimposed whose angles
show their 5-limit TOP (Tenney optimal) tunings (such tunings minimize the
maximum error of all possible 5-limit just intonation intervals [9]). The number of
the ring they extend to indicates the lowest cardinality scale for which every scale
degree is a member of a major or minor triad. For instance, in the pentatonic
scale C, D, E, G, A, there is no major or minor triad that contains tone D.
Adding another fifth (to make the Guidonian hexachord) gives C, D, E, G, A,
B, and now every tone is a member of at least one major or minor triad. This
scale, however, is not well-formed. The lowest cardinality well-formed scale, all
of whose tones are a member of a major or minor triad is, in this case, the
seven-tone diatonic scale. So, in general, it may be musically useful to choose an
MOS close to a location where a red line passes through its arc.

The concept of scale, as we use it, presupposes periodicity. Under this per-
spective all rotations of a scale are equivalent. We use the concept of mode in
order to grasp all the combinatorial refinements, which emerge from the variation
of a fundamental domain for this period.

The modes of a well-formed scale have a remarkable property of parsimony,
by which one mode can be transformed into another by the replacement of a
single tone either by a pseudo-octave (= period) or by the augmented prime
(= difference interval between large and small step). These transformations are
modal refinements of diatonic and chromatic transposition. Every well-formed
scale has an associated universe of modes which is freely generated from two
basic and commuting transformations and which is therefore isomorphic to the
free commutative group Z2 of rank 2. One transformation preserves the origin of
a mode and yields a new finalis (lowest tone) a second higher. The other trans-
formation preserves the finalis of a mode and yields a new origin a pseudo-fifth
(generator) sharp-wards. The details of the interactive navigation through the
modes of a well-formed scale are based on a mathematical approach given in
[22] [23]. Every mode occupies a fundamental frame in Z2 whose borders cor-
respond to the augmented prime (horizontal dimension) and the pseudo-octave
(vertical dimension). The zig-zag trajectories within each frame represent the
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step interval patterns and the folding patterns. Minimal changes of the mode
can be described as vertical or horizontal shifts of the fundamental domain. Any
modal change can be decomposed into such minimal changes. The height-width
representation therefore offers an effective navigation method with the modal
universe of a well-formed scale.

Fig. 7. Two types of mode transformation correspond to by vertical and horizontal
shifts of a fundamental frame in a generic height and width coordinate system. The
figure shows the transformation of a C-Ionian mode into the common origin mode D-
Dorian (left) and the transformation of a C-Ionian mode into the common finalis mode
C-Lydian (right), and vice versa.

5 Fourier Scratching as a Performance Technique

The Fourier Transform has been successfully applied in many different ways
to the analysis and manipulation of musical sound. It has also been fruitfully
applied to non-acoustic problems in mathematical music theory such as those
in [16], [17], and [18]. The Fourier Scratching project attempts to transfer the
established analysis - manipulation - resynthesis paradigm from the domain of
sound processing to the domain of macroscopic musical events such as melody,
rhythm, tuning and dynamics. It was first proposed in [19] and later realized as
a prototype in the domain of rhythm (initially presented at the MCM 2009 [20],
later publicly demonstrated at the Lange Nacht der Wissenschaften in Leipzig,
and discussed at the SuperCollider symposium { SOUNDING CODE } in 2010,
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[21]). The present extension to scales is also inspired by Quinn’s and Amiot’s
findings about the Fourier properties of musical scales [17], [18].

Traditionally, playing microtonal music in different scales requires developing
multiple instruments with suitable interfaces, which one then needs to learn to
play. For example, think of the Cembalo Cromatico with 19 keys per octave. To
build and master keyboards like this is quite a challenge, both technologically
and pianistically. The present project began with the idea of improvising over
the tunings of a scalar labyrinth, something that is infeasible without the help
of a computer. Even with suitable software, which makes it easy to play any
pattern in any scale at any speed, it is still necessary to specify every pattern in
advance. But how can one improvise in any pattern in any scale at any speed?

The idea is to actuate a (virtual) playing robot in a musically sensible way.
The basic behavior of the robot is to perform keystrokes with variable strength
on variable positions of a keyboard with its n fingers one after the other at a
given pulse rate. The finger movements occur with an unperturbed orderliness:
finger 1 followed by finger 2 etc. and eventually finger n followed again by finger
1. The pulse and the number n of fingers can be changed but for the moment
consider them fixed. The main paradigm of playing with the help of this robot
is that the improviser can change the strength and the position of any finger at
any time. The (virtual) keyboard is designed as a continuous circle, i.e. any point
on this circle may have a (potentially) different sound. The keyboard layout for
a finite scale can have specific key widths which are proportional to the sizes of
the step intervals above each tone (see Fig. 8). In these examples the number of
robot fingers coincides with the number of scale tones, but this is not mandatory.

Fig. 8. The black polygons represent elementary play states with a scale being dis-
tributed on the circular keyboard (5 tones and 14 tones, respectively). In these cases
the playing robot has as many fingers as there are tones in the scale and their dis-
tribution is regular. The coherence of these scale examples therefore guarantees that
each tone is being played exactly once. In the Fourier picture these play states may be
regarded as pure partials. In the left two examples the first Fourier coefficient satisfies
a1 = 1 and all others vanish. In the right two examples, a3 = 1 and all other coefficients
vanish.

The idea behind the Fourier Scratching technique and interface is the in-
teractive control of musical parameters through the visualization and gestural
manipulation of their Fourier coefficients. This presupposes that the musical pa-
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rameters in question are encoded as complex vectors f = (f0, ..., fn−1) ∈ Cn.
For moderately small values of the dimension n there is no need to use the FFT
to obtain realtime control, and thus the values of n are not restricted to powers
of 2. The slower discrete Fourier transform f̂ = DFT (f) = (a0, ..., an−1) can be
computed quickly enough and the inverse Fourier transform can be applied after
the gestural manipulation of a Fourier coefficient. The didactical incentive for
the Fourier Scratching of Rhythms in the above-mentioned previous implementa-
tion is a musically faithful realization of the complex coefficients fk = rke

itk . The
magnitudes rk of the coefficients fk encode loudness values and their phases tk
encode sound colors—given by realtime adjustable FM-sounds—audibly describ-
ing a circle. The vector f ∈ Cn represents a rhythmical loop Zn → C. Thereby
the finite cyclic group f : Zn of order n denotes a cyclic pulse of length n, which
in performance triggers the values fk = rke

itk one after another; that is, it plays
percussive FM-sounds of loudness rk and of sound color with phase-index tk.
The vector f is subject to continuous change through gestural manipulation of
f̂ by the performer and can be best described as a “traveling rhythm” in a circle
of sound.

In the present application the play state of the robot with n fingers is also
encoded by a complex vector f = (f0, ..., fn−1) ∈ Cn. With respect to polar
coordinates fk = rke

itk , rk can be interpreted as the strength (loudness) and tk
as the play position of the finger with index k. The DFT of the play states in
Fig. 8 are thus (from left to right) (0, 1, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0), and (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), respectively.

From a combinatorial point of view the regular distributions of Fig. 8 are
special cases. In general, the position and strength of each robot finger on the
circular playtable can be freely chosen at any moment. The naive control mode
would be to change these parameters individually for every finger, but this re-
quires a large set of controls. In contrast, the Fourier Scratching technique offers
the ability to change the play states globally and smoothly using only a few
parameters. While we cannot offer empirical evidence yet that this particular
technique is musically more effective than other alternatives, it is useful to ob-
serve that the partials (as the most elementary play states) correspond to mu-
sically elementary patterns.7 As exemplified in Fig. 8 it is precisely the family
of coherent well-formed scales which will be played in generic scalar order by
the first partial play state. Higher partials with indices k coprime to n generate
complete generic interval cycles. Early experiments with this system give the
impression that play states which are closely related in their Fourier coefficients
are sensibly related by the musical ear. Navigation along the scalar hierarchy in
real time can suitably be accompanied by a rising or reduction of the dimension
of the play state (e.g by zero-padding the DFT of the current play state or by
deleting the Fourier coefficients with minimal energy).

The play states and their Fourier Transforms can be visualized using Riemann
number spheres with the vectors f and f̂ being displayed as closed polygons with
small colored balls at their points as in Fig. 9 (or refer to the demonstration

7 The Nth partial is defined as pN,k(t) = e
2πitk
N .
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at http://www.youtube.com/watch?v=-qo09XTtFMA&feature=related). The
small balls are always played in a loop, as indicated by the polygon. The equator
represents the continuous circular keyboard where every finger of the robot can
hit at any longitude (between 0 and 2π). Gestural control of the locations where
the fingers “hit” the spherical surface of the “keyboard”, selection of the “keys”
(small balls), of the spheres, and activation of sonification, is currently enabled
through a standard 4-axis 12-button game controller. Points which differ only
in latitude from some point on the equator have the same sound and the same
pitch but are played louder (north) or softer (south) than their projection to
the equator. Both pitch and timbre are mapped to longitude, but pitch moves
in discrete steps (as set by the choice of scale—see the sectors illustrated in Fig.
7), while timbre is continuously variable. This implies that two different pitches
never have the same timbre, and that the same pitch may have more than one
timbre.

Fig. 9. The screenshots display two 24-dimensional play states with relatively simple
Fourier Transforms. In each screenshot (top and bottom) there are two spheres. The left
ones (passive) show the play states, while the right ones (active and selected) show the
associated Fourier transforms. The screenshot on top represents a play sate with only
two non-vanishing Fourier coefficients: a0 and a1. Here a0 is selected (and enlarged).
The screenshot at the bottom shows, how this simple play state is being “scratched”
by a manipulation of the coefficient a3, being selected (and enlarged).

The paradigm of Scratching the ascending pattern of a scale can be extended
to the paradigm of Scratching a circular musical score (a loop). In addition to the
play state, the score can be visualized on the surface of the sphere as a landscape
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and the robot finger with index k in a certain play state (..., rke
tk , ...) plays the

notes (or generalized musical events) which are positioned at the score position
specified by its phase tk and with the loudness specified by its magnitude. In
this paradigm the composer of the score defines the elementary patterns.

6 Automatic Adaption of Sound Color

For tones with harmonic spectra (such as most Western instruments and the
human voice), intervals close to low integer frequency ratios (e.g., the octave and
perfect fifth) are typically considered to be harmonically consonant and have high
melodic affinity. However, the intervals found within dynamically tuned well-
formed scales can take any size and so may be quite unfamiliar and dissonant in
character, or sound out-of-tune.

The inharmonic timbres produced by FM-synthesis are effective at amelio-
rating these issues, but there is an alternative technique—Dynamic Tonality
[10]—that can be used to minimize the sensory dissonance [24] and maximize
the melodic affinity and in-tuneness [25] of microtonal intervals. This is achieved
by “matching” the tunings of the tones’ partials (overtones or harmonics) to
the underlying tuning of the scale (matching means that when a typical scale
interval is played, many of the partials in one tone have the same pitches as
partials in the other tone). This technique can be applied using any form of
synthesis in which the tunings of partials can be precisely controlled; appro-
priate methods of sound synthesis include analysis-resynthesis, additive, and
modal. Software synthesizers utilizing these techniques can be downloaded from
http://www.dynamictonality.com. The pitch (relative to the fundamental) of
each partial is mapped to a linear combination of the pitch heights of the period
and generator of the underlying scale. This enables some of the intervals between
the partials to correspond to some of the intervals found in the MOS scale, even
as the underlying tuning is changed dynamically.

7 Discussion

In speaking about and proposing a technique for playing music, there is an
æsthetic aspect that inevitably arises. We see affinities between the Fourier
Scratching techniques suggested here and minimal music, streamlined loops in
DJ Culture, and even with some ideas of early serialism. Our initial motivation
was to depart from the traditional dichotomy between instrument and virtuoso
musician so as to allow a novel interaction between mathematical composition
techniques, real-time computation, and improvised performance. Likewise, our
first experiences from the more didactically oriented realization of the Fourier
Scratching concept ([20] [21]) transformed into a music-æsthetic and media-
theoretic challenge. It appears that the “immediate” interaction of theoretical
thought and musical experience calls for a suitable environment of reflection
and action, where music, mathematics and computation are “naturally” entan-
gled. Looking towards the future, perhaps the ultimate performance interface
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for this playing technique would be a large interactive sphere with multitouch
and display.

8 Conclusion

In this paper, we have discussed the scale labyrinth—a visualization of a universe
of interconnected well-formed scales that enables any generic well-formed scale,
and its specific tuning, to be easily selected. We have shown how the selected
scale can be played by the technique of Fourier Scratching, which operates on
spectra of playing gestures, thereby patterning the order in which scale degrees
are played, as well as their timbres and their loudnesses. We also discuss how
mode transformations of the scale can be effected, and a method to ensure the
timbre used is optimally matched to the underlying scale so as to maximize
tonal affinity. We hope this novel system provides a set of useful constraints
and parameters for performing improvisations across the valid tuning range of
a given well-formed scale, across “diatonic” and “chromatic” transpositions of
such a scale, and across the interconnected universe of different well-formed
scales that is pictured in the labyrinth.
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